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Abstract

The standard neutral model of molecular evolution has traditionally been used as the null

model for population genomics. We gathered a collection of 45 genome-wide site frequency

spectra from a diverse set of species, most of which display an excess of low and high fre-

quency variants compared to the expectation of the standard neutral model, resulting in

U-shaped spectra. We show that multiple merger coalescent models often provide a better

fit to these observations than the standard Kingman coalescent. Hence, in many circum-

stances these under-utilized models may serve as the more appropriate reference for geno-

mic analyses. We further discuss the underlying evolutionary processes that may result in

the widespread U-shape of frequency spectra.

Author summary

This study investigates the assumed universality of the standard neutral model of

molecular evolution. We demonstrate that genealogical models alternative to the

widely used Kingman coalescent often provide greatly improved fits to observed

genome-wide allele frequency data for taxa sampled widely from across the tree of life.

As such, we argue that these more generalized multiple merger models (which contain

the Kingman coalescent as a special case) may prove more fruitful and appropriate in

future population genomic studies. Importantly, this modification of the standard

model for interpreting genetic diversity has potentially profound implications for

many population genetic inference approaches (e.g., scanning for targets of selection
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across the genome and reconstructing population history), as well as for analyses in

related fields.

1 Introduction

The Kingman coalescent, [1], a stochastic process describing the distribution of random, bifur-

cating genealogical trees in a Wright-Fisher population, has been enormously impactful in the

study of natural genetic variation in populations [2]. Under the standard neutral theory [3, 4],

the coalescent can be used to derive expectations of neutral diversity by tracking mutations

along the branches of random genealogies, and extensions can accommodate complex pro-

cesses such as recombination [5], population structure [6], and natural selection [7]. The

power of this approach relies on being able to compare deviations observed in real data from

expectations under the coalescent model.

One common metric used to study the consistency between the assumptions of this

model and the observed data is the Site Frequency Spectrum (SFS)—that is, the distribution of

mutational frequencies, typically computed for a sample of n haploid genomes. Under the

assumptions of the Standard Neutral Model (SNM)—including constant population size and

panmixia—the expected SFS, averaged across the tree space, is given by E[ξi] = θ/i, where ξi is

the number of sites that carry a derived variant of frequency i/n [8]. The θ parameter of the

SNM is defined as θ = 2pNμ, where p is the ploidy (typically 1 or 2), N the (effective) popula-

tion size, and μ the mutation rate.

Observed SFS in natural populations are often poorly fit by this expectation, owing to viola-

tions of one or more of the underlying assumptions of the SNM, including varying population

sizes, population structure, direct selection, and linkage with selected sites [9]. A standard pro-

cedure in population genetics is thus to first statistically test for the SNM (treated as H0, a null

statistical model) and then, when rejected, fit a variety of alternative demographic and/or selec-

tion models.

In this article, we show that among a collection of genome-wide SFS from a diverse set of

species, many show an unexpected excess of low and high frequency variants, resulting in a

U-shaped SFS. Many possible factors may result in such a pattern of variation. These include

recent migration from non-sampled populations [10], population structure [11], misorienta-

tion of ancestral and derived alleles [12], biased gene conversion [13], recent positive selection

at many targets across the genome [14], background selection [15, 16], temporally-fluctuating

selection [17], and various reproductive strategies [18].

A number of these scenarios result in an important general violation of Kingman assump-

tions: the presence of multiple mergers in genealogies (i.e., a node with more than two descen-

dants). Under such scenarios, these distributions are better described by a more general class

of models known as the Multiple Merger Coalescent (MMC) [19–23]. Briefly, MMCs may

arise when the number of offspring per individual has very high variance, even up to the order

of the total population size. Such effects of concentrations of ancestrality (resulting in poly-

tomies in the trees) have been reported in various species across all kingdoms of life [24], and

MMC-like genealogies have been observed for species ranging from bacteria (e.g. for Mycobac-
terium tuberculosis [25, 26]) to viruses (e.g. for influenza [27]) to animals (e.g. for the nematode

Pristionchus pacificus [28], multiple fish species, e.g. [29–31]) and even to cancer cells [32].

Compared to the Kingman coalescent, MMC trees have different distributions of both

the branch lengths and the number of lineages that coalesce in each node. They mostly

occur when the distribution of offspring numbers is highly variable: a recurring ancestor of a
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substantial fraction of the population for theC-coalescent or less specifically an inflated vari-

ance for the Beta-coalescent. The most extreme scenario is the presence of a single ancestor

for the whole population, resulting in a star-shaped tree where a single node collapses all

branches. MMC trees tend, like all star-like trees (e.g. Kingman-like trees in expanding popula-

tions), to have an excess of low frequency variants (e.g. derived singletons). Furthermore, the

root MRCA node of MMC trees is more often imbalanced than it is for Kingman trees. Imbal-

anced trees nodes have most leaves on one side while few on the other. As a consequence,

MMC trees also display an excess of ancestral rare alleles (e.g. ancestral singletons). Both

effects jointly produce a U-shaped SFS (for more details refer to A.1 in S1 Appendix).

Multiple neutral and selective processes can produce MMC genealogies in natural popula-

tions. Generally, the term sweepstake reproduction has been proposed for species that have

rare individuals with a high reproduction rate coupled with high early-life mortality. In these

species, a single or few individuals can become ancestors of a substantial fraction of the popu-

lation by chance, thus resulting in MMC genealogies (for a review, see [33]). Multiple models

featuring the recurrent and rapid emergence of genotypes with high fitness also result in

MMC genealogies, often modeled by the Bolthausen-Sznitman coalescent or related models,

e.g. [34–38]. Importantly, other biological factors can also lead to MMC-like genealogies,

including large rapid demographic deviations [39], seed banks [40], extinction-recolonisation

in metapopulations [41] and range expansions [42]. Yet, the frequency of MMC genealogies in

nature, and more generally whether MMC models ought to be employed as a more appropriate

null for certain species, remains an open question.

In this study, we collected SFS from 45 species (Table 2) from across the tree of life (bacte-

ria, plants, invertebrates and vertebrates), for which genome-wide polymorphism data (with

sample sizes of n� 10) were available together with an outgroup to assign ancestral and

derived states. We show that MMC genealogies provide a better fit than the Kingman coales-

cent in many cases, even when both are combined with non-constant demography and misori-

entation of ancestral and derived alleles. For several species, the fit is excellent. For each

species, we tested two simple MMC models: Beta-MMC [43] and Psi-MMC [44], both tuned

by a single parameter that interpolates between a star-shaped tree (i.e. a single radiation) to a

Kingman-like tree. Demography is here tuned by a single parameter (a simple exponential

growth), as is the frequency of misorientation errors. Using composite-likelihood maximiza-

tion [45] on genome-wide data, we explore statistical power to distinguish between these con-

tributing factors. Finally, we discuss how MMCs may be better utilized in future population

genetic analysis, and what evolutionary forces may contribute to the pervasive observation of

U-shaped SFS.

2 Materials and methods

2.1 Coalescent and allele misorientation models

We compared the empirically observed SFS to the theoretical SFS expected under a variety of

models. The genealogical models emerge from a discrete generation reproduction model. Each

is a (random) tree with n leaves which approximates the genealogy for a sample of size n in a

reproduction model in which the population size N is very large (N!1). One unit of time in

the coalescent tree corresponds to many generations in the underlying reproduction model:

for Kingman’s coalescent one time unit corresponds to N generations of a haploid Wright-

Fisher model, or order of N2 time steps of an haploid Moran model. This correspondence

affects how population size changes are reflected in the coalescent approximation (see defini-

tion below, for mathematical justification and details see [46–48]). On the genealogical tree,

mutations are placed randomly via a Poisson process with rate θ/2.
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We compared three coalescent models: Kingman’s n-coalescent, Psi-n-coalescent (also

called Dirac-n-coalescent) with parameter C 2 [0, 1] and Beta(2 − α,α)-n-coalescent with α 2
[1, 2]. The parameters α or C regulate the strength and frequency of multiple mergers: the

smaller α or the larger the C, the more frequently coalescence events are multiple mergers of

increasing size. Both MMCs incorporate Kingman’s n-coalescent as a special case (α = 2 or

C = 0).

Both MMC coalescent models can be defined for demographic variation that stays of the

same order, i.e. where the populations size ratio νt = Nt/N0 of the population size at time t in

the past (in coalescent time units) is positive and finite (for large population sizes N). The coa-

lescent merges any k of b (ancestral) lineages present at a time t with rate

ln;kðtÞ ¼ nðtÞ
� Z

Z 1

0

xk� 2ð1 � xÞn� kLðdxÞ; ð1Þ

where

• Λ could be any probability distribution on [0, 1] but is here either the Dirac distribution

(point mass) in C (Psi-coalescent) or the Beta(2 − α,α) distribution (Beta coalescent).

• η is a scaling factor reflecting how many time steps from the discrete reproduction model

form one unit of coalescent time. More precisely, it is the power of N of the scaling factor:

e.g. η = 2 for a Moran model and η = 1 for a Wright-Fisher model.

A common way of constructing the Λ-coalescent, which provides a nice interpretation of

Eq (1), is the paintbox process [20]: at rate x−2Λ(dx) per time unit, paint each lineage indepen-

dently with probability x and merge all painted lineages simultaneously. Note that when Λ is

the Dirac mass at 0, λn,k(t) is nonzero only when k = 2, recovering Kingman’s coalescent.

We focused on exponentially growing populations, i.e. a population size ratio ν(t) = exp

(−gt) for growth rate g� 0 (see A.2 in S1 Appendix for interpretation of g in the initial repro-

duction model). As underlying reproduction models, we use modified Moran models [44, 47,

49]. At each time step, in a population of size N, a single random individual has U + G off-

spring while N − U random individuals have 1 offspring (leaving U − 1 individuals devoid of

offspring). As a consequence, the population grows from N to N + G individuals and G is cho-

sen to fit the desired growth rate.

In a standard Moran model, U = 2 and G = 0, leaving the population size constant. How-

ever, for both MMCs, U is set to different values. In both cases, the mean of U does not grow

indefinitely with N (for all parameters α and C), but the resulting variance does (for α 6¼ 2

and C 6¼ 0).

• In the Psi-n-coalescent (essentially [44, 47]), we have U = 2, except when a sweepstake event

occurs with a small probability of order N−γ (1< γ� 2); in this case, U = bNCc. In the coa-

lescent time scale, one unit of time corresponds to an order of Nγ time steps; this is the

expected time to a sweepstake event so that η must equal γ. We chose γ = η = 1.5 for C> 0,

and γ = η = 2 forC = 0 (standard Moran model) with U = 2 in every time step.

• In the Beta-n-coalescent [48, 49], U has distribution PðU ¼ jÞ ¼ l
� 1

N
N
j

� �
Bðj� a;aþN� jÞ

Bð2� a;aÞ ; where B

is the Beta function and λN is the normalizing constant. Consequently, although the random

variable U has a finite mean of at most a

a� 1
, it can take large values with high probability

when α< 2. See A.2 in S1 Appendix for more details. On the coalescent time scale, one

unit of time corresponds to an order of Nα time steps, so η = α. Note that α = 2 is the

classical Moran model and thus leads to Kingman’s coalescent. We stress that allowing for a
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exponentially growing population by setting G> 0 in the models above does neither change

the order of the time scaling nor the resulting coalescent model, it only introduces a slight

further rescaling of time in the coalescent, as reflected in the coalescence rates (Eq. 1).

For statistical inference, we treat the observed SFS of s mutations as s independent multino-

mial draws from the expected SFS (see [45] and [50, Eq. 11] [47, Eq. 14]). This computes an

approximate composite likelihood function of the data for any combination of growth rate (g)

and coalescent parameter (α or ψ). However, to include the effect of misorienting the ancestral

allele with the derived allele, we introduced another parameter e. On average, a misorientation

probability of e lets a fraction e of the derived allele carried by i sequences to be falsely seen as

appearing in n − i sequences. Additionally, as described in [51, Section 4.2] or [12, p. 1620], as

misorientation stems from double-mutated sites, e also relates to the number of sites that can-

not be oriented when compared with the outgroup owing to the presence of a third allele (see

A.4 in S1 Appendix). We account for these two effects of e by swapping a fraction e of the vari-

ants at frequency i/n to 1 − i/n and we assume a Jukes-Cantor substitution model [52] to pre-

dict for the number s6¼ of non-polarizable tri-allelic variants. This leads to a slight variant of

[47, Eq. 14]. For any coalescent model with a specific set of coalescent, exponential growth and

misorientation parameters, the pseudolikelihood is:

PsLðs1; . . . ; sn� 1; s; s 6¼Þ ¼

s!
s1! � � � sn� 1!

Yn� 1

i¼1

E½Ti�ð1 � eÞ þ E½Tn� i�e
E½Ttot�

� �si sþ s6¼
s6¼

 !
2e

1þ 2e

� �s6¼ 1

1þ 2e

� �s

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
from non‐polarizable variants

; ð2Þ

where s1, . . ., sn−1 is the observed SFS (so we observe si sites with derived allele frequency i/n),

s = ∑i si is the total number of polarizable polymorphic sites and s6¼ is the number of non-polar-

izable sites. E[Ti] is the expected sum of branch lengths that support i leaves in the genealogy

and E[Ttot] is the sum of all branch lengths. For e = 0, we set the term estimated from non-

polarizable variants to 1. See A.4 in S1 Appendix for details on the derivation.

2.2 Statistical inference

To find the best-fitting parameters, we conduct a grid-search for the highest pseudolikelihood.

The expected branch lengths E[Ti] in Eq (2) are computed as in [47], using the approach from

[53]. We use the following grids with equidistant steps

Beta: α 2 [1, 2] in steps of 0.05, g 2 [0, 25] in steps of 0.5, e 2 [0, 0.15] in steps of 0.01.

Psi:C 2 [0, 1] in steps of 0.05, g, e as for Beta above, complemented with C 2 [0, 0.2] in steps

of 0.01 (further expanding g 2 [0, 30] by steps of 0.5 and e 2 [0, 0.2] by steps of 0.01) when

C was estimated to be close to 0.

To perform model selection between the three coalescent models, we computed the two fol-

lowing log Bayes factors:

BF1 ¼ maxðlog max
a;g;e

PsL; log max
C;g;e

PsLÞ � log max
a¼2;g;e

PsL; ð3Þ

BF2 ¼ logmax
a;g;e

PsL � log max
C;g;e

PsL ð4Þ

from the maximum pseudolikelihoods computed for the three models. We inferred a MMC

genealogy when BF1 > log(10) and further chose a Beta coalescent or a Psi-coalescent when
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(additionally) BF2 > log(10) or BF2 < −log(10) respectively. These arbitrary thresholds have

been extensively tested using simulations (see Results), showing that they empirically point to

the right model.

We appreciate that the “Bayes Factors” (BF) are computed here as “log-Likelihood Ratios”

(log-LR). Interestingly, any likelihood ratio can be interpreted as a posterior probability ratio,

provided that the prior on models is uniform (as it is assumed routinely in Bayesian MCMC

sampling) as we do here. Thus, in our case, both denominations are equivalent.

For the best fitting parameter combinations either over the full parameter space or

restricted to the Kingman coalescent with growth and allele misorientation (i.e., fixing α = 2 or

C = 0), we assessed the goodness-of-fit of the observed data. First, we graphically compare the

observed SFS with the expected SFS, approximated as
E½T1 �

E½Ttot �
; . . . ;

E½Tn� 1 �

E½Ttot �

� �
. Second, we quanti-

fied the (lack of) fit of the data by Cramér’s V, a goodness-of-fit measure which accounts for

different sample sizes and different numbers of polymorphic sites. See A.6 in S1 Appendix for

details.

2.3 Data

We collected 45 genome-wide SFS that are described in Table 2 and Table G in S1 Appendix.

The collected SFS come from public data sets. For 20 data sets, SFS were extracted from whole

genome SNP data, including both coding and non-coding regions. For 16 data sets, they were

extracted only from transcriptomes (equivalent to coding regions). For 9 bacterial data sets,

the SFS were extracted from the core genome. The supplementary material S1 and S2 Figs pro-

vide the shapes of the empirically-observed SFS.

3 Results

We first demonstrate the power of the methodology using extensive simulations, and then

apply it to 45 real SFS computed from a very large variety of taxa.

3.1 Statistical performance

Using simulations, we first assess the power of the method to retrieve the correct model and

then its power to estimate the parameters. Briefly, for each simulation, we simulated 100 inde-

pendent loci for each parameter combination, choosing different values for the coalescent

parameter (α or C), the growth rate of the demographic model (g), and the misorientation

probability (e). For each locus, we then simulate SNPs under an infinite sites model, with a

mutation rate such that on average 50 sites are segregating for each locus. This simulation

setup is described in further detail in A.7 in S1 Appendix.

Applied to the simulated data, our method performs well. Even for small datasets (n = 25),

the model selection approach based on Bayes factors computed from Eq (2) identifies the

correct multiple merger model in most cases (Table 1), as long as multiple mergers occur

with reasonable frequency. As the rate of multiple mergers becomes very low (α� 2 or

C� 0), mis-identifications are more common (Table 1). However, even when our model

prefers the beta-coalescent for data simulated with α = 2, in 96% of such cases (with n = 100;

71% with n = 20), we estimate α� 1.9, suggesting that even when model mis-idenfication

occurs, parameter estimation remains reliable (Table C in S1 Appendix). Over the range of

parameter combinations, larger sample sizes lead to smaller errors, as expected. This selec-

tion approach is conservative with respect to departures from the standard Kingman coales-

cent, as we choose a Kingman genealogy model if the Bayes factor does not distinctively

point towards an MMC model.
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Parameter estimation within both the Beta- and Psi-coalescent models works well for

multi-locus data for large enough samples, especially for the allele misorientation rate e and for

the coalescent parameter α or ψ (Fig 1 and Figs A.4–A.6 in S1 Appendix). The growth rate, in

contrast, is only estimated well for situations where the simulated growth rate was low (Figs

A.11, A.14, A.17 and A.20 in S1 Appendix).

Table 1. Model selection via two-step Bayes factor criterion. Based on 2,000 simulations for each true model assuming n = 25 individuals with 100 loci with 50 mutations

each on average. For each simulation, the coalescent parameter is fixed and the growth parameter g and the allele misorientation rate e are randomly chosen (g 2 [0, 11.25],

e 2 [0, 0.1]). The second column shows whether the parameters used for simulation were included in the inference grid. Fractions are rounded to two digits. The maximum

of each row is marked in bold. MMC refers to cases in which neither the Psi- nor Beta-coalescent is preferred. An expanded version with enhanced sample size is provided

in Table B in S1 Appendix. For details on simulations and inference parameters see A.7 in S1 Appendix.

True model Within Fraction model inferred as

the grid? Kingman Beta Psi MMC

α = 2 yes 0.79 0.21

α = 1.9 yes 0.34 0.66

α = 1.8 yes 0.02 0.91 0.04 0.03

α = 1.625 no 0.9 0.06 0.05

α = 1.025 no 1

C = 0.005 no 0.55 0.45

C = 0.025 no 0.05 0.72 0.14 0.09

C = 0.05 yes 0.12 0.82 0.06

C = 0.075 no 0.06 0.91 0.03

C = 0.1 yes 0.02 0.98

https://doi.org/10.1371/journal.pgen.1010677.t001

Fig 1. Error for estimating parameters for Beta coalescents with exponential growth and allele misorientation across the parameter grid for (α, g,

e). The space between the points stems from the grid. Sample size n = 100, 50 independent loci with 100 mutations on average. 500 simulations were

performed per parameter triplet.

https://doi.org/10.1371/journal.pgen.1010677.g001
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3.2 Data analysis

The simulations demonstrate that the method is able to retrieve the correct model, and also

correctly estimate the parameters of the MMC, provided that there is enough signal in the

data. Next, we applied the method to 45 real SFS from 45 distantly related taxa. We first tested

how many datasets are better fit by an MMC model than by a Kingman model, then tested the

goodness of the MMC fit and estimated MMC parameters for real data.

MMC fits better than Kingman. First, we assessed the fit of each SFS to both MMC mod-

els and the Kingman coalescent, with exponential growth and misorientation. Using the Bayes

Factor criterion, we selected the best fitting model for each empirical SFS in our dataset

(Table 2). A large majority (76%) of the SFS produce a better fit to MMC models than to the

standard Kingman coalescent model. The best model is most frequently the Beta-coalescent

(53%), followed by the Kingman coalescent (24%) and the Psi-coalescent (13%). In a few cases,

both MMC models produce a better fit than the coalescent, but we cannot distinguish the best

fitting MMC (9%).

MMC is sometimes a good fit. While we show that MMC models produce better fits than

the Kingman coalescent across many species, this could be because no model fits well. To test

whether the best fit coalescent model is indeed a good model to predict the observed SFS, we

calculated Cramér’s V, a measure of goodness-of-fit appropriate for variable contingency

tables (e.g., SFS with different sample sizes across species, see A.6 in S1 Appendix for details).

Combined with visual inspections (all SFS with their fit are provided in supplementary mate-

rial S1 and S2 Figs), we designed empirical grade categories from ‘very accurate’ fit to ‘very

poor’ fit, as following: A: V 2 [0 : 0.033[, B: V 2 [0.033 : 0.066[, C: V 2 [0.066 : 0.1[ and D: V 2
[0.1 :1[. Importantly, the MMC models fit well to 67% of data sets: 30/45 SFS have grades A

or B on Table 3. This demonstrates that not only is MMC a better choice than Kingman on

statistical grounds but also that it appears as a good model to predict patterns of diversity for a

large majority of species.

The amount of multiple mergers greatly varies among species. The MMC models we

use vary in the extent of multiple mergers, from star-like to Kingman-like, scaled by a single

parameter (α and C respectively for the Beta- and Psi-coalescent). To determine whether the

model fits suggest an appreciable level of multiple mergers, we next explore the estimated

parameters for MMC models. Of the 45 empirical SFS we analyzed, 73% (33/45) have â < 1:9

under the Beta-coalescent, which suggests a non-trivial frequency of multiple mergers, and

implies something that is not captured by the SNM is occurring in these species (see Table D

in S1 Appendix for α estimates of all data sets, including those where the Kingman or Psi-coa-

lescent are the best fit model). Nonetheless, estimates of α and C are both skewed towards

values that approach the Kingman coalescent (2 and 0, respectively), despite covering the full

range of values across the tree of life (Fig 2 and Fig A.9 in S1 Appendix).

Assuming a Kingman coalescent leads to an overestimation of the growth rate. One

potential impact of using the standard Kingman coalescent instead of better-fitting MMC

models is the incorrect estimation of other parameters, including aspects of demography. To

explore this issue, we compared the estimated growth rate and misorientation error assuming

a Kingman model rather than an MMC model. We observe that the growth parameters are

often higher when inferred under the the Kingman coalescent than in either of the MMC mod-

els (Table D in S1 Appendix), although estimates of g tend to converge in empirical datasets

where MMC parameter estimate approaches Kingman (Fig A.7A in S1 Appendix). This mir-

rors previous results of compensating the effect of MMC when inferring under a Kingman

coalescent by estimating a higher growth rate in our scenario without allele misorientation, see

e.g. [47].
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Table 2. Data sets description: Taxa, Species, number of haplotypes (n) and number of polymorphic sites (#SNP). Best fitting model (Kingman (KM), Beta, Psi-coales-

cent or no preference between Multiple Merger Coalescents (MMC)), its parameters (parameters describing coalescence (Coal), growth rate (g) and misorientation (e))
and goodness-of-fit grade from Cramér’s V values.

Order Species n #SNP Model Coal gModel eModel Grade

Vertebrates Aptenodytes patagonicus 20 1,278 Beta 1.25 1.5 0 B

Athene cunicularia 40 11,268,203 Beta 1.8 1 0.03 B

Corvus cornix 38 7,551,159 Beta 1.85 0.5 0 A

Coturnix japonica 20 5,061,864 Beta 1.45 0.5 0.01 A

Egretta garzetta 10 9,318,499 Beta 1.75 0 0.02 B

Emys orbicularis 20 515 KM ⌀ 0.5 0 C

Ficedula albicollis 24 14,697,230 C 0.01 0.5 0.01 A

Gorilla gorilla gorilla 54 9,878,547 Beta 1.9 0 0 B

Homo sapiens 216 19,441,528 Beta 1.85 0 0 A

Lepus granatensis 20 769 MMC 0.12 0 0.03 C

Nipponia nippon 16 1,140,694 KM ⌀ 0 0.03 D

Pan paniscus 26 6,293,657 Beta 1.85 1 0 B

Pan troglodytes ellioti 20 10,009,190 Beta 1.7 0 0 A

Parus major 54 14,174,305 Beta 1.75 0 0.01 A

Parus caeruleus 20 866 MMC 0.04 0 0.02 B

Passer domesticus 16 18,501,992 KM ⌀ 0 0 A

Phylloscopus trochilus 24 33,401,127 KM ⌀ 12.5 0 A

Taeniopygia guttata 38 53,263,038 Beta 1.75 4 0 A

Invertebrates Armadillidium vulgare 20 23,323 Beta 1.7 0 0.03 C

Artemia franciscana 20 5,548 Beta 1.65 0 0.03 B

Caenorhabditis brenneri 20 1,339 Beta 1.5 0 0.06 C

Caenorhabditis elegans 574 165 KM ⌀ 0 0.06 D

Ciona intestinalis A 20 1491 Beta 1.9 0 0.03 C

Ciona intestinalis B 20 2186 Beta 1.6 0 0.02 C

Culex pipiens 20 5,442 Beta 1.55 0.5 0.01 B

Drosophila melanogaster 196 4,662,706 Beta 1.65 0.5 0.02 A

Halictus scabiosae 22 712 MMC 0.04 0 0.01 B

Melitaea cinxia 18 1,695 Beta 1.7 0.5 0.03 B

Messor barbarus 20 9,651 KM ⌀ 0.5 0 C

Ostrea edulis 20 939 MMC 0.04 0 0.02 B

Physa acuta 18 4,286 Beta 1.5 0 0.02 B

Sepia officinalis 18 1,740 KM ⌀ 0 0.02 C

Plants Arabidopsis thaliana 345 10,322,757 Beta 1.6 0 0.07 A

Zea mays 66 520,310 C 0.01 0 0 A

Bacteria Acinetobacter baumannii 79 78,175 Beta 1.8 0 0.1 B

Bacillus subtilis 38 105,523 C 0.14 0 0.2 B

Chlamydia trachomatis 59 9,924 KM ⌀ 0 0.11 D

Clostridium difficile 11 192 KM ⌀ 15 0.15 D

Escherichia coli 62 84,222 KM ⌀ 0 0.06 B

Helicobacter pylori 70 27,498 C 0.01 1 0.2 B

Klebsiella pneumoniae 156 203,601 KM ⌀ 18.5 0.15 D

Mycobacterium tubercolosis 33 7,142 Beta 1.05 2.5 0 C

Pseudomonas aeruginosa 86 90,258 C 0.06 3 0.2 B

Staphylococcus aureus 152 30,052 C 0.01 1 0.2 B

Streptococcus pneumoniae 32 49,917 Beta 1.5 0 0.08 C

https://doi.org/10.1371/journal.pgen.1010677.t002
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Fig 2. Estimates of α by species. The four top panels represent transformed ϕ-SFS (ϕi = iξi as in [54, 55]) for four species from different taxa: two

vertebrates Aptenodytes patagonicus (left) and Parus major (center right) an invertebrate Physa acuta (center left), and a bacteria Escherichia coli (right).

For E. coli, the uptick in the spectrum comes exclusively from the allele miss-orientation, as â ¼ 2. Black dots are the observed values, grey dotted lines

are the best fits under the Kingman’s coalescent model and red lines are the best fits under a Beta-coalescent model.

https://doi.org/10.1371/journal.pgen.1010677.g002

Table 3. Distribution of goodness-of-fit grades of the best-fitting models for the 45 collected SFS. Calculated from

Cramér’s V, A: V 2 [0 : 0.033[, B: V 2 [0.033 : 0.066[, C: V 2 [0.066 : 0.1[ and D: V 2 [0.1 :1[.

Model n Grade A B C D Total

Kingman 2 1 3 5 11

Beta 8 10 6 24

Psi 2 4 6

MMC 3 1 4

Total 12 18 10 5 45

https://doi.org/10.1371/journal.pgen.1010677.t003
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In contrast, the allele misorientation parameters e are almost identical between the King-

man model and the MMC (Fig A.7B in S1 Appendix), which may be a consequence of adding

a second, coalescent-model-free estimation method for e to the pseudolikelihood 2. This sug-

gests that for datasets with frequent multiple mergers, assuming a Kingman model may lead to

overestimating g, but is not likely to impact estimates of e.
Both MMC models have similar parameter estimates. Finally, we compare the estima-

tions of both MMC models to see whether using one or the other would result in qualitatively

different conclusions. The parameters inferred under the two MMC models are highly corre-

lated. The multiple merger parameters α of the Beta-coalescent and C of the Psi-coalescent are

negatively correlated, as expected from their definitions (Fig A.8A in S1 Appendix, Spearman

correlation: ρ = −0.72). The estimated growth and misorientation parameters are highly posi-

tively correlated (Spearman correlations ρ = 0.73 and ρ = 0.95). The case of Clostridium difficile
is a notable exception. The best model inferred is the Kingman, consistent with Ĉ ¼ 0 inferred

for the Psi-coalescent, but for the Beta-coalescent â ¼ 1, the strongest MMC component, is

estimated. However, this discrepancy is likely due to statistical noise: the data set is very small

(192 mutations in a sample size n = 11) and the species has a very low recombination rate.

4 Discussion

In this study, we show that unfolded SFS for large variety of species show a characteristic U-

shape, which is inconsistent with the expectations of the standard neutral model using the

Kingman coalescent. One possible explanation for this observation is the prevalence of MMC

and MMC-like genealogies in real populations. To explore the role of MMCs in these data, we

develop a statistical framework to detect MMC models. Using simulated data, we show this

approach has power to detect the correct MMC model and estimate its parameters, provided

that the data are informative enough. Using real SFS collected from 45 species across the tree

of life, we further show the MMC models are a better fit than the Kingman coalescent in most

species, even when population growth and orientation errors are additionally modeled,

although in some cases the MMC parameter suggests approximately Kingman behavior. In the

following, we discuss some possible biological implications of these observations.

Chosen multiple-merger models, alternatives and limitations

We chose two commonly used haploid multiple-merger models, the Beta- and the Psi-coales-

cent, which were previously associated with sweepstake reproduction in the literature [43, 44].

However, these MMC models may also originate either from alternative neutral processes or

from selective processes. Indeed, the Beta n-coalescent with α = 1 is known as the Bolthausen-

Sznitman n-coalescent and it (resp. a slight variant of it) emerges in a variety of models with

rapid selection [34–38]. The Beta-coalescent has also been associated with range expansions

[42]. In addition, Psi n-coalescents have been successfully used as proxy models for detecting

regions experiencing positive selection [56].

While Beta- and Psi-coalescent models are linked to several biological properties potentially

present in a considerable number of species, these are not the only MMCs used to model bio-

logical populations. For instance, in the modified Moran models presented above, one can let

theC be random, leading to another more general class of MMC that also belongs to the fam-

ily of Λ-coalescents [49], which is a generally good candidate for sweepstakes reproduction.

Other alternative models exist that more closely mimic recurrent selective sweeps [57] or

appear as variants of Psi- and Beta- coalescents, but for diploid reproduction [58–60].

We have chosen to evaluate two simple classes of coalescent processes which interpolate

between the two extreme tree shapes—a purely bifurcating Kingman tree (C = 0 or α = 2) and
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a star-shaped tree (C = 1 or α = 0). Alternative multiple merger models could potentially be

(mis)identified as Beta- or Psi-coalescents, as previously shown [61]. Our method should thus

still be able to detect multiple merger signals even if caused by processes that lead to another

MMC. Assessing further which MMC models are best fitting for biological populations could

be informative [26]. In this regard, our inference approach is based on computing E(Ti) from

Eq (2) via the method from [53], so it can easily be extended to incorporate most multiple

merger models (any Λ- or X-coalescent) and any demographic histories, by replacing the Mar-

kov transition rate matrix of the coalescent and the population size profile ν.

To assess the quality of our inference method, we used a simplified approach where

unlinked loci are assumed to be independent. This is not always true for MMC models (see

[62] and A.10 in S1 Appendix), especially for Psi-coalescents caused by strong sweepstake

reproduction events with C well above 0. Thus, the real error rates of our techniques could be

higher than anticipated by our simulation study. However, this potential increase in error rates

can be offset by the presence of datasets that are larger than those assumed in our simulation

study. Additionally, due to our reliance on the expected SFS entries—which are averages over

the tree space—our inference method (and also our goodness-of-fit assessment) should per-

form worse (given identical sample sizes and mutation counts) when used on species with

small genomes and low recombination rates. This tendency is clearly visible in the goodness-

of-fit tests of multiple bacterial data sets.

Non-extreme demography alone cannot generate U-shaped SFS

The Kingman coalescent for a population undergoing non-extreme demographic changes cor-

responds simply to a monotonic time rescaling of the standard Kingman coalescent. Non-

extreme changes mean that the population size changes occur at the same time scale than coa-

lescent time. For the MMC models employed, this is for instance satisfied if the population

size stays of the same order (N) throughout generations. If this is true, changes in population

size correspond to changes in waiting times, but not topology, of the tree. The expected SFS

for a large population and a large sample is a linear function of the expected waiting times ck
for the next coalescence of k lineages, with a simple analytical form:

E½xf � ¼ y
X1

k¼2

kðk � 1Þck � ð1 � f Þk� 2
; ð5Þ

where ξf is the number of variants at frequency f. Since the expected waiting times are positive

ck> 0, all coefficients in this expansion are positive. This means that the spectrum has a posi-

tive value, negative derivative, positive convexity (second derivative), etc., so it is a completely

monotonic function (‘no bumps’). A similar argument holds for finite frequencies i/n [63].

More details are provided in A.13 in S1 Appendix. As it is monotonically decreasing with i,
U-shaped spectra cannot occur as a result of any non-extreme demographic dynamics alone.

Note however that extreme changes in population size violate this and may lead to multiple

merger genealogies [39, 64].

Alternative processes leading to U-shaped SFS, further confounding factors

Our model directly incorporates MMC genealogies, exponential growth combined with allele

misorientation as sources of the U-shape of the SFS. However, other potential factors can also

influence the SFS and produce SFS with similar shapes. We further discuss here three particu-

larly notable factors, further sources of misorientation errors, population structure (e.g. gene

flow or admixture) and biased gene conversion.
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First, we tested whether other sources of misorientation errors can explain the strong sup-

port for MMC in the dataset. As sequencing errors in the in-group will likely create mostly

derived singletons, they cannot explain the U-shape. Furthermore sequencing errors in the

outgroup would result in the exact same patterns as natural mutations. Thus the amount of

misorientation error can include both recurrent mutations and sequencing errors in the out-

group. We have also developed an extended version of the orientation errors model (see A.4.1

in S1 Appendix) taking into account different rates for transitions and transversions [65].

Even though orientation errors are then modeled by two parameters, the general picture is the

same: the best supported model (Tables E and F in S1 Appendix) remains unchanged for 33

species and becomes another MMC for 6 species. However, 6 species have their statistical sup-

port swapped between an MMC and Kingman models: A. franciscana, C. cornix, F. albicollis,
M. cinxia, P. paniscus (Beta to Kingman for the 5) and K. pneumoniae (Kingman to Beta), leav-

ing 66% of the species with a better support for MMC than Kingman. We then tested whether

the phylogenetic proximity of the outgroup could allow for Incomplete Lineage Sorting (ILS)

that can cause ancestral polymorphisms to segregate in the sampled species (see A.5 in S1

Appendix). Results (Table H in S1 Appendix) show that ancestral polymorphisms (ILS with

mutation) is not a likely contributor of orientation errors for most species as they cannot rep-

resent an appreciable amount of the polymorphic sites. However, for the 10 species for which

the estimated P(ILS) × 0.1 is larger than 1%, the error rate is possibly underestimated. How-

ever, 3/10 show strong support for the Kingman coalescent. Therefore, which model would

have the best statistical support for these species if ILS was properly account for in a dedicated

non-trivial MMC likelihood framework remains unclear.

Second, to explore population structure, we performed a PCA analysis of all datasets, fol-

lowed by a k-means clustering (results in Table H in S1 Appendix). We acknowledge the possi-

bility that unsampled “ghost” demes can exist and could potentially result in U-shaped SFS

[10], and that some cases of metapopulation dynamics results in MMC trees [41, 42]. Assessing

the presence of ghost demes from genetic data is challenging. Importantly, among the 11 spe-

cies that display a clear pattern of genetic structure, only 6 have an observed U-shaped SFS

that is well fitted (grades A and B) by an MMC model. Furthermore, among the 14 species

with no clear structure, 10 have an observed U-shaped SFS well fitted by an MMC model. This

suggests that population structure is not the main cause of the U-shape of the observed SFS.

Additionally, many species with clear structure have low goodness-of-fit grades (C and D),

suggesting that none of the models we compare are a good fit to these datasets. We however

note that 8/11 species with a clear structure pattern are Bacteria. Indeed for the small genomes

with low recombination rate (in Bacteria recombination preserves long distance linkage), the

apparent structure does not necessarily equate with population structure, but may instead

arise from the limited number of genealogies. At the limit, a single Kingman tree would result

in a clear structure pattern due its long internal branches.

To check for the effect of biased gene conversion, we built alternative SFS only based on a

subset of unbiased mutations that are immune to biased gene conversion (details in A.9 in S1

Appendix, the unbiased SFS are added in supplementary material S1 and S2 Figs). Many of

these unbiased SFS were only slightly changed, and many kept their U-shape. However 6 spe-

cies (A. cunicularia, F. albicollis, E. garzetta, P. maior, O. edulis, P. troglodytes e., all but one

vertebrates) lost their U-shape. Two have a small sample size (E. garzetta) or a low multiple

merger component estimate (F. albicollis). For these species, it is nonetheless possible that the

U-shape is caused by biased gene conversion.

In a very conservative approach, among the 17 data sets showing robust and strong MMC

signals (category A, B in Table 2, with α� 1.8 orC� 0.04 and sample size�20), 6 cases may

arise due to structured genetic diversity (A. baumannii, D. melanogaster, H. pilori, O. edulis,
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P. aeruginosa and S. aureus) and 3 more lose their characteristic U-shape when biased gene

conversion is accounted for (A. cunicularia, P. maior, P. troglodytes; O. edulis being in com-

mon). Thus, 8 species have strong support for MMC models with population growth. We

believe that at least for these cases (and likely for more), neutral sweepstake reproduction, fre-

quent selection, or other factors that can produce MMC-like genealogies ought to be seriously

considered as underlying drivers of their genetic diversity.

Importantly and more generally, among the 30 species that display a good statistical fit

(with grades A and B), 27 point to MMC models whereas only 3 point to a Kingman coales-

cent. Noting that MMC models encompass the Kingman coalescent as a special case, our

results support the view that MMC models may often constitute better reference models.

MMC and biological properties

Although we only analyzed a small number of species sampled non-uniformly across the tree

of life, we often observed signatures of multiple merger-like events. Reassuringly, our analysis

supports multiple merger genealogies for Mycobacterium tuberculosis, which was recently pro-

posed in [25] and [26] (the non-optimal goodness-of-fit likely stems from a small and essen-

tially non-recombining genome). The strongest multiple merger effects estimated within the

class of Beta coalescents (α� 1.1) were found in two bacterial pathogens with low or interme-

diate recombination rates (M. tuberculosis and P. aeruginosa). There also does not seem to be

a meaningful correlation between MMC effects and overall genetic diversity (Fig A.23 and

Table I in S1 Appendix). We stress that links between MMC model parameters and biological

properties are not always obvious. For example, while reproduction sweepstakes can lead to

both Beta- and Psi-coalescents, it is not straightforward to translate the parameters α and C

into realistic offspring distributions. For instance the Psi-coalescent model hypothesizes that

an occasional individual contributes a fraction C of the next generation, though examples of

such a single-individual contribution are not biologically likely. Still, the coalescent approxi-

mations do fit well to data. Importantly, different reproduction models can result in the same

model on the coalescent time scale. The large families of the MMC models could result from

the rapid accumulation of coalescences over multiple generations instead of in a single one.

Conclusion

We analyzed genomic data for 45 species across the tree of life, and showed that many exhibit

a U-shaped SFS. By developing a statistical approach to distinguish the genetic signatures of

different potential sources of this U-shape: allele misorientation and MMC genealogies,

together with exponential population growth, our results show that while some U-shaped SFS

are well-described by only allele misorientation, the majority are better described by models

that include an MMC component (27 point to MMC and only 3 to Kingman coalescent, with

the rest inconclusive). However, distinguishing true MMC from MMC-like processes remains

challenging. For example, both biased gene conversion (evident for 6 species) and population

structure (clear for 11 species, many of which had no U-shapes) could also generate U-shaped

SFS, and appear to be plausible explanations for the observed data of certain species. MMC

models with simple growth nonetheless represent an excellent fit for at least 8 species. More

complex demographic scenario (with more parameters) can be included in the MMC frame-

work presented here and can be statistically tested when demographic inference is being per-

formed. However non-extreme variations of population sizes cannot explain the pervasive

observation of U-shaped SFS.

This study thus invites both closer inspection for the species at hand, but also suggests that

MMC genealogies may appear in a wider range of species than previously reported (e.g., a few
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marine species and multiple human pathogens). For such species, their biological properties

likely render MMC rather than Kingman models as the more fruitful analysis framework,

highlighting the importance of further developing both theory and statistical inference proce-

dures under these lesser-used models [66].
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