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Abstract 
The detection of selective sweeps from population genomic data often relies on the premise that the beneficial mutations in question have 
fixed very near the sampling time. As it has been previously shown that the power to detect a selective sweep is strongly dependent on 
the time since fixation as well as the strength of selection, it is naturally the case that strong, recent sweeps leave the strongest signatures. 
However, the biological reality is that beneficial mutations enter populations at a rate, one that partially determines the mean wait time 
between sweep events and hence their age distribution. An important question thus remains about the power to detect recurrent selective 
sweeps when they are modeled by a realistic mutation rate and as part of a realistic distribution of fitness effects, as opposed to a single, 
recent, isolated event on a purely neutral background as is more commonly modeled. Here we use forward-in-time simulations to study the 
performance of commonly used sweep statistics, within the context of more realistic evolutionary baseline models incorporating purifying and 
background selection, population size change, and mutation and recombination rate heterogeneity. Results demonstrate the important inter-
play of these processes, necessitating caution when interpreting selection scans; specifically, false-positive rates are in excess of true-positive 
across much of the evaluated parameter space, and selective sweeps are often undetectable unless the strength of selection is exceptionally 
strong.
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Introduction
In 1974, Maynard Smith and Haigh demonstrated that when 
a positively selected mutation increases in frequency within a 
population, linked variation may increase in frequency along 
with it. In the case of a beneficial fixation, the resulting selec-
tive sweep is expected to temporally reduce local nucleotide 
diversity owing to the fixation of these linked variants (Berry 
et al. 1991, and interestingly, deleterious fixations may gen-
erate the same effect as well [Johri et al., 2021a; Maruyama 
& Kimura, 1974]). If the strength of selection favoring the 
beneficial allele is strong it will be expected to reach fixation 
much faster than under genetic drift, resulting in a local dis-
tortion of underlying genealogies (see review of Charlesworth 
& Jensen, 2021). The size of this swept region is dependent on 
not only the strength of positive selection (i.e., relating to the 
time to fixation), but also on the rate of recombination given 
that crossover events may break-up associations between the 
selected allele and linked variation. The genetic hitchhiking 
effects associated with selective sweeps have been relatively 
well-described theoretically, and have been observed empiri-
cally as well (see review of Stephan, 2019).

However, this classic selective sweep model studies the 
effect of a single beneficial fixation on surrounding neutral 
genetic variation in a purely deterministic fashion. Kaplan 
et al. (1989) extended this model to include the stochastic 
effects of genetic drift that are particularly important when 

the beneficial mutation has newly arisen and is vulnerable to 
stochastic loss. Furthermore, although the single sweep model 
described remains commonly used, the more realistic scenario 
is that of recurrent selective sweeps, in which beneficial muta-
tions are modeled as occurring at a rate, as of course is the 
biological reality (Jensen, 2009). In this regard, several stud-
ies have modeled beneficial mutations as occurring randomly 
across a chromosome according to a time-homogenous 
Poisson process at a per-generation rate (Kaplan et al., 1989; 
Pavlidis et al., 2010; Stephan, 1995; Wiehe & Stephan, 1993).

Besides the reduction in nucleotide diversity surrounding 
the beneficial fixation, another signature of hitchhiking com-
monly employed to detect selective sweeps, and related to the 
underlying distortion of coalescent histories, is a shift in the 
site frequency spectrum (SFS). Under a single sweep model 
with recombination, a skew is expected in the direction of 
increasing both high and low frequency derived alleles within 
the vicinity of a beneficial mutation (Braverman et al., 1995; 
Fay & Wu, 2000; Simonsen et al., 1995). The theoretical basis 
of this effect has been described under the model of a single, 
recent selective sweep (e.g., Kim & Nielsen, 2004; Kim & 
Stephan, 2002). Based on this expectation, Kim and Stephan 
(2002) developed a composite likelihood ratio (CLR) test 
that detects local reductions in nucleotide diversity and SFS 
skewing along a chromosome, using this signature to iden-
tify the selected locus as well as to estimate the strength of 
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selection acting on this locus. Briefly, the test compares the 
probability of the observed SFS under the standard neutral 
model with the probability under the model of a selective 
sweep. However, because the null model for the CLR test is 
standard neutrality, violations of the model, such as popula-
tion size change, may reduce power and inflate false-positive 
rates. For example, Jensen et al. (2005) demonstrated that the 
CLR test is not robust to strong population bottlenecks, with 
a false-positive rate approaching 80% under these scenarios. 
They extended the initial model to incorporate a goodness-
of-fit test to directly evaluate the fit of the sweep model to the 
data, greatly improving performance. Relatedly, Nielsen et al. 
(2005) modified the CLR method for application to genome-
wide data. Unlike the Kim and Stephan (2002) approach, this 
method (termed SweepFinder, and the more recently released 
SweepFinder2 [DeGiorgio et al., 2016]) instead utilizes a null 
model directly derived from the empirical SFS, in an attempt 
to account for deviations from the standard neutral expecta-
tion in a model-free manner. Crisci et al. (2013) evaluated the 
power of SweepFinder, finding that although the method has 
low (i.e., improved) false-positive rates under numerous bot-
tleneck models, the true-positive rates for identifying sweeps 
when the population experienced bottlenecks also tended to 
be under 10%. In other words, the fundamental difficulty of 
distinguishing selective sweeps from neutral population bot-
tlenecks still very much remains (Barton, 1998).

The specific details of the beneficial trajectory—whether 
positive selection began acting on the mutation while it was 
rare or common, whether a single or multiple beneficial muta-
tions were involved, and whether the beneficial mutation has 
yet reached fixation—are all important considerations in 
determining expected patterns of variation. For example, if a 
sweep occurs from a common standing genetic variant (i.e., 
if a neutral or deleterious allele segregating at relatively high 
frequency becomes positively selected upon a shift in selection 
pressure), the reduction in diversity will be dependent on the 
starting frequency of the beneficial allele. Furthermore, if that 
beneficial allele was segregating on multiple genetic back-
grounds owing to recombination at the onset of selection, 
multiple haplotypes may increase in frequency and remain at 
intermediate frequency in the population at the conclusion of 
the selective sweep. This scenario has been termed as a soft 
selective sweep (as opposed to the classic model of a hard 
selective sweep, in which selection acts on a rare mutation; 
Hermisson & Pennings, 2005). However, some have argued 
that these models are unlikely across much of the biological 
parameter space, owing for example, to the necessary condi-
tion of a relatively high preselection frequency and a severe 
shift in selective effects (Jensen, 2014). For example, it may be 
the case that mutations which strongly impact a phenotype 
such that they may become strongly beneficial are unlikely to 
be segregating neutrally prior to the shift in selection pressure. 
If these mutations are instead segregating as rare deleterious 
mutations prior to the shift, the outcome is again likely to be 
a hard selective sweep (Orr & Betancourt, 2001).

As an alternative to the SFS-based SweepFinder2, Garud 
et al. (2015) developed a suite of methods that utilize these 
expected haplotype shifts under hard and soft selective sweeps 
to infer sweep location and strength. More specifically, the 
statistics seek to capture the increase in haplotype homozy-
gosity (i.e., the probability of randomly selecting two identical 
haplotypes within a population [Sabeti et al., 2006]) observed 
under these sweep models. To facilitate detection of soft as 

well as hard selective sweeps, their H12 statistic combines the 
frequencies of the first and second most common haplotypes 
into a single frequency. The authors observed elevated (rel-
ative to standard neutral expectations) H12 levels genome-
wide in the Drosophila melanogaster DGRP data (Mackay 
et al., 2012), and suggested that their top 50 outlier loci were 
likely soft selective sweeps. However, Harris et al. (2018) 
subsequently demonstrated that the H12 statistic is elevated 
under a number of neutral nonequilibrium demographic his-
tories relevant for the population in question, and indeed that 
the results of Garud et al. (2015) can be explained without 
invoking positive selection. More specifically, although mod-
els of recurrent hard selective sweeps, recurrent soft selective 
sweeps, and neutral nonequilibrium demographic histories 
were all consistent with the data, the data were found to be 
insufficient to distinguish amongst these possibilities (and see 
Johri et al., 2022a, 2022b).

Important considerations when modeling 
selective sweeps
Although positive selection has been among the most exten-
sively studied forms of selection, we know comparatively less 
about the frequency and effect size of beneficial mutations 
than we do about neutral or deleterious mutations. This is in 
no small part due to how infrequently beneficial mutations 
occur relative to these other classes, and the difficulty in accu-
rately identifying their presence in polymorphism and diver-
gence-based datasets (Bank et al., 2014). As already touched 
upon, population history can introduce confounding effects 
when attempting to detect selective sweeps. Considering that 
many commonly studied populations and species may have 
experienced recent and severe population bottlenecks (e.g., 
non-African populations of Drosophila melanogaster [Li & 
Stephan, 2006] and humans [Excoffier et al., 2013; Gravel et 
al., 2011; Gutenkunst et al., 2009], as well as multiple clini-
cally significant pathogens owing to the underlying dynamics 
of host infection [Howell et al., 2023; Jensen, 2020; Jensen 
& Kowalik, 2020; Morales-Arce et al., 2021; Terbot et al., 
2023]), the effects of demography pose a significant limita-
tion to our current knowledge of positive selection. Indeed, 
from a coalescent perspective, a selective sweep results in the 
same approximately star-shaped coalescent history as certain 
strong neutral population bottlenecks (Barton, 1998; Harris 
& Jensen, 2020; Poh et al., 2014; Thornton & Jensen, 2007), 
thereby necessitating the use of an appropriate demographic 
null model in order to avoid extreme false-positive rates 
(Johri et al., 2022c; Thornton & Jensen, 2007).

Multiple other factors must also be considered. As it has 
been shown that recurrent selective sweeps may reduce the 
level of standing variation (Gillespie, 2000; Kaplan et al., 
1989; Wiehe & Stephan, 1993), and as recombination reduces 
the hitchhiking effect, a positive correlation between local 
recombination rate and sequence diversity is predicted under 
recurrent selective sweeps, a correlation first observed in D. 
melanogaster by Begun & Aquadro (1992), and subsequently 
in numerous other species (see reviews of Charlesworth & 
Jensen, 2021; Cutter & Payseur, 2013). However, the hitch-
hiking effect generated by the removal of deleterious muta-
tions—known as background selection (BGS)—will also 
generate this same relationship between recombination rate 
and sequence diversity (Charlesworth, 1996; Charlesworth et 
al., 1993; Hudson & Kaplan, 1995). Given that the deleterious 
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mutation rate far exceeds the beneficial mutation rate, BGS 
is indeed the most parsimonious explanation (Campos & 
Charlesworth, 2019; Elyashiv et al., 2016), and thus—as with 
demography—BGS must be accounted for when performing 
scans for selective sweeps.

The picture is further complicated by the fact that demo-
graphic inference can be biased if selection and recombina-
tion-associated biased gene conversion are not accounted for 
(Ewing & Jensen, 2016; Johri et al., 2021b), while inferring 
selection parameters and recombination rates are likely to be 
biased when demographic inference is not taken into consid-
eration, a problem that is ominously circular. Recent methods 
(e.g., Johri et al., 2020; see also Johri et al., 2022c review) 
have sought to avoid this circularity, by jointly inferring 
parameters of both demography and the neutral and delete-
rious distribution of fitness effects (DFE). This is an import-
ant step in constructing a reliable baseline model. Johri et al. 
(2022a) have further highlighted the many factors that must 
be considered when constructing such a null model, with 
sweep inference being dependent on the inference of demog-
raphy, the DFE, mutation, and recombination rates.

With regards to the rate of beneficial mutations, previ-
ous studies have often assumed that at most one beneficial 
mutation is on the way to fixation at a given time (Kaplan 
et al., 1989; Stephan et al., 1992; Wiehe & Stephan, 1993). 
However, interference between linked beneficial alleles may 
cause a reduction of their fixation probabilities (Birky & 
Walsh, 1988; Hill & Robertson, 1966; Kim & Stephan, 
2002). Whether interference will occur is dependent on the 
rate at which beneficial mutations arise and sweep to fixation 
within a population, as well as on the underlying strength 
of selection and recombination rate (Braverman et al., 1995; 
Przeworski, 2002). Thus, for genome scans to work well, 
selection should be rare enough that there is no interference 
between beneficial mutations, but not so rare that sweeps are 
too old to detect on average (Teshima et al., 2006; Thornton 
& Jensen, 2007). Relatedly, Jensen (2009) found that pub-
lished genome scans identified an order of magnitude more 
sweeps than would be expected under published recurrent 
hitchhiking estimates, potentially due to a high false-positive 
rate. This again highlights the important question of deter-
mining how much statistical power population genomic data 
provides to accurately estimate recurrent selective sweep 
parameters within the context of realistic evolutionary null 
models.

As discussed above, there has been considerable previous 
work discussing biases introduced by neglecting these many 
contributing evolutionary processes. Here we take a different 
approach. Namely, we investigate the power to detect recur-
rent selective sweeps under a scenario in which a researcher 
has performed their due diligence in accurately constructing 
a baseline model consisting of population history, purifying 
and background selection effects, and mutation and recombi-
nation rate variation. We ran simulations to assess the effec-
tiveness of a common SFS-based approach (the SweepFinder 
framework; Nielsen et al., 2005) and a haplotype-based 
approach (H12; Garud et al., 2015) under a variety of models 
incorporating these factors. We find that although a consid-
eration of these factors indeed greatly reduces false-positive 
rates, the power to accurately detect selective sweep effects is 
generally severely limited as well. These results highlight that 
even under best-case scenarios, sweep scans require careful 
interpretation and scrutiny.

Materials and methods
Simulations
We simulated a single population using the forward-in-time 
software SLiM 3.7 (Haller & Messer, 2019). For simulations 
with only effectively neutral mutations, a single 1Mb region 
was simulated. For simulations that included deleterious 
mutations, each simulation replicate consisted of 127 genes 
separated by intergenic regions of size 3,811 bp. Each gene 
contained four exons (of size 588 bp) and three introns (of 
size 563 bp), forming a gene length of 4,041 bp, and a total 
chromosome length of 997,204 bp. See Supplementary Figure 
S1 for a schematic of chromosome structure. The numbers 
and lengths of exons, introns, and intergenic regions were used 
to simulate a chromosome with D. melanogaster-type struc-
ture and parameterizations, with averages estimated from 
Ensembl’s BDGP6.32 dataset (Adams et al., 2000), obtained 
from Ensembl release 107 (Cunningham et al., 2022). A fixed 
recombination rate of 2.32cM/Mb was taken from Comeron 
et al.’s (2012) genome-wide average estimate. The per site 
per generation mutation rate was taken from Keightley et al. 
(2014). This rate of 2.8e−9 implies an effective population 
size of 1.4 million.

Mutations in intronic and intergenic regions were modeled 
as effectively neutral, while exonic mutations were drawn 
from a DFE comprised of four fixed classes (Johri et al., 
2020), whose frequencies are denoted by f

i: f0with 0 ≤ 2Nes 
< 1 (i.e., effectively neutral mutations), f1 with 1 ≤ 2Nes < 
10 (i.e., weakly deleterious mutations), f2 with 10 ≤ 2Nes < 
100 (i.e., moderately deleterious mutations), and f3 with 100 
≤ 2Nes < 2Ne (i.e., strongly deleterious mutations), where Ne 
is the effective population size and s is the reduction in fitness 
of the mutant homozygote relative to wild-type. Within each 
bin, s was drawn from a uniform distribution. We utilized 
the DFE inferred by Johri et al. (2020) in D. melanogaster. 
When simulating recurrent selective sweeps, beneficial muta-
tions were incorporated into the DFE, though the 2Nes value 
for beneficials was fixed (as opposed to uniformly distributed 
within a range). The frequency of beneficials (fB) was incor-
porated into the DFE by subtracting it from the frequency of 
effectively neutral mutations (i.e., f0 is set to f0 − fB).

For each replicate, 100 chromosomes were sampled after 
17N generations (a 16N generation burn-in followed by any 
demographic change—see below—with sampling N gen-
erations later). For each scenario 200 replicates were simu-
lated. Following the approach of Hill & Robertson (1966), 
all parameters were scaled down 200-fold in order to reduce 
runtimes, resulting in an initial population size of N = 7,000.

For each scenario a separate “null” run with no beneficial 
mutations was simulated as the baseline for the sweep-detec-
tion plots. See below for further information.

Simulating demographic change and variable 
recombination and mutation rates
We simulated four scenarios: fixed mutation rate and fixed 
recombination rate, fixed mutation rate and variable recom-
bination rate, variable mutation rate and fixed recombination 
rate, and variable mutation rate and variable recombina-
tion rate. Where rates were variable, each 10 kb region of 
the simulated chromosome had a different rate. Rates were 
drawn from a uniform distribution such that the chromo-
some-wide average was approximately the fixed rate. For 
variable recombination rates, the minimum and maximum 
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parameters of the uniform distribution were 0.0127 and 
7.3993 cM/Mb, respectively. The maximum value is the 
maximum value in the sex-averaged Comeron et al. (2012) 
D. melanogaster recombination map. For variable mutation 
rates the minimum and maximum parameters of the uniform 
distribution were set at 1.5e-9 and 4.825e-9, to give a mean 
rate across each replicate that was equal to the fixed rate.

Four demographic scenarios were simulated: demo-
graphic equilibrium, 2× instantaneous population expan-
sion, 0.5× instantaneous population contraction, and 0.1× 
instantaneous population contraction. The size change 
occurred after 16N generations, and N generations prior 
to sampling.

Detecting selective sweeps with SweepFinder2
SweepFinder2 was run on each simulated replicate to detect 
selective sweeps. We generated allele frequency files for each 
replicate. Because we have information on whether alleles 
are derived or ancestral, we followed Huber et al. (2016) in 
including only polymorphisms and substitutions. Inference 
was performed at each SNP via a grid file, following Nielsen 
et al. (2005). The background SFS was taken from the sweep-
free null simulations. The following command line was used 
for inference:

SweepFinder2 –lu GridFile FreqFile SpectFile OutFile

For the variable recombination rate scenarios, SweepFinder2 
was run with recombination rate information to improve 
inference power. In this case, the following command line was 
used for inference:

SweepFinder2 –lru GridFile FreqFile SpectFile RecFile 
OutFile

The maximum CLR value across the null run of simula-
tions was set as the minimum threshold for detecting selective 
sweeps in Figures 2 and 3.

Detecting selective sweeps with H12
We used the H12 method of Garud et al. (2015) on each 
simulated replicate to detect selective sweeps, using a custom 
python script to implement the approach. H12 was estimated 
over 1 kb windows at each SNP, with the SNP at the center 
of each window.

As with SweepFinder2, a baseline H12 was estimated using 
the “null” run of simulations, with the maximum H12 value 
across these replicates set as the minimum threshold for 
detecting selective sweeps in Figures 2 and 3. However, for 
both SweepFinder2 and H12, ROC curves were also gener-
ated by combining the inference results from all 200 replicates 
using Python’s Scikit learn library (Pedregosa et al., 2011).

Generating ROC curves
True-positive rates (TPR) and false-positive rates (FPR) were 
calculated across 1 kb and 10 kb nonoverlapping windows. 
If a SNP was within 500 bp of a beneficial mutation that had 
fixed within 0.5N generations of sampling, and the inference 
threshold was met, then the window containing that SNP was 
defined as a true-positive. Furthermore, adjacent windows 
that met the inference threshold were also defined as true-pos-
itives to account for hitchhiking effects. Adjacent windows to 

these would also be defined as true-positives in a sequential 
pattern until a window that did not meet the threshold was 
encountered. This was performed across all 200 simulation 
replicates, with the results combined, for a range of thresh-
old values. The metrics.roc_curve function (Pedregosa et al., 
2011) from Python’s Scikit learn library was used to gener-
ate minimum and maximum thresholds. We then generated 
1,000 thresholds between the minimum and maximum values 
at which to estimate TPRs and FPRs.

To better quantify performance when mutation or recom-
bination rates are variable, inference results were split into 
10 kb rate regions, binning the top 50% and bottom 50% of 
rates to enable direct comparison (see Results).

Estimating divergence
Coding and noncoding divergence for each gene within a sim-
ulation replicate were estimated using a custom python script.

Calculating summary statistics
Summary statistics were calculated across 1 kb sliding win-
dows with a step size of 500 bp, using the python implemen-
tation of Libsequence (Thornton, 2003) via a custom script.

Results and discussion
Single sweep model
We ran simulations in SLiM3 (Haller & Messer, 2019) and 
quantified power to detect selective sweeps using the frequency 
spectrum-based composite likelihood method SweepFinder2 
(DeGiorgio et al., 2016), as well as the haplotype-based sta-
tistic H12 for comparison (Garud et al., 2015).

Parameterizations for simulations were taken from the D. 
melanogaster literature (see Methods for details). In order to 
first define power to detect selective sweeps under a best-case 
scenario, we simulated under a model in which a single sweep 
occurs in a population under equilibrium, and sampling takes 
place immediately after the completion of the sweep (i.e., τ = 
0, where τ is the number of generations since the beneficial 
fixation scaled by 4N). The decay in diversity around a selec-
tive sweep has been shown to be a function of τ, the popu-
lation-scaled strength of selection (α = 2Nes), and the rate of 
recombination (Kim & Stephan, 2000, 2002; Maynard Smith 
& Haigh, 1974; Przeworski, 2002, 2003). Using equation 13 
from Kim & Stephan (2000), Figure 1 shows the expected 
diversity around a selective sweep for different values of τ 
and 2Nes with a fixed recombination rate, using the parame-
terizations from our simulations, with lower values of τ yield-
ing a greater dip in diversity around the selective sweep. Thus, 
as has been well shown previously, we would expect to have 
the greatest power to detect a sweep immediately after bene-
ficial fixation.

In order to relax the unrealistic but common assumption of 
exclusively neutral mutations occurring on the background of 
the beneficial variant, we next simulated a constant size pop-
ulation with functional regions consisting of four exons and 
three introns, separated by intergenic regions, with functional 
mutations drawn from a discrete DFE previously inferred 
from D. melanogaster (i.e., thereby incorporating both puri-
fying and background selection effects; Johri et al., 2020, 
2023). Sweep inference was performed using SweepFinder2 
and the H12 statistic. For SweepFinder2, inference was per-
formed at each single nucleotide polymorphism (SNP), while 
H12 inference was performed across 500 base pairs on either 

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/article/77/10/2113/7217080 by guest on 04 O

ctober 2023



Evolution (2023), Vol. 77, No. 10 2117

side of each SNP in order to quantify haplotype structure. 
Figure 2 presents results of sweep inference under this model, 
with a single beneficial mutation for a range of 2Nes values 
(100, 1,000, 10,000), where Ne = Nancestral, and with neutral 
and deleterious mutations drawn from the full DFE. Here, 
sampling occurred directly after the completion of the sweep, 
as is commonly assumed. The threshold for sweep-detection 
was determined by the highest CLR and H12 values across a 
set of 200 simulations in which all else was modeled identi-
cally, except that no beneficial mutations were occurring (see 
Methods). This is a best-case-scenario threshold that should 
produce no false-positives.

As shown, essentially no power was observed to 
detect sweeps at 2Nes values of 100 or 1,000 with either 
SweepFinder2 or H12, suggesting that even in an optimal 
scenario the strength of positive selection needs be extremely 
strong for reliable detection. This is consistent with previous 

results (Crisci et al., 2013; Jensen et al., 2007). As Figure 
1 demonstrates, at these α values diversity recovers over 
extremely small distances around the swept locus for the 
recombination rate considered, and thus the signature quickly 
dissipates (Supplementary Figure S2 and see Supplementary 
Figures 3 and 4 for the null thresholds and related summary 
statistics).

Recurrent sweep equilibrium model
In contrast to the single sweep model used above, recurrent 
selective sweep models consider a scenario in which sweeps 
occur randomly across a chromosome according to a time-ho-
mogenous Poisson process at a per-generation rate (Kaplan 
et al., 1989; Pavlidis et al., 2010; Stephan, 1995; Wiehe & 
Stephan, 1993). This model represents a considerably more 
realistic scenario in which beneficial mutations are simply 

Figure 2. Example patterns around a single selective sweep for different values of 2Nes in an equilibrium population with fixed mutation and 
recombination rates. In each case, 2Nes values go from lowest (top panel) to highest: 100; 1,000; 10,000. The red data point is the position of the 
beneficial fixation. (a) Inference results from SweepFinder2. Blue data points are CLR values inferred for each window. The red dashed line is the 
threshold for sweep detection, determined by the highest CLR value across 200 simulated replicates in which no beneficial mutations are occurring. 
Inference was performed at each SNP (see Methods Section for further details). (b) Sweep inference with the H12 statistic. Blue data points are 
H12 values estimated for each window. As with SweepFinder2, the red dashed line is the threshold for sweep detection. Inference was performed 
across 1 kb windows for each SNP, with the SNP at the center of each window. For the underlying summary statistics (Tajima’s D; π; and r2), see 
Supplementary Figure S2.

Figure 1. Nucleotide diversity over a physical distance for different values of 2Nes and τ, estimated using Equation 13 from Kim and Stephan (2000).
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modeled as occurring at a mutation rate. It has previously 
been shown that power to detect recurrent sweeps gener-
ally increases with the rate of selective events, as would be 
expected (Jensen et al., 2007; Pavlidis et al., 2010). Generally 
speaking, if sweeps are rare but strong, they may affect a large 
proportion of the genomic region, but on average may be too 
old to detect using patterns of polymorphism; if they are com-
mon and weak then the size of the genomic region affected 
may be too small to be detected.

Here we modeled beneficial mutations as part of a full DFE, 
requiring definition of the proportion of new mutations that 
are beneficial (i.e., the beneficial mutation rate). Although 
this proportion is difficult to accurately infer, it has been 
well-observed that noncoding divergence is higher than cod-
ing divergence in D. melanogaster (Andolfatto, 2005), setting 
some upper limit on the possible fraction of beneficial fixa-
tions in coding regions. We estimated coding and noncoding 

divergence per gene for different proportions of beneficial 
mutations (5%, 0.5%, and 0.05%) (see Supplementary Figure 
S5). At 5% and 0.5%, coding divergence was either higher 
than or equal to noncoding divergence at the highest 2Nes 
value. As such we chose to proceed with 0.05% of coding 
mutations being beneficial, giving a beneficial point mutation 
rate of 1.4e−12. Supplementary Table 1 provides the pro-
portion of fixations that are beneficial under this scenario. 
Furthermore, although our model assumed a continuous 
supply of beneficial mutations, it has been shown that there 
is very little power to detect older sweeps (Kim & Stephan, 
2002; Przeworski, 2002). We therefore only included fixations 
that occurred up to 0.5N generations ago when attempting 
sweep inference.

Figure 3 presents summary statistics and the results of 
sweep inference for an equilibrium demographic model; 
namely, nucleotide diversity, r2 (a measure of linkage 

Figure 3. Sweep inference and summary statistics for a single simulation replicate of recurrent selective sweeps for different values of 2Nes in an 
equilibrium population with fixed mutation and recombination rates. In each case, 2Nes values go from lowest (top panel) to highest: 100; 1,000; 10,000. 
For all panels, red data points are the positions of beneficial fixations within the previous 0.5N generations prior to sampling. (a) Inference results 
from SweepFinder2. Blue data points are CLR values inferred for each window. The red dashed line is the threshold for sweep detection, determined 
by the highest CLR value across 200 simulated replicates in which no beneficial mutations are modeled. Inference was performed at each SNP (see 
Methods Section for further details). (b) Sweep inference with the H12 statistic. Blue data points are H12 values estimated for each window. As with 
SweepFinder2, the red dashed line is the threshold for sweep detection. Inference was performed across 1 kb windows for each SNP, with the SNP at 
the center of each window. (C–E) Summary statistics across the simulated region.
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disequilibrium), and a summary of the site frequency spec-
trum, Tajima’s D (Tajima, 1989). As before, we implemented 
the DFE from Johri et al. (2020), though with the intro-
duction of beneficial mutations, the proportion of effectively 
neutral mutations was correspondingly reduced to account 
for the addition. As with the single sweep model, there was 
little power to detect selective sweeps at 2Nes = 100; indeed, 
very few beneficial mutations fixed 0.5N generations prior 
to sampling across all simulated replicates. With increas-
ing 2Nes the sweeps leave a greater genomic signature as 
expected.

To better visualize the power of both methods, true-pos-
itive rates (TPR) and false-positive rates (FPR) were calcu-
lated across 10  kb nonoverlapping windows, and receiver 
operating characteristic (ROC) curves across 200 simulated 
replicates were plotted (Figure 4). A true-positive (TP) was 
defined as a window containing a SNP that has met the 
inference threshold and was within 500 bp of a beneficial 
mutation that had fixed within 0.5N generations of sam-
pling. One potential issue with this definition is that if the 
signature of the sweep extends beyond the window in which 
it is located, adjacent hitchhiked windows will be classified 
as false-positives (FP) if they are not within 500 bp of the 
beneficial mutation. At high strengths of selection this could 
result in a chain of FPs which are all the result of a true 
sweep signature. To address this issue, we defined any FP 
window that met the inference threshold and was adjacent 
to a TP window as a TP. This procedure could continue 
indefinitely, until a window which failed to meet the infer-
ence threshold was encountered, thereby accounting for the 
size of the sweep signature. Supplementary Figure S6 pro-
vides the comparison between the standard and “adjacent 
windows” methods, with a notable increase in power using 
the latter approach, which is the approach utilized through-
out this study.

It is notable that nearly the entire genomic region will be 
affected by recurrent sweeps at larger 2N

es values, violating 
the assumption of a sweep-free background SFS (Pavlidis et 
al., 2010). In other words, sweeps become undetectable if the 
background comparison is swept as well. This can be seen in 
the reduction in power when using the empirical background 

SFS (Figure 4B) and the null background SFS (Figure 4A). 
Consistent with this logic, the most notable reduction in 
power is at 2Nes = 10,000.

At 10  kb window sizes, both SweepFinder2 and H12 
had considerable power to detect recurrent selective sweeps 
at 2Nes = 10,000, though this power decreased with 2Nes 
(Figure 4). At lower 2Nes values power to detect sweeps 
remained low. We repeated the analysis using a 1 kb window 
size (Supplementary Figure S7), finding that inference power 
was greatly improved with both methods at 2Nes = 1,000, 
and somewhat reduced at 2Nes = 10,000. These results high-
light the fact that optimal window sizes are a factor of the 
strength of selection and the recombination rate, and here we 
see that the optimal window-size appears to be roughly the 
size of the sweep. In natural populations one often has limited 
information on the recombination rate, and no information 
on the strength of selection (and therefore on the size of the 
sweep), making window size choice somewhat arbitrary. This 
can be problematic given that—as we show here—the size of 
the window is an important consideration that affects infer-
ence power. One approach suggested by Pavlidis et al. (2010) 
is to use a variable window size approach, where the window 
size adopted in any region of the genome is that which opti-
mizes the strength of the observation.

Thus, under this basic model that makes a number of 
simplifying assumptions (i.e., equilibrium populations with 
fixed recombination and mutation rates), there is consider-
able power to accurately detect recurrent selective sweeps 
if the strength of selection is great enough to leave a detect-
able signature (which will be dependent on window size, as 
discussed above). In order to consider increasingly realistic 
evolutionary baseline models, we next explored the effects 
of nonequilibrium demography on recurrent sweep infer-
ence, as well as heterogenous recombination and mutation 
rates.

Recurrent sweep inference under nonequilibrium 
population histories
The confounding effects of demography on sweep inference 
are well documented (Barton, 2000; Kim & Nielsen, 2004; 

Figure 4. ROC curves, showing the change in true-positive rate (TPR) as the false-positive rate (FPR) increases, for sweep inference in an equilibrium 
population with fixed mutation and recombination rates across 200 simulated replicates, for 10 kb windows. (a) ROC curves for SweepFinder2 when 
using a null background SFS (i.e., the background SFS is generated across a simulation run in which all else is modeled identically, except that no 
beneficial mutations occur). (b) ROC curves for SweepFinder2 when using an empirical background SFS (i.e., the background SFS is the empirical data 
itself). (c) ROC curves for H12.
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Jensen et al., 2005; Nielsen et al., 2005; Jensen et al., 2007; 
Pavlidis et al., 2008; Pavlidis et al., 2010; Poh et al., 2014; 
see also reviews of Pavlidis & Alachiotis, 2017 and Stephan, 
2019). We simulated several instantaneous population size 
changes, where Ncurrent = [2, 0.5, 0.1] Nancestral. In each case the 
size change occurred N generations prior to sampling, where 
N = Nancestral. Figure 5 presents ROC curves for windows of 
size 10 kb (see Supplementary Figure S8 for ROC curves cor-
responding to windows of size 1 kb). Supplementary Figures 

S9–11 provide inference results and summary statistics for 
an example replicate from each of the population expansion, 
50% contraction, and 90% contraction models, respectively. 
For example, and as expected, there was a small increase in 
variation and frequency spectrum skew, and a small reduc-
tion in r2, with the population expansion (Supplementary 
Figure S9), while population contractions increased lev-
els of linkage disequilibrium (Supplementary Figures S10 
and S11). The thresholds for sweep detection (set by the 

Figure 5. ROC curves, showing the change in true-positive rate (TPR) as the false-positive rate (FPR) increases, for sweep inference in populations with 
differing demographic histories, across 200 replicates each, for windows of size 10 kb. The panels on the left are for inference with SweepFinder2 and 
on the right with the H12 statistic. Where population size change occurs, it is instantaneous, occurring N generations prior to sampling.
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“null” simulations) followed a clear pattern with the H12 
statistic (Table 1), with the long haplotypes generated by a 
population contraction resulting in higher H12 values. A 
90% population contraction generated the maximum H12 
value of 1, rendering sweep detection under this framework 
highly fraught. As these population contractions will gener-
ate neutral sweep-like coalescent events across the genome, 
the power to detect sweep-related multiple merger events is 
greatly reduced owing to the use of the background SFS as a 
null in SweepFinder2 under these models (e.g., Barton, 1998; 
Harris & Jensen, 2020).

We directly compared the power of both methods under 
different demographic scenarios using ROC curves (Figure 
5). In all cases power was relatively low for both methods, 
though there were some notable effects of demography. With 
H12 there was little perceptible change in power with the 
0.5× contraction or the 2× expansion. SweepFinder2 showed 
similar patterns. With the 0.1× contraction the reduction in 
power was considerable owing to the increase of stochastic 
effects. Importantly, humans (Gravel et al., 2011; Gutenkunst 
et al., 2009) and D. melanogaster (Baudry et al., 2004; David 
& Capy, 1988; Lachaise et al., 1988; Thornton & Andolfatto, 
2006)—two of the most widely studied organisms in evolu-
tionary genomics—have undergone strong population bottle-
necks in the process of migrating out of Africa; these species 
are also unlikely to be unique in this regard of having experi-
enced major changes in population size.

The effects of variable recombination and mutation 
rates on recurrent sweep inference
We next considered the effects of the common assumption 
of constant mutation and recombination rates. In reality, 
both the rate of recombination (Kong et al., 2002; Cox et al., 
2009; Rockman & Kruglyak, 2009; Comeron et al., 2012; 
Kawakami et al., 2014; and see the review of Stapley et al., 
2017) and the rate of mutation (Lynch, 2010; Hodgkinson 
& Eyre-Walker, 2011; Rahbari et al., 2016; Carlson et al., 
2018; Pfeifer, 2020; and see the review of Baer et al., 2007) 
have been shown to be heterogenous across the genomes of 
numerous taxa. To assess the impact of variable mutation and 
recombination rates, we considered simulated data in which 
each 10 kb region has a rate drawn from a uniform distribu-
tion, such that each simulated variable rate replicate has the 
same mean rate as the fixed rate comparisons (see Methods 
for further details). We examined three scenarios: fixed recom-
bination rate/variable mutation rate; variable recombination 
rate/fixed mutation rate; variable recombination rate/variable 
mutation rate; and compared these to the fixed rate scenarios 
presented in the above sections. Figure 6 presents ROC curves 
for SweepFinder2 and H12 inference for equilibrium popula-
tion demography across all four scenarios.

The general effect of variable mutation rates on both 
SweepFinder2 and H12 inference was a reduction in power 
(Figure 6; see Supplementary Figure S12 for 1 kb inference 
windows). However, this reduction in power is mediated by 
both the strength of selection and the window size. For exam-
ple, while the reduction in SweepFinder2 inference power is 
small at 2N

es = 10,000 for both 10 kb and 1 kb window sizes, 
the reduction in power at 2Nes = 1,000 is small when using a 
window size of 10 kb, but substantial at 1 kb. To better quan-
tify whether mutation rate is driving this reduction in power, 
results were divided into low and high mutation rate bins 
(Supplementary Figure S13), with a mean population-scaled 
mutation rate for the low rate bin of 2.03e−9 and 3.65e−9 for 
the high rate bin. As shown, the effect is modest.

Variable recombination rates also affected recurrent sweep 
inference power, with the magnitude of 2Nes influencing 
whether there was a corresponding increase or decrease in 
power (Figure 6). Once again, by splitting simulated data into 
low and high recombination rate bins (Supplementary Figure 
S14), one may better interpret these results—with a mean 
sex-averaged recombination rate for the low rate bin of 0.09 
and 2.18 cM/Mb for the high rate bin. As shown, inference 
power for both Sweepfinder2 and H12 was generally reduced 
in high recombination rate regions relative to low recombi-
nation rate regions, owing to the decreasing size of the result-
ing selective sweep. This pattern was evident across values of 
2Nes. When both mutation and recombination rates were vari-
able, recombination rate variation appeared to be driving the 
change in power (Figure 6 and Supplementary Figure S12), 
although this will naturally depend on the range of the vari-
ation in both rates. Supplementary Figures S15–17 provide 
sweep inference results and summary statistics for an example 
replicate with variable mutation and recombination rates.

The interplay of nonequilibrium demography and heteroge-
neity in mutation and recombination rates was also examined. 
Supplementary Figures S18–20 present ROC plots for variable 
rate models combined with the nonequilibrium demographic 
models discussed in the sections above for 10 kb windows; 
Supplementary Figures S21–23 present ROC plots for 1  kb 
windows. Finally, Supplementary Figures S24–32 present 
sweep inference results and summary statistics for example 
replicates of these scenarios. As shown, there is a relatively 
complex interplay between these factors, with both popula-
tion size change and variable rates being associated with losses 
in power, and the extent of these effects being dependent on 
both the strength of selection and the window size, with the 
effect of the latter being correlated with the former.

These complex dynamics highlight the necessity of utiliz-
ing high quality mutation and recombination rate maps when 
attempting to infer selective sweeps. For organisms in which 
these rates are not well characterized, this marks the impor-
tance of firstly attempting to characterize these rates prior to 
further inference (see reviews of Lynch et al., 2016 and Pfeifer, 
2020 for common mutation rate inference approaches; 
Stumpf & McVean, 2003 and Peñalba & Wolf, 2020 for com-
mon recombination rate inference approaches). Additionally, 
as these underlying rates will always be associated with 
uncertainty, the range of feasible parameter values can be 
sampled in order to accurately quantify sweep-detection per-
formance in light of this uncertainty (Johri et al., 2022c). We 
note that in the case of mutation rate variation, inter-species 
divergence information can be used to distinguish between 
the signal of a selective sweep and the effects of a reduction 

Table 1. Threshold values for sweep detection for different demographic 
models, in which the threshold value is the highest CLR or H12 value 
across null simulations.

 SweepFinder2 H12 

Ncurrent = Nancestral 27.23 0.4848

Ncurrent = 2Nancestral 22.61 0.383

Ncurrent = 0.5Nancestral 33.20 0.758

Ncurrent = 0.1Nancestral 23.63 1
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in polymorphism due to a reduced mutation rate. The efficacy 
of this approach will however depend on a mutation rate that 
is constant over relatively deep evolutionary time and on the 
presence of appropriate outgroup species.

Comparing the power of an evolutionarily 
appropriate null model with outlier approaches
A common approach when searching for loci that may have 
experienced recent positive selection is the identification of 

genomic outliers (e.g., Akey et al., 2002; Payseur et al., 2002; 
Harr et al., 2002; Glinka et al., 2003; Bauer DuMont & 
Aquadro, 2005; Jensen et al., 2007; Garud et al., 2015; and see 
reviews of Thornton et al., 2007 and Akey, 2009). Briefly, this 
involves scanning across a large number of genomic regions, 
and identifying outlier regions that fall in some predetermined 
tail of this observed empirical distribution. To compare the 
power of utilizing an evolutionarily appropriate null—which 
explicitly models these evolutionary processes—with the 

Figure 6. ROC curves comparing sweep inference for fixed and variable recombination and mutation rates under equilibrium demographic conditions, 
across 200 simulation replicates using SweepFinder2 using the null background SFS (left) and H12 (right), for 10 kb windows. Dashed lines indicate 
variable rates, while filled lines indicate fixed rates. For variable rates, each 10 kb region has a rate drawn from a distribution such that each simulated 
replicate has the same mean rate as the fixed rate comparison (see Methods for further details).
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power of genomic scans for empirical outliers, we calculated 
(a) the fraction of windows that met the threshold (i.e., the 
5% tail for the outlier approach, compared to the maximum 
CLR and H12 values from our null model simulations) that 
contained a selective sweep (labeled as TP); (b) the fraction of 
windows that met the threshold and did not contain a selective 
sweep (labeled as FP); and (c) the fraction of windows that 
contained a selective sweep and did not meet the threshold 
value (labeled as FN). Tables 2 and 3 present the results of this 
analysis for H12 and SweepFinder2, respectively, for an equi-
librium population with fixed rates. For nonequilibrium popu-
lation and variable rate results see Supplementary Tables S2–9.

In the absence of positive selection, the outlier approach is of 
course defined by 100% false-positives, as any neutral distribu-
tion will naturally still contain 5% tails. Only in the presence 
of extremely strong positive selection (2Nes = 10,000) is the 
outlier approach observed to achieve considerable power. This 
high level of false-positives associated with outlier approaches 
supports previous findings (Jensen et al., 2008; Teshima et al., 
2006; Thornton & Jensen, 2007). In nonequilibrium popula-
tions, power was greatly reduced with both the null threshold 
and genomic scan approaches with both SweepFinder2 and 
H12 (Supplementary Tables S2–S9). The loss of power is par-
ticularly evident in the 90% population contraction models, 
reiterating our findings discussed above. Importantly however, 
it should be noted that using an evolutionarily appropriate 
baseline model generally resulted in lower FP rates and higher 
TP rates, providing a more desirably conservative approach.

Concluding thoughts
Our general results demonstrate that there exists relatively 
little power to detect recurrent selective sweeps using either 

frequency spectrum- or haplotype-based approaches, unless 
beneficial selection coefficients are large enough to result in 
large sweep effects while not so large so as to sweep entire 
genetic backgrounds, and beneficial mutation rates are high 
enough such that sweeps may be recent on average while 
not so high that sweep patterns overlap. Although there are 
numerous polymorphism-based sweep inference approaches 
(see the review of Stephan, 2019), they generally rely funda-
mentally upon the SFS and/or LD-based patterns here evalu-
ated, and thus will likely be subject to the same constraints 
that we have described. The type of recurrent sweep model 
here considered is in many ways the most appropriate for 
studying selective sweep effects, as beneficial mutations are 
naturally characterized by a rate of input as here modeled; 
whereas the common assumption that a strong single sweep 
reached fixation on an otherwise neutral background imme-
diately prior to sampling is difficult to justify.

In examining performance under this model, we have here 
relaxed three additional undesirable assumptions common in 
sweep scans. Firstly, it is common to model only neutral and 
beneficial mutations, whereas in reality the majority of muta-
tions in functional regions are expected to be deleterious. 
Hence, we have here modeled a full DFE including strongly 
deleterious, weakly deleterious, neutral, and beneficial muta-
tions. Secondly, it is standard to assume fixed mutation and 
recombination rates across the genomic region in question, 
whereas in reality these rates are generally heterogeneous. 
Hence, we have here modeled this heterogeneity, demon-
strating important trade-offs in these effects. Finally, it is 
standard to perform sweep scans under the assumption that 
these detected patterns are robust to underlying demographic 
effects, whereas in reality population size change histories 
are known to be problematic. Thus, we have here modeled 

Table 2. Comparing the power of H12 using the evolutionarily appropriate null model, with an outlier approach that assumes windows in the 5% right-
tail contain selective sweeps. Here TP is defined as the percentage of windows that have met the threshold value and contain a selective sweep; FP 
is defined as the percentage of windows that have met the threshold value and do not contain a selective sweep; FN is defined as the percentage 
of windows that contain a sweep and have not met the threshold value. Values are averaged across the 200 simulated replicates under population 
equilibrium with fixed recombination and mutation rates. Window size is 10 kb.

Population history 2Nes of beneficial mutations 95% Tail Null threshold

Mean TP Mean FP Mean FN Mean TP Mean FP Mean FN 

Ncurrent = Nancestral No sweeps 0.00 100.00 0.00 — — 0.00

100 5.10 94.90 87.25 0.00 0.00 100.00

1,000 55.81 44.19 50.02 84.01 15.99 77.52

10,000 96.28 3.72 84.75 97.27 2.73 46.44

Table 3. Comparing the power of SweepFinder2 using the evolutionarily appropriate null model, with an outlier approach that assumes windows in the 
5% right-tail contain selective sweeps. Here TP is defined as the percentage of windows that have met the threshold value and contain a selective 
sweep; FP is defined as the percentage of windows that have met the threshold value and do not contain a selective sweep; FN is defined as the 
percentage of windows that contain a sweep and have not met the threshold value. Values are averaged across the 200 simulated replicates under 
population equilibrium with fixed recombination and mutation rates. Window size is 10 kb.

Population history 2Nes of beneficial mutations 95% Tail Null threshold

Mean TP Mean FP Mean FN Mean TP Mean FP Mean FN 

Ncurrent = Nancestral No sweeps 0.00 100.00 0.00 — — 0.00

100 5.64 94.36 88.46 100.00 0.00 50.00

1,000 49.65 50.35 57.08 95.02 4.98 70.12

10,000 98.39 1.61 84.29 96.70 3.30 15.74
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multiple demographic histories, demonstrating the impact on 
resulting true- and false-positive rates even when these histo-
ries are accurately known a priori and are part of the baseline 
model.

On that point, it is important to emphasize that we have 
here considered a best-case scenario, in which a researcher 
has carefully inferred underlying mutation and recombina-
tion rates, the deleterious distribution of fitness effects, and 
population history—as has previously been recommended 
prior to performing sweep scans (Johri et al., 2020, 2022a, 
2022b). Although this outlook may appear bleak, it is import-
ant to quantify the expected performance of these commonly 
used inference approaches under these increasingly realistic 
population models. Specifically, there exist particular demo-
graphic histories in which sweep detection will not be feasible, 
and the statistical power across a genome will be dependent 
on the local mutation and recombination rates in a given 
genomic window. Apart from emphasizing the importance of 
estimating an appropriate baseline model in order to define 
these expectations and reduce false-positive rates, this reali-
zation also highlights the limited visibility on the weakly and 
moderately beneficial tail of the DFE provided by polymor-
phism-based inference—a class about which we continue to 
have relatively little knowledge even in well-studied species.
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Supplementary material is available online at Evolution.
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