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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Over the past 3 years, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

has spread through human populations in several waves, resulting in a global health crisis.

In response, genomic surveillance efforts have proliferated in the hopes of tracking and

anticipating the evolution of this virus, resulting in millions of patient isolates now being avail-

able in public databases. Yet, while there is a tremendous focus on identifying newly emerg-

ing adaptive viral variants, this quantification is far from trivial. Specifically, multiple co-

occurring and interacting evolutionary processes are constantly in operation and must be

jointly considered and modeled in order to perform accurate inference. We here outline criti-

cal individual components of such an evolutionary baseline model—mutation rates, recom-

bination rates, the distribution of fitness effects, infection dynamics, and

compartmentalization—and describe the current state of knowledge pertaining to the related

parameters of each in SARS-CoV-2. We close with a series of recommendations for future

clinical sampling, model construction, and statistical analysis.

Introduction

Current evidence suggests that Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) emerged from Hubei Province, China, in late 2019 [1]. The virus has since

spread through global human populations in several waves, infecting an estimated 612 million

individuals and causing Coronavirus Disease 2019 (COVID-19), resulting in 6.55 million

recorded deaths as of October 2022—though total estimates suggest 18.2 million fatalities in

the first 2 years alone (January 2020 to December 2021; [2]). The situation has been exacer-

bated by the continued emergence of new variants of concern (VOCs) that continue to disrupt

basic human health and activity (Fig 1), even after the development of vaccines that have sig-

nificantly lessened COVID-19 severity. In particular, the Delta variant first identified in late

2020 in India was found to be highly transmissible; more recently, the emergence of Omicron

—thought to have arisen from a long-term infection of an immunosuppressed individual [3]—

led to even more rapid spread.
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In response, global surveillance efforts have emerged to anticipate and track the ongoing

evolution of this deadly virus using whole genome high-throughput sequencing. In fact,

SARS-CoV-2 has rapidly become one of the most heavily resequenced genomes ever,

with more than 13 million patient isolates to date. At the same time, several components of

SARS-CoV-2 population biology and molecular evolution remain unresolved, potentially lim-

iting both the accurate detection of emerging VOCs and the design of novel therapeutics (e.g.,

[4]). Here, we discuss the co-occurring evolutionary processes that must be jointly modeled to

accurately study SARS-CoV-2 evolution. This includes outlining relevant SARS-CoV-2

Fig 1. SARS-CoV-2 variant frequencies and genetic diversity through time, given for the state of Montana as

illustration. (A) Frequency of major WHO-defined variants of concern (VOCs), binned by week of sampling as

derived from GISAID metadata. (B) Average pairwise nucleotide differences between consensus sequence genomes

isolated from patient samples genome-wide (orange line) and within the S-gene encoding the spike protein (blue line).

As shown, local spread of major VOCs induced corresponding drops in overall genetic diversity across consensus

sequences and within the S-gene. Note that while Beta dominated early in Montana, multiple variants cocirculated at

appreciable frequency in 2020 to 2021, and the dominant observed strain differed by location. Consensus sequences

were downloaded from GISAID (n = 21,799), binned by week, and aligned to the SARS-CoV-2 reference sequence

using Nextalign. Diversity was calculated in R, using the package PopGenome. Local polynomial regression fitting

(method loess) was used in the R package ggplot2 to model diversity through time with the formula y ~ x. Case data

(given by the light blue shading) were downloaded from the CDC.

https://doi.org/10.1371/journal.ppat.1011265.g001
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mutation and recombination rate estimates, which govern the input of new genetic variation

and the potential generation of novel combinations of variation. We additionally assess current

information pertaining to the distribution of fitness effects, infection dynamics, and patterns

of compartmentalization that, together with mutation and recombination, comprise a set of

critical components of an evolutionary baseline model.

A brief overview of key considerations

Fundamentally, when studying genome evolution, one should first begin with the realization

that populations are simultaneously shaped by multiple evolutionary processes, including

mutation, recombination, natural selection, and genetic drift. For this reason, it is often not

feasible to accurately study any individual process in isolation without considering the input of

all factors in shaping observed levels and patterns of genomic variation. For example, search-

ing for genomic loci that have recently experienced positive selection—potentially leading to

organismal adaptation—is particularly fraught as positive selection is expected to be rare and

episodic relative to other constantly acting evolutionary processes (see reviews of [5,6]). Thus,

the ability to successfully identify positively selected loci and differentiate this process from

others is highly dependent on multiple underlying parameters. For example, it has previously

been demonstrated that population bottlenecks, as well as high neutral mutational inputs, may

be mistaken for the action of positive selection (e.g., [7–10]). For these reasons, the construc-

tion of an appropriate baseline model consisting of constantly acting evolutionary processes

(e.g., mutation, genetic drift as modulated by population history, purifying selection, back-

ground selection, and so on) is critical to the successful detection and quantification of positive

selection [11]. Importantly, as many of these underlying processes will be both heterogenous

and estimated with uncertainty across the genome in question (e.g., mutation rates vary across

a genome, and there is additionally measurement uncertainty in the underlying rate at any

given site), the range of feasible parameter values needs to be modeled and considered within

the context of this baseline.

All of these considerations also apply when the organism in question is a virus and the pop-

ulation concerned is contained within a patient. Human pathogens are often characterized by

extreme mutational inputs, drastic population size changes relating to infection, reinfection,

immune response, and clinical therapeutics, as well as often severe selective constraints owing

to their coding-dense genomes [12]. Prior efforts have made significant progress in developing

evolutionary baseline models for other common viruses (reviewed in [13]), and we here con-

sider such model construction for the study of within-host SARS-CoV-2 populations. We out-

line critical individual components of a baseline model—mutation rates, recombination rates,

the distribution of fitness effects, infection dynamics, and compartmentalization—and

describe the current state of knowledge pertaining to the related parameters of each. Finally,

we close with a series of recommendations for future clinical sampling, baseline model con-

struction, and statistical analysis.

Mutation rates

As the evolutionary source of new genetic variation, the first component of this baseline model

necessarily involves the rate of input of new mutations. Numerous methods exist for estimat-

ing these rates, though the first complication that arises in comparing among studies is that

some follow a convention of reporting rates per year or per day, while others per viral cycle.

To compare among such estimates for SARS-CoV-2, we consider the maximum number of

sequential viral cycles thought to occur in a single year for use as a conversion factor. Specifi-

cally, based on cycle times in SARS-CoV-1, the time required to enter a host cell is
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approximately 10 minutes and the eclipse period of the virus (i.e., the time between host cell

entry and the generation of new infectious particles) is approximately 10 hours [14], leading to

a conversion factor of 861.64 viral cycles/year (i.e., the number of 610-minute cycles in a calen-

dar year). While such a conversion is necessary in order to compare between existing esti-

mates, variation in these entry and eclipse times would naturally result in a modified scaling

factor.

Molecular clock-based substitution rates previously observed in other betacoronaviruses

provide the first insight into relevant mutation rates (Table 1); however, such clock-based rates

ought to be regarded as more closely approximating the rate of neutral mutations, rather than

the rate of all mutations. Using such a phylogenetic approach, this rate has been estimated at

3.5 × 10−6 mutations/nucleotide (nt)/cycle for murine hepatitis virus (MHV) [15,16] and at

0.80 to 2.87 × 10−3 mutations/nt/year for SARS-CoV-1 [17], corresponding to 0.93 to

3.33 × 10−6 mutations/nt/cycle following our above conversion. Given the abundance of

sequence data in public databases (e.g., [18,19]), comparable rate estimates have also recently

been reported for SARS-CoV-2. For example, using SARS-CoV-2 sequences generated prior

to April 2020 and estimating genetic distance to closely related bat and pangolin coronavi-

ruses, an initial clock-based estimate was inferred to be 1.87 × 10−6 mutations/nt/day (approxi-

mately 7.92 × 10−7 mutations/nt/cycle) [20]. Other estimates have focused on rates of

divergence over time within humans. An early analysis based on 73 genomes collected between

December 2019 and February 2020 estimated a mutation rate of 1.19 to 1.31 × 10−3 mutations/

nt/year [21], or 1.38 to 1.52 × 10−6 mutations/nt/cycle. A subsequent study based on 137

genomes estimated a rate of 2.4 × 10−3 mutations/nt/year (95% CI: 1.5 to 3.3 × 10−3 mutations/

nt/year; [22]), or 2.79 × 10−6 mutations/nt/cycle (95% CI: 1.74 to 3.83 × 10−6 mutations/nt/

cycle)—a rate similar to other estimates from the same period using similar methods [23].

An alternative approach for estimating mutation rates instead relies on serial sampling

within an experimental setting or from individual patients. This serial sampling approach has

the advantage of not suffering the data reduction associated with comparisons between con-

sensus sequences (see Data consideration section below) and should capture a wider (but still

limited) range of newly emerging mutations. For example, sampling over 15 days from lines of

African green monkey (Chlorocebus aethiops) kidney cell cultures inoculated with a clinical

isolate led to an observed rate between 2.9 and 3.7 × 10−6 mutations/nt/cycle across the

genome [24]. However, after excluding the nsp3, nsp6, and S genes—which showed evidence

of selection potentially biasing the mutation accumulation-based inference—estimates were

Table 1. Estimated mutation rates in SARS-CoV-2, and the related CoV-1 and MHV.

Virus Source Date Original Unit Estimated Rate / Cycle SEM Citation

MHV in vitro June 2004 mut/nt/cycle 3.5 × 10−6 mut/nt/cycle n/a [15,16]

SARS-CoV-1 divergence June 2004 mut/nt/yr* 0.93–2.76 × 10−6 mut/nt/cycle n/a [17]

SARS-CoV-2 divergence February 2021 mut/nt/day* 0.79 × 10−6 mut/nt/cycle n/a [20]

SARS-CoV-2 divergence February 2020 mut/nt/yr* 1.38 × 10−6 mut/nt/cycle 0.35** [21]

SARS-CoV-2 divergence February 2020 mut/nt/yr* 1.52 × 10−6 mut/nt/cycle 0.36** [21]

SARS-CoV-2 divergence June 2020 mut/nt/yr* 2.79 × 10−6 mut/nt/cycle 0.53** [22]

SARS-CoV-2 divergence February 2021 mut/nt/yr* 1.71 × 10−6 mut/nt/cycle 0.23** [23]

SARS-CoV-2 divergence August 2022 mut/nt/yr* 0.72 × 10−6 mut/nt/cycle n/a [26]

SARS-CoV-2 in vitro March 2022 mut/nt/cycle 1.3 × 10−6 mut/nt/cycle 0.1 [24]

*Evolutionary rates reported as per year or per day mutation rates were converted to per cycle mutation rate using the approximation of 861.64 viral cycles per year.

**SEMs (standard errors of the mean) estimated based on reported 95% HPD (highest posterior density) intervals.

https://doi.org/10.1371/journal.ppat.1011265.t001
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reduced to 1.3 ± 0.2 × 10−6 mutations/nt/cycle (and see [24] for a more mechanistic discussion

of these contributing variants).

In addition to the overall mutation rate, consideration needs to be given to the extent to which

mutation rates may vary across the SARS-CoV-2 genome. The causes of any apparent mutation

rate heterogeneity also require attention given that differential selection across genomic regions

may be responsible for these patterns rather than a variable underlying rate itself. For example,

based on comparisons between 4-fold degenerate sites relative to other sites in the genome, it was

estimated that the genuine mutation rate may be 49% to 67% higher than that estimated based on

common segregating variants [25]. Additionally, a continuous reduction in the nonsynonymous

(but not synonymous) mutation rate has been observed throughout the pandemic [26]—a trend

likely indicating changes in selection pressures rather than mutation rates. For this reason, a con-

sideration of the proportion of new mutations that are deleterious, neutral and beneficial (see Dis-

tributions of fitness effects section below) will be important for understanding the total rate of

new mutation and distinguishing it from rates estimated from segregating variation.

In this regard, it is important to also consider the genomic composition of SARS-CoV-2,

which is approximately 29.8 kilobases (kb) and contains 25 to 30 distinct regions that encode

gene products. As expected, genic regions generally appear highly constrained, while a subset

of genes, including the spike gene (S), appear to evolve comparatively rapidly. Mechanistically,

RNA-dependent RNA polymerases are known to be error-prone [4,27,28], which in coronavi-

ruses is partly compensated by a 30 to 50 proofreading exonuclease, nsp14 [29]. The impact of

this sort of “evolutionary layering” remains in need of further study [4,30]. Notably, mutations

within the replicative machinery (nsp12 and nsp14) can directly lead to increases in mutation

rates. For example, using inoculated kidney cells from the African green monkey, mutator

lines have been observed to develop which accumulated mutations at roughly an order of mag-

nitude greater rate [24]. These mutator lines were found to have several nonsynonymous

mutations in their replication machinery unique to those lineages (8 in nsp12, and 9 within

nsp14). Such observations have in fact led to the suggestion that drug-induced mutational

meltdown may itself represent a viable patient-treatment strategy (e.g., [4,31]), as has previ-

ously been suggested in other viruses (e.g., [32]).

Recombination rates

Though mutation is the source of new genetic variation, recombination is an important pro-

cess for generating novel combinations of variation. Additionally, by disrupting selective inter-

ference between and among mutations (i.e., Hill–Robertson interference; [33,34]),

recombination may improve the efficacy of both positive and purifying selection.

Recombination has been observed in many viruses, including coronaviruses [4,35–38].

Indeed, recombination events between different coronavirus lineages are thought to have been

essential for the evolution of SARS-CoV-2. Specifically, several critical recombinant regions

were identified in the genome; 3 within the spike protein and 1 associated with each of the

RNA-dependent RNA polymerase [39,40]. An early report using a sequence similarity search

of a local database of SARS-CoV-2 samples and other coronaviruses concluded that there were

sequences derived from coronaviruses of bats and, potentially, pangolins [20]. Phylogenetic

approaches using sliding window analyses have found a similar mosaic origin for SARS-CoV-

2 [41–44]. Moreover, recombination between SARS-CoV-2 lineages was detected as early as

April 2020, using analyses based on linkage disequilibrium [20]. A subsequent tree-based anal-

ysis constructed from 1.6 million sequences identified 606 putative recombination events, sug-

gesting that 2.7% of circulating strains likely had a recombinant origin [45]. Importantly, the

accurate computational estimation of these rates requires the analysis of within-host
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polymorphism data, rather than consensus sequence data as is common, suggesting that this

frequency may be underestimated [46].

A major limiting factor for recombination detection is that it requires a coinfection by 2 or

more strains [47,48]. Moreover, this coinfection needs to not only occur within a single host,

but the viral strains also need to infect the same host cell. Coinfections may be relatively rare—

estimated to occur in 0.18% to 0.61% of samples [48–50]—though this rate would be expected

to increase alongside increases in viral occurrence [47]. Additionally, within-host dynamics

will impact the duration of the infection—the longer an infection persists, the greater the

opportunity for a secondary infection to be acquired [48].

The analysis of recombination breakpoints has identified possible hotspots within the

SARS-CoV-2 genome [51], suggesting that, as with mutation, rate heterogeneity across the

genome may be important. These hotspots are often associated with transcription regulatory

sequences (TRSs) found nearby various open reading frames (ORFs) and are associated with

the template switching process, which produces sgRNA. Notably, recombination junctions

that were associated with TRSs were less likely to produce defective viral genomes [52]. Micro-

homologies of 2 to 7 nucleotides between recombination junctions of SARS-CoV-2 and MHV

were also identified, potentially suggesting some level of conservation [52]. Finally, the recom-

bination rate may also be related to the proofreading enzyme found in coronaviruses. When

this gene was knocked out in lines of MHV, there was a significant reduction in recombination

rates in addition to altered recombination patterns [52].

The estimated rates of recombination for coronaviruses, including SARS-CoV-2, occur

within a considerable range. Work in MHV estimated the recombination rate of that virus to be

roughly 1 × 10−5 between consecutive sites [53]. A recent study in SARS-CoV-2, seeking to

detect recombination using a parsimony approach [54], had a sensitivity that allowed recombi-

nation detection given at least a minimal rate of 1 × 10−6 recombination events/site/cycle [55].

Recombination was successfully detected by this method, providing a possible minimum for the

recombination rate. An alternate approach using a Markov chain Monte Carlo method to infer

recombination networks under a template-switching model of recombination [56] inferred a

rate of 2 × 10−6 events/site/year. Using the same conversion factor used previously for mutation

rates, this would suggest an approximate recombination rate of 2.32 × 10−9 events/site/cycle—

substantially below the detection floor of the parsimony-based method referenced above, likely

owing to considerations related to coinfection rates. Thus, these estimates, combined with the

uncertain rates of coinfection, suggest considerable ambiguity in this parameter space. How-

ever, current evidence would imply recombination rates in the range of 1 × 10−5 to 1 × 10−6

events/site/cycle in coinfections (i.e., pertaining to<1% of total infections).

Distributions of fitness effects

The SARS-CoV-2 genome, albeit sizeable for an RNA virus, is nonetheless relatively small and

highly compact, with>95% of the genome thought to be functionally significant [57,58].

Given this paucity of nonfunctional sequence, and that many ORFs are overlapping, it will

likely be challenging to identify neutrally evolving sites in the SARS-CoV-2 genome in suffi-

cient numbers to allow for common neutrality-based inference approaches. That said, synony-

mous sites are possible candidates, with a recent study [26] suggesting that the rate of

synonymous substitution appears to be roughly constant over time, indicating that synony-

mous sites in SARS-CoV-2 may be evolving nearly neutrally.

However, while the frequency distribution of neutral alleles is shaped by demographic

events (e.g., the population bottleneck and subsequent growth associated with infecting a host)

—allowing us to make inferences about population sizes [59]—it is also impacted by the linked
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effects of selection acting on nearby functionally important sites ([60,61]; and see review of

[6]). For this reason, it has been shown to be necessary to jointly infer the distribution of fit-

ness effects (DFE) together with population history when analyzing coding-dense genomes

[62–64]. In other words, while neutral mutations surely exist, fully degenerate sites that are

unlinked to constrained sites may not.

There has been some work to date to characterize the DFE of observed mutations sampled

from SARS-CoV-2 patients, using a variety of approaches. Accounting for the background rate

of growth/transmission for each geographic region in the United States separately, Kepler and

colleagues [65] used a maximum likelihood phylodynamic method to infer the fitness effects

of segregating amino acid variants from 88,000 viral genomes. Under this framework, the fit-

ness of each lineage on the tree was estimated using a birth–death process (such that fitness of

the parent and child branch was correlated). As expected, most segregating variants were

found to be effectively neutral, with a small minority being mildly deleterious and approxi-

mately 20% being putatively beneficial (Fig 2). More specifically, prior to 2020, approximately

14% (7 out of 51) of all amino acid variants segregating were inferred to be significantly benefi-

cial with an average fitness advantage of 1.15 relative to the wild type. Strongly beneficial muta-

tions are expected to fix rapidly in populations, and strongly deleterious mutations are likewise

expected to be purged quickly (conditional on fixation and loss, respectively); therefore, most

segregating variants sampled at any given time are likely to be neutral or weakly selected, con-

sistent with this inferred DFE of segregating variants (see Fig 2).

Fig 2. The expected and estimated distributions of fitness effects (DFE) of mutations. Left panels: a hypothetical

expected DFE of new, segregating, and fixed mutations, reflecting the effects of selection at each stage. Effectively

neutral mutations are shown in gray, beneficial mutations in blue, and deleterious mutation in shades of red. Right

panels: the DFE of new, segregating, and fixed amino acid variants in SARS-CoV-2 as recently estimated by Flynn and

colleagues [131], Kepler and colleagues [65], and Obermeyer and colleagues [132], respectively. From Flynn and

colleagues, the normalized functional scores from 2 sets of biological replicates were pooled together. From Kepler and

colleagues, the relative fitness of all single mutations from pre- and post-2020 studies were pooled together. From

Obermeyer and colleagues, the DFE of fixed mutations was approximated by using 31 high-frequency variants

(defined as those present in more than 100 lineages). Importantly, observed genomic variation will depend heavily on

the underlying heterogeneity in both mutation rates and DFEs across the genome, among other factors [133].

https://doi.org/10.1371/journal.ppat.1011265.g002
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More generally, multiple studies (e.g., [66–68]) have found significantly fewer segregating

alleles at nonsynonymous relative to synonymous sites, likely reflecting the effects of purifying

selection acting on functional changes. For example, Neher [26] evaluated patterns of segregat-

ing alleles and found that 15% to 20% of first and second codon positions exhibit no observed

variation. This is consistent with previous random mutagenesis studies in other coding-dense

RNA viruses, which have suggested that 20% to 40% of all new mutations are likely strongly

deleterious [69,70]. Interestingly, some ORFs also appear to be experiencing mild selective

constraints, as evidenced by comparison with synonymous sites [26], further suggesting that

an appreciable class of mutations may also be weakly deleterious.

Thus, while considerable study is required to further characterize within-patient DFEs—partic-

ularly accounting for the simultaneous contributions of population size change, direct selection,

and selection at linked sites [71]—current studies have provided first glimpses into the relative

occupancy of different DFE classes. Furthermore, phylogenetic methods utilized to date neglect

the effects of recombination, further highlighting the value of future applications of population

genetic-based inference approaches. With regard to baseline model construction specifically, the

uncertainty in the underlying DFE may be evaluated by modeling the effects of different possible

densities in the 2 modes of the DFE, utilizing a range of generalized densities (e.g., [72]).

Infection dynamics

Within-host population dynamics are important determinants of levels and patterns of varia-

tion, as well as of potential selective outcomes (Fig 3). Generally, a population bottleneck tends

to be associated with initial patient infection, followed by rapid population growth (see review

of [13]). The size of the transmission bottleneck is an important factor in determining how

much within-host genetic variation is initially present, on which selection may act [73]. A nar-

row transmission bottleneck can result in a severe loss of genetic variation (known as a

founder effect), with low-frequency within-host variants being stochastically lost from the pop-

ulation, largely regardless of their fitness effects. Conversely, if the transmission bottleneck is

wide, then there may be numerous viral particles founding the initial infection, increasing the

chance that beneficial variants are maintained.

Fig 3. A schematic of a simple intra-host demographic model potentially underlying infection dynamics. At the

time of infection, the virus population will initially be characterized by a population bottleneck associated with the

founder event. A successful infection will next be characterized by rapid population growth associated with high viral

loads, and reducing sizes and loads as the patient begins to clear the infection. The details of this infection history will

greatly shape the observed levels and patterns of intra-host diversity. Viral load schematic modified from [134].

https://doi.org/10.1371/journal.ppat.1011265.g003
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Several studies [66,74–80] have attempted to infer the severity of the SARS-CoV-2 infection

bottleneck using the beta-binomial method [81], though estimates have ranged considerably,

from 1 to 8 infecting particles [66] to more than 1,000 [74]. It has also been shown that the fre-

quency threshold for detecting variants impacts bottleneck estimates [77–79], with an

increased frequency threshold resulting in decreased bottleneck size estimates. There are fewer

studies that have considered the increase in population size following the transmission bottle-

neck. Du and colleagues [81] performed a systematic review of viral dynamic parameters used

in within-host models, estimating a mean viral load at symptom onset of 4.78 (95% CI: 2.93,

6.62) log(copies/ml) across 3 models, compared with a mean viral load at point of infection of

−1.00 (95% CI: −0.94, −0.05) log(copies/ml), which puts a wide range on the respective rate of

postinfection expansion. Wang and colleagues [82] compared genetic diversity in intra-host

populations from the respiratory and gastrointestinal tract, finding considerably less diversity

in the former than in the latter. One possible intra-host migration route is from the respiratory

tract to the gastrointestinal epithelia, suggesting that this reduction in diversity in the respira-

tory tract may be due to the infection bottleneck, followed by rapid recovery in the gastrointes-

tinal tract (though see the below section on Compartmentalization as well).

The considerable variance in these estimates suggest that there is still important work to be

done in inferring a demographic infection model and its underlying parameters for SARS-

CoV-2. Such inference is inherently challenging due to the impact of selection on biasing

demographic inference as discussed above (and see [83,84]), and indeed due to the impact of

demography on biasing selection inference [62,85]. To account for this circular problem,

methods that jointly infer demography and the DFE will be critical. Although numerous joint

estimation approaches for demographic inference have been developed, the most appropriate

approach will be dependent on the context in which it is applied (considerations of which are

reviewed in [11]). Neutral demographic estimators require sufficiently large nonfunctional

regions and high rates of recombination, such that assumptions of strict neutrality hold [86–

89]. Specifically, these criteria ensure that variants can be chosen that are not experiencing

background selection. For example, Renzette and colleagues [90] utilized a neutral demo-

graphic inference approach (dadi; [86]) to build and parameterize infection models in human

cytomegalovirus (HCMV) (and see [91,92]). It is notable, however, that the HCMV genome is

236 kb in size—among the largest human viral genomes [93]—and has large noncoding

regions [94]. By contrast, the smaller, largely functional SARS-CoV-2 genome [95,96] likely

prohibits such neutral inference. For these reasons, recently proposed approximate Bayesian

computation (ABC) approaches to estimate demography while accounting for background

selection effects will likely be the most fruitful path forward [62].

Of additional importance in considering viral infection dynamics is the notion of progeny

skew—i.e., the viral replication dynamics. A majority of population genetic inference

approaches assume small progeny distributions—an assumption that is likely violated in many

pathogens (see reviews of [12,97]). Helpfully, recent inference approaches have relaxed this

assumption, demonstrating an ability to coestimate parameters related to the biology of prog-

eny skew together with those of demographic and selective histories (e.g., [98,99]). Moreover,

progeny skew has been incorporated into the joint ABC inference scheme noted above, dem-

onstrating an ability to tailor such inference specifically to viral populations [64,100], and,

importantly, to avoid the misinference resulting from a neglect of this consideration.

Compartmentalization

Related to the population dynamics discussed above, which were largely concerned with popu-

lation size changes associated with infection, the compartmentalization of viral populations
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within an infected individual (i.e., within-host population structure)—either across tissue

types or regions of a single tissue—can also play a key role in the intra- and inter-host evolu-

tionary dynamics of a virus. For example, HIV is known to spread throughout the body during

early stages of infection leading to distinct viral populations localized to certain organs or sys-

tems, resulting in populations evolving independently under unique evolutionary pressures

[101]. Influenza A virus has been shown to compartmentalize within different lobes of the

lungs resulting in genetically distinct populations, each with distinct evolutionary histories.

Similarly, HCMV has been shown to have strong compartmentalization effects, with the

plasma population facilitating a certain degree of gene flow between compartments [90,102–

105].

It has been apparent since early in the pandemic that SARS-CoV-2 also demonstrates a cer-

tain level of intra-host compartmentalization, with the identification of unique variants not

shared between the upper and lower respiratory tracts in patients presenting severe disease

[106,107]. This is perhaps not surprising, given that previous studies have observed compart-

mentalization between upper and lower respiratory tracts in both SARS-CoV-1 and MERS

[108,109]. Recent sequencing efforts across a larger number of samples, and to a greater cover-

age across the viral genome, have recapitulated this pattern of differentiation between the

upper and lower respiratory tracts in SARS-CoV-2 [110]. Intra-host single nucleotide variants

not shared between blood and upper respiratory tract samples were also recovered from a sin-

gle immunocompromised patient in France [111]. SARS-CoV-2 compartmentalization across

different organs has been studied to a lesser degree; however, organ-specific variants, including

the observation of VOC mutations outside of lung tissue, have been reported [112]. For exam-

ple, compartmentalization has been observed between the respiratory tract and the gastroin-

testinal tract, with unique variants recovered from different samples [82].

Early evidence suggests that the evolutionary dynamics within compartments may be at

least initially shaped by stochastic processes for SARS-CoV-2—such as founder events result-

ing in genetically distinct compartmental populations—similar to patterns seen in other

viruses [110,113]. Further, several recent studies have demonstrated that the ability of the

Omicron variant to replicate in the lungs is severely reduced compared to that of the nasal

tract, potentially suggesting compartmentalization effects in this regard as well [114,115]. As

such, this within-host structuring owing to compartmentalization represents another impor-

tant component of any underlying evolutionary baseline model.

Data considerations

Apart from the considerations of contributing evolutionary processes discussed in the sections

above, it is additionally important to consider the types of data needed and available to per-

form such evolutionary inference. As of October 2022, there were over 6.3 million SARS-CoV-

2 genomes deposited in NCBI, and over 13.4 million genomes deposited in GISAID [116].

Consensus sequences (i.e., single-sequence representations of a patient’s viral population) pro-

duced from individual samples comprise most of these data, and these sequences serve as the

primary unit for most genetic analyses of SARS-CoV-2 lineage variation and evolution. While

consensus sequences provide the opportunity to carry out analyses concerning inter-host viral

variation across millions of infected patients, they completely obscure intra-host variants seg-

regating within patients (Fig 4). This preventable loss of information precludes analysis of vari-

ation within hosts and can lead to incorrect evolutionary inference regarding the relative

contributions of respective evolutionary processes during viral evolution [13,104]. More fun-

damentally, consensus-level variation is simply a summarized by-product of the multiple con-

tributing evolutionary processes acting within hosts. At a minimum, we emphasize that
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depositing the raw reads from which consensus sequences were constructed would be a helpful

step in allowing subsequent researchers to examine individual host-level variation. Indeed, as

is already standard in other scientific fields, depositing raw sequencing data to public reposito-

ries should be adopted as a best practice for viral genome surveillance in order to assure scien-

tific transparency and reproducibility.

Relatedly, how and where SARS-CoV-2 genomes are deposited can create barriers to carry-

ing out analyses of intra-host variation. For example, researchers may submit to NCBI and / or

GISAID, and submissions may or may not include both raw reads and consensus sequences.

This also makes it challenging to reliably cross-reference samples and underlying data between

databases. Still, as with the yellow fever virus [117], influenza [118], norovirus [119], Ebola

[120], and other RNA viruses [121,122], analyses of available raw-read data have revealed sig-

nificant intra-host SARS-CoV-2 variation [82,110,123]. Notably, individual patients who share

consensus-level variation may generally have very different intra-host variation [82], highlight-

ing how analyses focused only on inter-host variation may fail to capture the vast majority of

relevant SARS-CoV-2 variation and evolution.

Relatedly, evolutionary studies of intra-host and inter-host variation have historically pro-

duced conflicting results, whereby intra-host variation is much greater than inter-host varia-

tion. For example, analysis of HCMV populations within hosts has reported per-site

nucleotide diversity values that that differ by an order of magnitude from estimates of between

host per-site nucleotide diversity [104,124,125]. These analyses indicate that approximately

68% of HCMV genomic sites are polymorphic within hosts, while only 12% of sites are segre-

gating among hosts. Some researchers have interpreted these patterns as reflecting that most

viral polymorphisms sampled within hosts are strongly deleterious [126,127]. However, popu-

lation genetic analyses have demonstrated that these observed differences within and among

hosts are consistent with most observed viral polymorphisms being nearly neutral with regard

to fitness—indeed, standard population genetic models seem to fully capture both observed

intra-host and inter-host HCMV variation [91,104,125].

Fig 4. An example of clinical sampling of a patient over the course of an infection, demonstrating how a

consensus sequence-based summary neglects the great majority of intra-host variants (which are expected to

primarily segregate at low frequencies [shown as blue circles]). This ascertainment of high-frequency intra-host

variants (shown as red circles) for subsequent inter-host comparison thus represents an unfortunate and unnecessary

loss of information.

https://doi.org/10.1371/journal.ppat.1011265.g004
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Applying similar approaches to SARS-CoV-2 will be crucial to better understand its evolu-

tion and global spread, but this first requires the development of a baseline model as discussed

herein. This development, in turn, will be aided by sampling and sequencing SARS-CoV-2

populations from single patients at multiple time points (Fig 4). While still relatively rare, sev-

eral studies have recently produced time-sampled whole-genome SARS-CoV-2 data

[66,82,110,128]. For example, one study sampled 41 patients at 2 time points, collected on

average 6 days apart, and observed both generation and loss of intra-host variation during this

period [66]. Most importantly, additional time-series data will allow for the intra-host descrip-

tion of temporal changes in allele frequencies providing greatly improved resolution on the

parameters underlying selection, population size change, and population structure [129,130],

and will further provide the data necessary to perform needed inference to better quantify

underlying rates of mutation and recombination.

Concluding thoughts

Though this virus currently represents a unique global threat, it is also simply an organism like

any other that can be studied using basic population genetic principles. While the many con-

siderations here described may appear rather complex, it is our hope that these recommenda-

tions together with this compendium of recently obtained estimates will prove useful in future

efforts to better illuminate the within-patient evolutionary dynamics of SARS-CoV-2. Without

this framework to define hypotheses and accurately quantify contributing evolutionary pro-

cesses, epidemiological and genetic data describing spatial and temporal variations in disease

incidence and mutational frequencies will remain merely descriptive and thus will alone be

unable to broach the key evolutionary questions of greatest relevance to public health.
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84. Pouyet F, Aeschbacher S, Thiéry A, Excoffier L. Background selection and biased gene conversion

affect more than 95% of the human genome and bias demographic inferences. Elife. 2018: 7. https://

doi.org/10.7554/eLife.36317 PMID: 30125248

85. Rousselle M, Mollion M, Nabholz B, Bataillon T, Galtier N. Overestimation of the adaptive substitution

rate in fluctuating populations. Biol Lett. 2018; 14:20180055. https://doi.org/10.1098/rsbl.2018.0055

PMID: 29743267

86. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic his-

tory of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009; 5:

e1000695. https://doi.org/10.1371/journal.pgen.1000695 PMID: 19851460

87. Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from

genomic and SNP data. PLoS Genet. 2013: 9. https://doi.org/10.1371/journal.pgen.1003905 PMID:

24204310

88. Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. Inferring whole-genome histories in

large population datasets. Nat Genet. 2019; 51:1330–1338. https://doi.org/10.1038/s41588-019-

0483-y PMID: 31477934

89. Steinrücken M, Kamm J, Spence JP, Song YS. Inference of complex population histories using whole-

genome sequences from multiple populations. Proc Natl Acad Sci. 2019; 116:17115–17120. https://

doi.org/10.1073/pnas.1905060116 PMID: 31387977

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011265 April 5, 2023 16 / 19

https://doi.org/10.1093/gbe/evac088
https://doi.org/10.1093/gbe/evac088
http://www.ncbi.nlm.nih.gov/pubmed/35675379
https://doi.org/10.1093/molbev/msab050
http://www.ncbi.nlm.nih.gov/pubmed/33591322
https://doi.org/10.1146/annurev-virology-100114-055135
https://doi.org/10.1146/annurev-virology-100114-055135
http://www.ncbi.nlm.nih.gov/pubmed/26958911
https://doi.org/10.1126/scitranslmed.abe2555
http://www.ncbi.nlm.nih.gov/pubmed/33229462
https://doi.org/10.1128/JVI.00171-17
http://www.ncbi.nlm.nih.gov/pubmed/28468874
https://doi.org/10.1093/cid/ciaa203
http://www.ncbi.nlm.nih.gov/pubmed/32129843
https://doi.org/10.1371/journal.ppat.1009849
http://www.ncbi.nlm.nih.gov/pubmed/34424945
https://doi.org/10.1126/scitranslmed.abh1803
http://www.ncbi.nlm.nih.gov/pubmed/34705523
https://doi.org/10.1093/ve/veab041
http://www.ncbi.nlm.nih.gov/pubmed/34035952
https://doi.org/10.1371/journal.ppat.1009499
http://www.ncbi.nlm.nih.gov/pubmed/33826681
https://doi.org/10.1111/tbed.14673
https://doi.org/10.1111/tbed.14673
http://www.ncbi.nlm.nih.gov/pubmed/35907777
https://doi.org/10.1186/s13073-021-00847-5
https://doi.org/10.1186/s13073-021-00847-5
http://www.ncbi.nlm.nih.gov/pubmed/33618765
https://doi.org/10.1111/mec.13390
http://www.ncbi.nlm.nih.gov/pubmed/26394805
https://doi.org/10.7554/eLife.36317
https://doi.org/10.7554/eLife.36317
http://www.ncbi.nlm.nih.gov/pubmed/30125248
https://doi.org/10.1098/rsbl.2018.0055
http://www.ncbi.nlm.nih.gov/pubmed/29743267
https://doi.org/10.1371/journal.pgen.1000695
http://www.ncbi.nlm.nih.gov/pubmed/19851460
https://doi.org/10.1371/journal.pgen.1003905
http://www.ncbi.nlm.nih.gov/pubmed/24204310
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1038/s41588-019-0483-y
http://www.ncbi.nlm.nih.gov/pubmed/31477934
https://doi.org/10.1073/pnas.1905060116
https://doi.org/10.1073/pnas.1905060116
http://www.ncbi.nlm.nih.gov/pubmed/31387977
https://doi.org/10.1371/journal.ppat.1011265


90. Renzette N, Gibson L, Bhattacharjee B, Fisher D, Schleiss MR, Jensen JD, et al. Rapid intrahost evo-

lution of human cytomegalovirus is shaped by demography and positive selection. PLoS Genet. 2013;

9:e1003735. https://doi.org/10.1371/journal.pgen.1003735 PMID: 24086142

91. Sackman A, Pfeifer S, Kowalik T, Jensen J. On the demographic and selective forces shaping patterns

of human cytomegalovirus variation within hosts. Pathogens. 2018; 7:16. https://doi.org/10.3390/

pathogens7010016 PMID: 29382090

92. Jensen JD, Kowalik TF. A consideration of within-host human cytomegalovirus genetic variation. Proc

Natl Acad Sci. 2020; 117:816–817. https://doi.org/10.1073/pnas.1915295117 PMID: 31874930

93. Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, et al. Genetic content of

wild-type human cytomegalovirus. J Gen Virol. 2004; 85:1301–1312. https://doi.org/10.1099/vir.0.

79888-0 PMID: 15105547

94. Sijmons S, Thys K, Mbong Ngwese M, Van Damme E, Dvorak J, Van Loock M, et al. High-throughput

analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-

disrupting mutations and pervasive recombination. J Virol. 2015; 89:7673–7695. https://doi.org/10.

1128/JVI.00578-15 PMID: 25972543

95. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep.

2020; 19:100682. https://doi.org/10.1016/j.genrep.2020.100682 PMID: 32300673

96. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2

genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim

Biophys Acta Mol Basis Dis. 2020; 1866:165878. https://doi.org/10.1016/j.bbadis.2020.165878 PMID:

32544429

97. Tellier A, Lemaire C. Coalescence 2.0: A multiple branching of recent theoretical developments and

their applications. Mol Ecol. 2014; 23:2637–2652. https://doi.org/10.1111/mec.12755 PMID:

24750385

98. Matuszewski S, Hildebrandt ME, Achaz G, Jensen JD. Coalescent processes with skewed offspring

distributions and non-equilibrium demography. Genetics. 2018; 208:323–338. https://doi.org/10.1534/

genetics.117.300499 PMID: 29127263

99. Sackman AM, Harris RB, Jensen JD. Inferring demography and selection in organisms characterized

by skewed offspring distributions. Genetics. 2019; 211:1019–1028. https://doi.org/10.1534/genetics.

118.301684 PMID: 30651284

100. Morales-Arce AY, Harris RB, Stone AC, Jensen JD. Evaluating the contributions of purifying selection

and progeny-skew in dictating within-host Mycobacterium tuberculosis evolution. Evolution. 2020;

74:992–1001. https://doi.org/10.1111/evo.13954 PMID: 32233086
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