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ABSTRACT
The distribution of fitness effects (DFE) characterizes the range of selection coefficients from which new mutations are sampled,

and thus holds a fundamentally important role in evolutionary genomics. To date, DFE inference in primates has been largely

restricted to haplorrhines, with limited data availability leaving the other suborder of primates, strepsirrhines, largely under‐
explored. To advance our understanding of the population genetics of this important taxonomic group, we here map exonic

divergence in aye‐ayes (Daubentonia madagascariensis)—the only extant member of the Daubentoniidae family of the Strep-

sirrhini suborder. We further infer the DFE in this highly‐endangered species, utilizing a recently published high‐quality
annotated reference genome, a well‐supported model of demographic history, as well as both direct and indirect estimates of

underlying mutation and recombination rates. The inferred distribution is generally characterized by a greater proportion of

deleterious mutations relative to humans, providing evidence of a larger long‐term effective population size. In addition

however, both immune‐related and sensory‐related genes were found to be amongst the most rapidly evolving in the aye‐aye
genome.

1 | Introduction

The distribution of fitness effects (DFE) summarizes the range
of selection coefficients from which new mutations are sam-
pled. Consequently, characterizing the DFE holds a funda-
mentally important role in evolutionary genomics, as it
quantifies the fraction of neutrally evolving genomic mutations,
provides insights into the expected relative frequencies of

purifying relative to positive selection, and informs the expected
effects of selection at linked sites, to name but a few implica-
tions (see the reviews of Eyre‐Walker and Keightley 2007;
Keightley and Eyre‐Walker 2010; Bank et al. 2014a). Moreover,
given that the vast majority of fitness‐impacting mutations are
deleterious, the constant elimination of these variants via
purifying selection and the associated background selection
(BGS) effects (Charlesworth et al. 1993) represent constantly
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operating processes shaping levels and patterns of genomic
variation in and around functional regions. As such, an accu-
rate characterization of these effects is critical for the con-
struction of any evolutionary baseline model for a given species
(Comeron 2014, 2017; Poh et al. 2014; Irwin et al. 2016; Johri
et al. 2022a; Howell et al. 2023; Terbot et al. 2023; Soni
et al. 2023; Soni and Jensen 2025), and, because these effects
may differ strongly depending on the relative proportion of
weakly relative to strongly deleterious mutations, the DFE
shape again emerges as a fundamental component for any
evolutionary modeling or inference (Charlesworth et al. 1993;
Hudson and Kaplan 1994; Charlesworth et al. 1995; Ewing and
Jensen 2014, 2016; Johri et al. 2020).

Generally speaking, there are two classes of DFE inference, one
applicable to lab‐tractable organisms that may be experimen-
tally evolved, and one applicable to natural population analysis.
The former includes mutation accumulation experiments—in
which a population of organisms can be maintained often in
replicate, sampled at regular intervals, and the fitness effects of
newly arising mutations characterized with respect to, for ex-
ample, the wildtype state (e.g., Lenski et al. 1991; Barrick and
Lenski 2013; Desai 2013; Böndel et al. 2019; Morales‐Arce
et al. 2022; Crombie et al. 2024). This class also includes
mutagenesis experiments—in which hundreds or thousands of
individuals can be maintained that carry one or very few
mutations, and their fitness assessed by, for example, relative
growth rates (e.g., Hietpas et al. 2011; Jacquier et al. 2013; Bank
et al. 2014b; Fowler and Fields 2014; Matuszewski et al. 2015).
Both methods represent powerful DFE inference approaches for
the organisms in which they can be applied (e.g., Saccharo-
myces cerevisiae, Caenorhabditis elegans, Chlamydomonas re-
inhardtii), with the caveat being that they provide DFE
inference only within the context of a lab‐grown environment.

With regard to natural population analysis, which will be our
focus here, there are generally approaches utilizing divergence
data, polymorphism data, or a combination of both. Perhaps the
most basic approach utilized to infer aspects of the DFE relies
on comparisons between nonsynonymous and synonymous
divergence. Assuming that synonymous sites are effectively
neutral, and thus characterized by a substitution rate equal to

their mutation rate (Kimura 1968), one may quantify the frac-
tion of nonsynonymous mutations that are deleterious (and
thus characterized by reduced fixation probabilities relative to
neutrality) by assessing the depression in non‐synonymous
divergence relative to the synonymous neutral standard (e.g.,
Eyre‐Walker et al. 2002). Similarly, if advantageous mutations
are present (characterized by increased fixation probabilities
relative to neutrality), one may assess this fraction of the DFE
via the acceleration of non‐synonymous divergence relative to
synonymous (e.g., Smith and Eyre‐Walker 2002). These ad-
vances largely owed to the realization that a McDonald‐
Kreitman‐style test (McDonald and Kreitman 1991) could be
used to infer proportions of adaptive substitutions
(Charlesworth 1994). Synonymous and non‐synonymous
mutations aside, one may similarly utilize this divergence‐
based logic to assess selective constraints acting in different
genomic regions (e.g., coding relative to intronic relative to
intergenic; Andolfatto 2005).

When incorporating polymorphism data into DFE inference,
one initial challenge is the need to incorporate the demographic
history of the population into the inference procedure, given
that this history may also act to shape levels and patterns of
variation and thus may potentially result in mis‐inference if
unaccounted for (see the review of Johri et al. 2022b). One of
the first advances in this regard utilized the site frequency
spectrum (SFS) at putatively neutral synonymous or noncoding
sites to infer a population history, and then conditioned on that
history to infer the DFE at putatively functional non‐
synonymous sites (Williamson et al. 2005; Keightley and Eyre‐
Walker 2007). Such step‐wise approaches yielded some of the
first polymorphism‐based DFE estimates for a variety of orga-
nisms (Eyre‐Walker and Keightley 2007, 2009; Boyko
et al. 2008; Schneider et al. 2011). A related category of methods
also arose for utilizing time‐sampled polymorphism data to
infer individual mutational effects based on observed allele
frequency changes—as may be applicable to ecological datasets
or ancient DNA sampling—with the stochastic effects of genetic
drift associated with the given population history being incor-
porated by estimating an effective population size based on the
variance observed in neutral allele frequencies (e.g., Malaspinas
et al. 2012; Foll et al. 2015; Ferrer‐Admetlla et al. 2016; and see
the review of Malaspinas 2016). However, in addition to gen-
erally being limited to relatively simple population‐size change
models (though more complex models have been developed;
e.g., Ma et al. 2023; Kim et al. 2017), these initial single‐ and
multi‐timepoint approaches also assumed independence
amongst sites, and thus neglected any role of background
selection or other forms of genetic hitchhiking in further
shaping levels of polymorphism (see the reviews of
Charlesworth and Jensen 2021, 2022).

To address these polymorphism‐based challenges, simultaneous
inference approaches have recently been developed. Though
accounting for the effects of selection on linked sites within an
analytical framework remains challenging, Cvijović et al. (2018)
obtained expressions for the SFS at sites experiencing BGS in a
constant size population, and Friedlander and Steinrücken
(2022) described a numerical framework to obtain expected SFS
and linkage disequilibrium (LD) patterns around a selected
region with changing population size. To allow for more

Summary

• The distribution of selective effects that characterizes
newly arising mutations is fundamental for under-
standing evolutionary outcomes, and we here infer this
distribution in a highly‐endangered primate, the aye‐aye
(Daubentonia madagascariensis).

• While the general shape of the distribution suggests
stronger purifying selection effects relative to humans,
we have additionally identified faster‐evolving func-
tional categories which include both immune‐related
and sensory‐related genes.

• As aye‐ayes are gravely threatened owing to ongoing
deforestation in Madagascar, this study will help to
better understand the long‐term selective dynamics of
the species, the only extant member of the Daubento-
niidae family.
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complex models, progress has also been made using approxi-
mate Bayesian computation (ABC) approaches with forward
simulations, to model both complex population histories and
flexible DFE shapes, whilst accounting for the resulting effects
of selection on linked sites. For example, Johri et al. (2020)
developed a joint ABC approach estimating the DFE densities of
neutral, weakly deleterious, moderately deleterious, and
strongly deleterious mutations, together with a history of pop-
ulation size change, utilizing aspects of the SFS, LD, and
divergence as summary statistics. Notably, the exclusion of BGS
effects in previous methods was found to result in an under‐
estimation of weakly deleterious mutations and an over‐
estimation of population growth – a bias that is corrected within
this ABC framework (Johri et al. 2021). Subsequent work has
also demonstrated the potential mis‐inference that may arise by
neglecting underlying heterogeneity in rates of both mutation
and recombination (Soni et al. 2024). Taken together, this lit-
erature thus emphasizes the importance of incorporating pop-
ulation history, the effects of selection at linked sites, as well as
mutation and recombination rate maps/uncertainties when
performing DFE inference.

In primates specifically, these various divergence‐ and
polymorphism‐based approaches have been employed widely,
with humans being the best studied in this regard. For example,
Keightley and Eyre‐Walker (2007) fit a gamma‐distributed DFE
utilizing a gene set associated with severe disease or inflam-
matory response, and estimated a large proportion (~40%) of
strongly deleterious mutations and a relatively low proportion
(~20%) of effectively neutral mutations. Huber et al. (2017)
utilized a wider selection of genes, resulting in a DFE skewed
towards effectively neutral mutations (~50%; similar to the es-
timate of Johri et al. 2023 utilizing a different subset of genes),
and a smaller proportion (~20%) of strongly deleterious muta-
tions. Thus, these differences may well simply and accurately
reflect true DFE differences in the underlying gene sets eval-
uated. Similar inference has also been performed across the
great apes (e.g., Castellano et al. 2019; Tataru and
Bataillon 2020), and considerations have been extended to
general regulatory regions as well (e.g., Simkin et al. 2014;
Anderson et al. 2020; Kuderna et al. 2024).

Notably however, owing largely to data availability, these esti-
mates have been performed primarily in haplorrhines
(specifically in the great apes), with the other suborder of pri-
mates, strepsirrhines, being largely unexplored. Yet, a number
of recent advances have uniquely enabled investigation in this
neglected space of the primate clade. Firstly, Versoza and
Pfeifer (2024) have recently provided an annotated
chromosome‐level genome assembly for aye‐ayes (Daubentonia
madagascariensis)—the only extant member of the Daubento-
niidae family of the Strepsirrhini suborder—thereby allowing
for the essential demarcation of functional and non‐function
genomic regions needed for performing DFE inference. Sec-
ondly, recent work has also generated high‐quality direct
mutation and recombination rate estimates for aye‐ayes from
multi‐generational pedigree data (Versoza et al. 2024, 2025;
Versoza, Lloret‐Villas, et al. 2025)—as well as indirect fine‐scale
estimates based on autosomal patterns of LD and neutral
divergence (Soni, Versoza, et al. 2024). Finally, utilizing high‐
coverage whole‐genome data from unrelated individuals, Terbot

et al. (2025) recently estimated a well‐fitting population history
for aye‐ayes (and see Soni et al. 2025)—which described a
severe and ancient population size decline likely associated
with the human colonization of Madagascar, as well as a more
recent decline likely associated with habitat destruction—
thereby providing the needed accounting of the role of popu-
lation history in shaping observed SFS across the genome.
Based on these advances, we here quantify exonic divergence
and infer the DFE characterizing this species.

2 | Materials and Methods

2.1 | Animal Subjects

This study was approved by the Duke Lemur Center's Research
Committee (protocol BS‐3‐22‐6) and Duke University's Institu-
tional Animal Care and Use Committee (protocol A216‐20‐11),
and performed in compliance with all regulations regarding the
care and use of captive primates, including the U.S. National
Research Council's Guide for the Care and Use of Laboratory
Animals, the U.S. Public Health Service's Policy on Humane
Care and Use of Laboratory Animals, and the American Society
of Primatologists Principles for the Ethical Treatment of Non-
human Primates.

2.2 | Exonic Divergence

To obtain exonic divergence values, we first utilized the hal-
RemoveGenome function implemented in HAL v.2.2 (Hickey
et al. 2013) to remove the outdated aye‐aye genome assembly
from the 447‐way multiple species alignment (which consists of
the combined mammalian multiple species alignment of
Genereux et al. (2020) and the primate multiple species align-
ment of Kuderna et al. [2024]). We then extracted the ancestral
genomes PrimatesAnc005 and PrimatesAnc011 from the
447‐way alignment using HAL's hal2fasta function, and aligned
them with the current NCBI reference genome (DMad_hybrid;
GenBank accession number: GCA_044048945.1; Versoza and
Pfeifer 2024) in Cactus v.2.9.2 (Armstrong et al. 2020), main-
taining the branch lengths previously inferred in the 447‐way
alignment. Notably, although the previous version of the aye‐
aye assembly included in the 447‐way multiple species align-
ment (ASM2378347v1 generated from single‐molecule long‐
read PacBio data; Shao et al. 2023) was both of high‐quality and
near‐complete (containing 98.82% of single‐copy orthologous
genes that are highly‐conserved amongst eukaryotes at the
genome level), the lack of detailed gene annotations previously
prevented the application of divergence‐ and polymorphism‐
based approaches to infer the DFE. At the same time, the strong
similarity between this earlier assembly and the more recent,
fully annotated aye‐aye assembly of Versoza and Pfeifer (2024)
allowed us to take advantage of the alignment previously gen-
erated by Kuderna et al. (2024). As a final alignment step, we
used HAL's halReplaceGenome function to attach the new sub‐
alignment back into the 447‐way alignment.

To infer exonic divergence, we retrieved ‘point mutations’ between
the aye‐aye and PrimateAnc005 via HAL's halSummarizeMutations
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function. This gave us all substitutions along the aye‐aye branch
(i.e., substitutions between the aye‐aye and PrimateAnc005). Nota-
bly, this previously reconstructed ancestor is of high‐quality as the
previous version of the aye‐aye assembly was sufficient for
divergence‐based inference; however, the recent genome annota-
tions of Versoza and Pfeifer (2024) provided the critical component
of being able to differentiate functional from nonfunctional genomic
regions. Additionally, the inclusion of high‐quality polymorphism
data (Soni, Versoza et al. 2024; Soni et al. 2025; Terbot et al. 2025)
allowed for the demarcation between truly divergent sites and sites
that are segregating in the population. Finally, we masked all point
mutations that were not located in exons, and calculated exonic
divergence by dividing the number of divergent sites in each exon
by the total accessible exonic length. Notably, the underlying vari-
ance in divergence is expected to scale with gene length; however,
we sub‐setted our exons to include only those with a minimum of
100 bp of accessible sites, and all calculated comparisons were at the
per‐site level. These calculations thus represent total exonic diver-
gence (i.e., including both synonymous and non‐synonymous fixa-
tions within the coding boundaries).

2.3 | Gene Functional Analysis

Utilizing the aye‐aye genome annotations of Versoza and Pfeifer
(2024), we calculated mean divergence per site per gene, and
performed gene functional analysis using g:Profiler (Kolberg
et al. 2023) on the subset of genes with a divergence value
greater than the 75th percentile of neutral divergence in aye‐
ayes (0.0397; Soni, Versoza et al. 2024). The Supporting File
provides detailed information on the gene functional analysis,
the corresponding p‐values of each functional category, the
gene sets belonging to each category, as well as the observed
gene‐level divergence.

2.4 | DFE Inference

To fit a DFE to our exonic divergence, we simulated an exonic
region of length 2978 bp (i.e., the mean empirical length of
exons of size greater than 1 kb; see Supporting Figure S1 for the
observed exonic length distribution) in SLiM v.4.0.1 (Haller and
Messer 2023) under the Terbot et al. (2025) aye‐aye demo-
graphic model, assuming 54.9 million years since the branch
split (Horvath et al. 2008) and a generation time of 5 years
(Ross 2003; Louis et al. 2020) for 100 replicates. While directly
matching empirical exonic lengths is important when per-
forming DFE inference based on polymorphism data owing to
differing expected background selection effects between larger
and smaller functional regions (see Johri et al. 2020, 2021), as
we here performed inference based on per‐site, per‐gene
divergence data, this simulation framework is appropriate gi-
ven that background selection effects do not modify neutral
divergence rates (Birky and Walsh 1988). Simulations included
a 10Nancestral generation burn‐in time before the demographic
model (where Nancestral is the initial population size).
Each simulation replicate had mutation and recombination
rates drawn from a normal distribution, such that the
mean rates across all 100 simulation replicates were equal to the
mean pedigree‐estimated rates of 0.4e‐8/bp/generation and

0.85 cM/Mb for mutation and recombination, respectively
(Versoza et al. 2025; Versoza, Lloret‐Villas et al. 2025). Fol-
lowing Johri et al. (2020), exonic mutations were drawn from a
DFE comprised of fixed classes, denoted by 2Nancestral s< 10
(i.e., nearly neutral mutations), 10≤ 2Nancestral s< 100 (i.e.,
weakly/moderately deleterious mutations), and 100≤ 2Nancestral

s (i.e., strongly deleterious mutations), where s is the reduction
in fitness of the mutant homozygote relative to wildtype.
Notably, this DFE represents that of all newly arising mutations
(e.g., although strongly deleterious mutations would neither be
expected to segregate in the population nor reach fixation with
any appreciable probability, their removal via purifying selec-
tion is nonetheless an important component of the underlying
evolutionary model). One may alternatively consider the DFE of
those mutations reaching sufficient frequency in the population
to be sampled as segregating variants, which is by definition a
subset of the DFE of new mutations. One may also consider the
DFE of mutations reaching fixation in the population, which
itself in turn is necessarily a subset of the DFE of segregating
variants (see the reviews of Eyre‐Walker and Keightley 2007;
Bank et al. 2014a).

We performed a grid search to infer the DFE parameters in our
aye‐aye population, which were the proportions of mutations
drawn from each DFE category. Using the DFE inferred by
Johri et al. (2023) in humans as a starting point, we simulated
100 replicates for each parameter combination, and compared
the fit of exonic divergence between our empirical and simu-
lated data. For the simulated data, exonic divergence was cal-
culated as the number of fixations postburn‐in (i.e., across the
aye‐aye divergence time), allowing us to directly compare the
empirically observed number of divergent sites along the aye‐
aye branch with the number of fixations accrued in our simu-
lated population during the divergence phase. Resulting values
from the grid search were visually compared with the empirical
data to assess fit.

3 | Results and Discussion

3.1 | Interpreting Exonic Divergence

Building upon recent advances in aye‐aye genomics, we re-
placed the original aye‐aye genome in the 447‐way mammalian
multiple species alignment (Genereux et al. 2020) that includes
hundreds of closely related primate species (Kuderna
et al. 2024) with the high‐quality aye‐aye reference genome of
Versoza and Pfeifer (2024) to quantify fine‐scale exonic diver-
gence in the species. Figure 1 summarizes observed exonic
divergence on the aye‐aye branch, with the maximum neutral
divergence for 1 kb and 1Mb windows calculated from non-
functional genomic regions (see Soni, Versoza et al. 2024)
provided for orientation. Although a considerable number of
exons were characterized by rates of fixation greater than the
maximum neutral divergence observed in 1Mb windows, no
exons were found to be in excess of the neutral rate observed in
1 kb windows—the more appropriate comparison given the
mean exonic length. Thus, exonic divergence was observed to
be lower than the maximum neutral divergence in aye‐ayes without
exception, as expected from the dominant action of purifying
selection in functional regions (Charlesworth et al. 1993).
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Furthermore, given this observation, the possibility that
some or all of these accelerated subsets of genes may instead
be experiencing relaxed selective constraint cannot be
ruled out.

However, given that even recurrent positive selection is ex-
pected to be rare relative to purifying selection, the absence of
entire exons evolving faster than neutrality neither itself elim-
inates the possibility of positive selection contributing to exonic
divergence in these accelerated subsets of genes. For example,
distinct classes of exons were found to occupy the tails of the
exonic divergence distribution, and were found to be in excess
of the mean neutral fixation rate. Utilizing the genome anno-
tations from the Versoza and Pfeifer (2024) reference genome to
calculate the mean divergence per gene, we ran a gene func-
tional analysis using g:Profiler (Kolberg et al. 2023) on all
coding regions with a mean divergence greater than the 75th
percentile of neutral divergence (0.0397). Figure 2 provides the
divergence distribution of all examined exons, compared with
the distributions of the two fastest‐evolving gene classes—those
related to sensory and immune function.

Immune‐related genes have long been observed to be amongst
the most rapidly evolving across vertebrates, as populations
continually respond to challenges of pathogen exposure (e.g.,
George et al. 2011; Rausell and Telenti 2014), and our results
remain consistent with this pattern. With regard to the sensory‐
related distribution, both the nocturnal activity patterns of aye‐
ayes (with the suggestion previously being made that di-
chromacy may enable aye‐ayes to perceive color whilst foraging
in moonlight conditions; Perry et al. 2007), together with evi-
dence that aye‐ayes may discriminate between individuals
based on scent (Price and Feistner 1994) and use scent‐marking
to attract mates (Winn 1994), both suggest potentially signifi-
cant roles for opsin‐ and olfactory‐related genes throughout the
evolutionary history of the species. Relatedly, Soni et al. (2025)
recently found that a number of sensory functional catego-
ries including G‐protein coupled receptors and olfactory
receptors had strong statistical support for being maintained
by long‐term balancing selection in aye‐ayes – noting that
diversity in these genes may increase the number of differ-
ent odorant‐binding sites (Lancet 1994) – further supporting
these hypotheses.

FIGURE 1 | Exonic divergence scatter plot with maximum neutral divergence values marked for windows of size 1Mb (red dashed line) and 1 kb

(red dotted line), as well as the mean neutral divergence for 1 kb windows (red solid line), as calculated from nonfunctional regions of the aye‐aye
genome (see Soni, Versoza, et al. 2024). Each dot represents an autosomal exon, and the mean exonic divergence as calculated in this study is plotted

(green solid line).

FIGURE 2 | Density plots of exonic divergence in aye‐ayes for all exons (blue), exons located in genes implicated in sensory‐related functions

(purple), and exons located in genes implicated in immune‐related functions (gold).
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3.2 | Utilizing Patterns of Exonic Divergence to
Infer the DFE

Divergence is an informative summary statistic when inferring
patterns of long‐term selection, as the general features of the
DFE are likely to remain relatively stable over deep evolu-
tionary time. As such, we ran forward‐in‐time simulations in
SLiM (Haller and Messer 2023) to fit observed empirical exonic
divergence with a DFE shape consisting of neutral, weakly/
moderately deleterious, and strongly deleterious mutational
classes. In brief, we simulated a 54.9 million year divergence
time of the aye‐aye branch (Horvath et al. 2008), assuming a
generation time of 5 years (Ross 2003; Louis et al. 2020)—both
of which have additionally been recently supported by whole‐
genome neutral divergence patterns (Soni, Versoza,
et al. 2024)—and utilized the estimated demographic model of
Terbot et al. (2025) to characterize the recent history of the
species. Using our multiple‐species alignment to compute
the number of divergent sites along the aye‐aye branch, we
were able to directly compare this empirical observation with
the number of fixations accrued in our simulated population
during the divergence phase.

As depicted in Figure 3, observed divergence was fit well by a
DFE of new mutations characterized by a majority of nearly
neutral variants, and a remaining even mix of weakly/moder-
ately and strongly deleterious variants. For comparison, a recent
estimate of the DFE from human populations (Johri et al. 2023)
has also been included. As shown, humans were characterized
by a higher density of neutral variants and a lower density of
more strongly deleterious variants relative to aye‐ayes, likely
consistent with the smaller long‐term effective population size
of the former. Specifically, while the lower effective population
size of humans would be expected to correspond to a reduced
efficacy of purifying selection, the strength of selection that any
individual mutation experiences is a product of the effective
population size and the selection coefficient (i.e., Nes). As such,
even if the distribution of selection coefficients (s) were to be

identical between species, values of |Nes| would be expected to
be larger in aye‐ayes, consistent with the distribution here
inferred.

Notably however, this inference in aye‐ayes assumes a mutation
rate of 0.4e‐8/bp/generation, as was directly inferred from
pedigree data (Versoza et al. 2025). This pedigree inference was
for the youngest parents in the study (9–11 years of age), and a
strong parental age effect was observed. Namely, the oldest
parents in the study (24–26 years of age) were characterized by
a rate of 2.0e‐8/bp/generation, with an average rate across the
pedigree of 1.1e‐8/bp/generation. Given that aye‐ayes reach
sexual maturity by ~2.5–3 years of age (Winn 1994; Ross 2003),
reproduction in the wild likely occurs amongst individuals even
younger than the youngest in the pedigree, and given support
for the 0.4e‐8/bp/generation rate from recent indirect
divergence‐based inference (Soni, Versoza, et al. 2024), we
believe this to be a reasonable estimate for our conversion here.
However, if the true rate were to be even lower owing to parents
being generally younger throughout the evolutionary history of
the species, the inferred DFE would resultingly become more
skewed towards nearly neutral variants and thus potentially
more similar to the human estimate. It is also noteworthy that
long‐term mutation rates on the aye‐aye branch higher than
0.4e‐8/bp/generation become very difficult to reconcile with the
fossil‐record (see Tavaré et al. 2002; Soni, Versoza, et al. 2024),
consistent with the suggestion of generally lower rates in pro-
simians relative to other primates (see the reviews of Tran and
Pfeifer 2018; Chintalapati and Moorjani 2020).

4 | Concluding Thoughts

In this study we have characterized functional divergence in
aye‐ayes, finding, as expected, that exonic divergence is gener-
ally much reduced relative to neutral divergence. As such, no
gene or gene set inherently required a positive selection‐based
explanation, as none were observed to be evolving faster than

FIGURE 3 | Comparison of the empirical and simulated divergence under the best‐fitting DFE. Exonic mutations were drawn from a DFE

comprised of fixed classes, denoted by 2Nancestral s< 10 (i.e., nearly neutral mutations), 10 ≤ 2Nancestral s< 100 (i.e., weakly/moderately deleterious

mutations), and 100 ≤ 2Nancestral s (i.e., strongly deleterious mutations). Left panel: Best‐fitting discrete DFE in ayes‐ayes (blue), as compared to the

DFE in humans (gray) inferred by Johri et al. (2023). Right panel: Comparison of empirical and simulated divergence values for the best‐fitting DFE.
Green lines represent the mean value, whilst boxes represent the 25th and 75th percentiles.
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the fastest neutral rate. Yet, amongst exons, we also found that
the most rapid rates of divergence were restricted to particular
functional categories, namely, in genes related to immune and
sensory‐related functions. This observation is in agreement with
previous work across vertebrates for the former, and in primates
more specifically for the latter. Employing forward simulations
to fit a DFE to observed exonic divergence, we additionally
found evidence of an increased proportion of newly arising
deleterious variants in aye‐ayes relative to humans, likely
related to their larger estimated long‐term effective population
size. These findings also generally support a relatively low
mutation rate in aye‐ayes compared to other primates, as has
been proposed both from indirect neutral divergence as well as
from direct pedigree‐based inference.
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