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Abstract

As both natural selection and population history can affect genome-wide patterns of variation, disentangling the contribu-
tions of each has remained as a major challenge in population genetics. We here discuss historical and recent progress to-
wards this goal—highlighting theoretical and computational challenges that remain to be addressed, as well as inherent
difficulties in dealing with model complexity and model violations—and offer thoughts on potentially fruitful next steps.

Key words: natural selection, demography, population history, statistical inference, background selection, genetic
hitchhiking.

Introduction
Accurately characterizing the demographic and selective
histories of natural populations remains as a key aim
of population genetics. Achieving this goal is not only vital
for addressing specific evolutionary questions in a
given species of interest (e.g. characterizing historical
migration patterns in human populations, or identifying

drug-resistance mutations in pathogens), but it is also es-
sential for resolving larger-scale questions central to our un-
derstanding of evolution itself (e.g. why genetic variation
varies relatively little across species with vastly different
census sizes, also known as Lewontin’s Paradox; see
Charlesworth and Jensen 2022). Various summary statis-
tics (terms in bold may be found in the Glossary) and infer-
ence approaches have been devised that seek to utilize the
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patterns of genetic variation observed from a sample of in-
dividuals to infer the type and extent of natural selection
(reviewed by Nielsen 2005), as well as historical temporal
and spatial changes in population size and structure (re-
viewed by Beichman et al. 2018). However, because selec-
tion and demography can lead to similar patterns of
variation, distinguishing these selective from neutral pro-
cesses is difficult, while at the same time fundamental
(Jensen et al. 2019). For this reason, multiple approaches
have recently been developed to co-estimate these neutral
and selective parameters, and we here discuss theoretical
and computational progress in using population genomic
data to jointly infer population history with the distribu-
tion of fitness effects (DFE).

Brief Overview of Two-Step Inference Approaches
and Caveats

One common solution has been to infer these two sets
of underlying parameters from different classes of sites —
inferring population history from sites that are most likely
to be neutral, and inferring selection from sites that are

most likely to be functional (fig. 1a). We refer to this as
the two-step approach. One of the first important break-
throughs in this regard was made by likelihood-based
methods (Williamson et al. 2005; Keightley and
Eyre-Walker 2007) that used the site frequency spectrum
(SFS) at putatively neutral synonymous/noncoding sites to
infer parameters of the underlying demographic history
(Table 1). Conditional on the inferred demography, the
SFS at putatively functional non-synonymous sites was
used to estimate a DFE.

Such approaches yielded the first computational esti-
mates of the DFE of new mutations in a number of organ-
isms (Eyre-Walker and Keightley 2007), including both that
of beneficial and deleterious mutations (Boyko et al. 2008;
Eyre-Walker and Keightley 2009; Schneider et al. 2011),
while better accounting for the confounding effects of
demography. However, this first class of approaches suf-
fered from two main limitations. Firstly, the demographic
modeling involved a single panmictic population with a
relatively simple population history that was approximated
by a two-epoch model (Williamson et al. 2005; Keightley
and Eyre-Walker 2007; Kousathanas and Keightley 2013).

Glossary
• Approximate Bayesian Computation (ABC)—A class of computational methods based on Bayesian statistics for

performing simulation-based inference; often used when the likelihood function does not exist or is too computation-
ally expensive to evaluate.

• Background selection (BGS)—The effects of purifying selection on linked sites.
• Diffusion equations—Partial differential equations that describe the random movement of particles, and the pro-

cess of random walks and frequency changes of alleles in finite populations.
• Direct selection—Selection acting on variants that directly impact fitness.
• Distribution of fitness effects (DFE)—The distribution of selection coefficients of new mutations.
• Folded SFS—The distribution of frequencies of the minor allele (i.e. frequency≤ 0.5) in a population sample.
• Linkage disequilibrium (LD)—The non-random association of alleles at different genomic sites in a population.
• Poisson random field (PRF) approach—A mathematical framework using diffusion theory to model variant fre-

quencies in a population experiencing genetic drift and selection under the assumption of independence between
sites (i.e. no linkage or interference among mutations). Under these assumptions, the number of fixed and poly-
morphic sites in a population can be modeled by independent Poisson distributions.

• Selective sweep—The effects of positive selection on linked sites.
• Site frequency spectrum (SFS)—The distribution of allele frequencies in a population sample.
• Structured coalescent—A mathematical framework that models the genetic ancestry of samples in a population

that is subdivided or compartmentalized (i.e. samples are no longer exchangeable, unlike in a panmictic population).
• Summary statistic—A quantitative summary of the observed data.
• Supervisedmachine learning—A subcategory of machine learning in which an example or test data set (where the

input and output are known) is used to make predictions or inference.
• Transition matrix—A method of calculating the exact distribution of allele frequencies under a specified model.
• Two-epochmodel—Amodel of single-population size change from ancestral size (N1) to current size (N2) at time τ.
• Unfolded SFS—The distribution of frequencies of derived alleles in a population sample.
• Wright–Fisher population—A randomly mating panmictic population consisting of individuals with discrete gen-

erations, such that new individuals are created by the random sampling of gametes with replacement from the pre-
vious generation.
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Secondly, these methods assume that all sites are inde-
pendent and unlinked. However, substantial evidence has
now accumulated suggesting that the effects of selection
at linked sites may be widespread in genomes (reviewed
by Cutter and Payseur 2013; Charlesworth and Jensen
2021). Specifically, the ever-present action of purifying se-
lection results in background selection (BGS) effects on
linked sites (Charlesworth et al. 1993), and the episodic ac-
tion of positive selection may similarly result in selective
sweep effects (Maynard Smith and Haigh 1974).

While recent studies have encouragingly found that the
inference of selection on deleterious mutations might re-
main unbiased without accounting for linkage effects
(Kim et al. 2017; Huang et al. 2021), the inference of demo-
graphic history can be severely biased by both BGS and se-
lective sweeps (Messer and Petrov 2013; Nicolaisen and
Desai 2013; Ewing and Jensen 2016; Schrider et al. 2016;
Johri et al. 2021). Importantly for the two-step inference ap-
proaches, the demographic history of the population may
thus be strongly mis-inferred in the first step by fitting a

(a) (b)

FIG. 1.—General workflow of methods that infer parameters of demography and selection employing different approaches: (a) a two-step approach,
assuming independence between sites and (b) a simultaneous inference approach that accounts for linkage effects.
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model that unknowingly encompasses the effects of selec-
tion on linked sites, which could in some situations result
in the mis-inference of selection at directly selected sites
in the second-step given that the demographicmodel is em-
ployed as a null expectation (e.g. to estimate the proportion
and strength of beneficialmutations; Schneider et al. 2011).

In the two-step approach, the expected SFS is estimated
by either explicitly calculating the probability density of mu-
tations under a Wright–Fisher model using a transition
matrix, or by approximating the change in allele frequen-
cies using a diffusion equation. Namely, by approximat-
ing evolution with a continuous stochastic process, the
partial differential equation describing the change in allele
frequency forward in time (also known as the Kolmogorov
forward equation) can be used to obtain the probability of
observing a given SFS. As such, likelihoods can be obtained

by numerically solving this equation for a transient (time-
dependent) distribution of allele frequencies in a popula-
tion (Williamson et al. 2005) to calculate expected allele
frequencies with andwithout selection together with chan-
ging population size. Initially these methods could only ac-
commodate a simple demographic model in which the
population underwent a single instantaneous change in
population size. However, the diffusion equation approach,
assuming independently segregating sites [i.e. the Poisson
random field (PRF) approach], has been extended to infer
multiple changes in size for a single population, while also
inferring the DFE (Boyko et al. 2008). Advances in
likelihood-based approaches inwhich single-locus diffusion
equations for multiple populations were solved numerically
(Gutenkunst et al. 2009) allowed for further improvements
in the inference of complex demographic histories with the

Table 1
Details of current methods for inferring parameters of demography and selection from population genomic data

Approach Two-step approach using

the W–F matrix

Two-step approach using

diffusion approximations

SFS reweighting Single-step joint inference

using a Bayesian approach

Implementation/

software

DFE-α dadi and fitdadi polyDFE; GRAPES; DoFE Approximate Bayesian

Computation (ABC)

Inference
framework

Maximum likelihood Maximum likelihood Maximum likelihood Approximate Bayesian

Data required Single-population SFS of
interdigitated neutral and selected

sites

Single- or
multi-population SFS of

interdigitated neutral and
selected sites

Single-population SFS of
interdigitated neutral and

selected sites; DoFE uses only
folded SFS; GRAPES requires

divergence as well

SFS-based and LD-based
statistics from functional

regions, and their flanking
intergenic regions

Key
differentiating

assumptions

1. Single panmictic population of
diploids

2. No linkage effects

1. Demographic model
type is specified a priori

2. No linkage effects

1. Demography assumed to affect
all sites equally

2. Accounts for SNP polarizing
errors

3. Accounts for mutation rate
variation

4. No linkage effects

1. Assumes a single size-
change demographic

history
2. Locus-specific mutation and

recombination rate
estimates are used

3. Accounts for linkage effects

Parameters

estimated

1. Fold change in population size

and time of change
2. DFE shape and rate parameters of

a gamma dist. (or a set of spikes);
rate and mean strength of

beneficial mutations; fraction of
adaptive substitutions

1. Relative change in po-

pulation sizes, times of
size change, and

migration rates
between populations

2. DFE of deleterious mu-
tations following a

number of parametric
distributions

1. DFE following a number of

parametric distributions;
fraction of adaptive

substitutions; no
demographic parameters

obtained

1. Absolute ancestral and

current population sizes
and the time of change

2. DFE of deleterious mutati-
ons following any

assumed distribution
(discrete or continuous)

Computational
time/complexity

Can be used for coding sites
belonging to a feworall genes in the

genome

Can be used for a large
number of individuals

(e.g. 1000) and sites

Can be used for coding sites
belonging to a few or all genes in

the genome

Can be used for hundreds of
functional elements; whole

genome inference would be
computationally intensive

Relevant citations Keightley and Eyre-Walker 2007;

Schneider et al. 2011

Williamson et al. 2005;

Boyko et al. 2008; Kim
et al. 2017; Huang et al.

2021

Eyre-Walker et al. 2006; Galtier

2016; Tataru et al. 2017; Tataru
and Bataillon 2019

Johri et al. 2020; Johri et al.

2021
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DFE (Ma et al. 2013; Kim et al. 2017). Yet, solving the par-
tial differential equations for single loci still assumes inde-
pendence between sites, thereby neglecting the effects of
linkage with selected sites (Table 1). The extent to which
this is problematic will differ by organism, where genomes
with high functional densities, stronger selection effects,
and/or little or no recombination would be expected to ex-
acerbate mis-inference. More generally however, two-step/
two-class approaches require the existence of both a well-
annotated genome such that functional regions are known,
as well as a genome that is sufficiently recombining and
functionally sparse such that neutral, unlinked sites exist
at all. While these conditions may be met for certain large
vertebrate and land-plant genomes, they currently exclude
the great majority of species.

Brief Overview of Simultaneous Inference Approaches
and Caveats

This variety of complicating issues has brought attention to
the important need of developing inference approaches
capable of jointly estimating parameters of selection and
demography—that is, approaches that incorporate the dir-
ect and linked effects of selection that are applicable to
genomic sites that may be shaped by both neutral and se-
lective processes, and that perform simultaneous rather
than step-wise inference. To account for the effects of se-
lection on linked sites within an analytical framework, the
diffusion equations approximating the two-locus Wright–
Fisher model require a solution—a non-trivial challenge.
Helpfully, Cvijovic et al. (2018) obtained analytical expres-
sions for the SFS at linked neutral sites experiencing BGS
for a non-recombining locus under demographic equilib-
rium. Furthermore, while general analytical solutions for
even single-locus, single-population scenarios have not
yet been obtained, Friedlander and Steinrücken (2022) re-
cently described a numerical framework in which a system
of ordinary differential equations can be solved to obtain
the expected SFS and linkage disequilibrium (LD) around
a selected region, for aWright–Fisher two-locusmodel with
mutation, recombination, selection, and changing popula-
tion size. The development of future likelihood methods le-
veraging such a numerical approach may be utilized to
jointly infer parameters of complex demographic histories
with selection. Furthermore, while most advances in mod-
eling the joint effects of selection and demography have
been made using diffusion theory, the structured coales-
cent has also been employed and appears equally promis-
ing for small sample sizes (Zeng and Charlesworth 2011;
Zeng 2013); however, the derivations of specific SFS statis-
tics and likelihoods remain in need of further investigation.

On the computational front, recent progress has also been
made using approximate Bayesian computation (ABC)
approaches combined with forward simulations (fig. 1b).

Johri et al. (2020) constructed an ABC method to jointly esti-
mate parameters of arbitrary size changewith theDFE of new
deleterious mutations, while Sheehan and Song (2016) in-
ferred the parameters of a population bottleneck jointly to-
gether with the comparatively rare processes of positive and
balancing selection. Such simulation-based approaches ap-
pearpromising, particularly as theeffects of selectionat linked
sites can be directly modeled asmodulated by the number of
directly selected sites and locus-specific recombination rates
of the region(s) under investigation (Johri et al. 2020). In add-
ition, this class of methods can utilize multiple aspects of the
datawhen performing estimation (e.g. the SFS, LD, and diver-
gence) and avoids the assumption of neutrality on any class of
sites (Table 1). However, forward simulations involving entire
chromosomes remain extremely computationally expensive,
particularly considering the large demographic and selective
parameter spaces thatmust be investigated, anddemograph-
icmodeling to datewith direct and linked selection effects re-
mains limited to relatively simple single-population
size-change histories.

Alternative Methods to Infer Only the DFE and Caveats

An alternative approach to estimating the DFE under com-
plex population histories is to assume that demography af-
fects neutral and selected polymorphisms to the same
extent, obviating the need to estimate demographic para-
meters (Eyre-Walker et al. 2006; Galtier 2016; Tataru
et al. 2017; Tataru and Bataillon 2019). This is achieved
by either reweighting the SFS (Eyre-Walker et al. 2006;
James et al. 2016; Galtier 2016; Tataru et al. 2017;
Tataru and Bataillon 2019) or by simply fitting DFE models
to the ratio of the SFS at selected and neutral sites (James
et al. 2016). Although, demography indeed affects neutral
and selected polymorphisms to different extents (Otto and
Whitlock 1997), assuming that it does not seems to yield
reasonable estimates of the DFE under simple demographic
models, even when linkage is strong (Eyre-Walker et al.
2006; Eyre-Walker and Keightley 2009). However, these
methods are biased when there is a dramatic increase in
population size (Eyre-Walker et al. 2006) and are not useful
if the population history is itself also of interest.

With this brief overview of existing methodologies, we
next discuss three of the most challenging issues that re-
main to be solved, together with our views on possibly fruit-
ful paths forward.

Comparing the Relative Merits of
Semi-Analytical and Forward
Simulation-Based Approaches
Computational and statistical challenges remain for both
inference approaches based on diffusion approximations
and on forward simulations. Under a diffusion
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approximation, Friedlander and Steinrücken (2022) and
Ragsdale (2021) demonstrated efficient numerical ap-
proaches for calculating the statistics of pairs of sites as
noted above. Building the corresponding statistical infer-
ence framework, however, remains challenging. With no
selection, inferring demography using a composite likeli-
hood based on pairs of sites has been demonstrated
(Ragsdale and Gutenkunst 2017). But modeling selection
will require incorporating distinct types of pairs with differ-
ent DFEs on each element of the pair, which may prove
computationally prohibitive. More fundamentally, pairwise
approaches cannot directly model the effects of multiple
linked selected loci, which is most likely important, particu-
larly in genomes with dense functional sites as discussed
above. Hence, while analytical/numerical solutions are the
ultimate goal, and when achieved are also the most effi-
cient, such solutions remain elusive for many complex
and biologically realistic scenarios of interest. For suchmod-
els, simulation-based approaches remain necessary.

That being said, forward simulations are computationally
intensivewhenpopulation sizes are large.Guidedby theory,
parameter rescaling can be used to mimic the effects of se-
lection in smaller simulated populations (Hoggart et al.
2007). But rescaling may introduce biases in certain scen-
arios (Uricchio and Hernandez 2014; Adrion et al. 2020),
and the tradeoffs are not well understood. In addition, effi-
ciently using the simulated data for inference is also a chal-
lenge. For instance, in ABC approaches, many simulation
results are discarded because they do not match the ob-
served data sufficiently. Supervisedmachine learning al-
gorithms can potentially capture the information contained
within a set of simulations under diverse parameter values
more efficiently (reviewed in Schrider and Kern 2018).
Such algorithms can be trained on summary statistics like
ABC (Beaumont et al. 2002), but neural networks can also
be trained directly on representations of sequence align-
ments (Flagel et al. 2019). They may thus capture more in-
formation, but it is unclear how to represent data with
multiple classes of sites (such as synonymous and non-
synonymous), and the resulting models may be difficult to
interpret. Furthermore, machine learning classification ap-
proaches which neglect underlying uncertainty as well as
constantly operating evolutionary processes (e.g. purifying
selection) can be prone to serious mis-inference (e.g. as
shownbyHarris et al. 2018). However, adversarialmethods,
in which an established population genetic simulator is
paired with a neural network trained to distinguish simu-
lated from real data may offer easier interpretation (Wang
et al. 2021). Moreover, recent advances in the inference
of the full ancestral recombination graph from sampled se-
quences might help capture more information from se-
quence data (Kelleher et al. 2019; Speidel et al. 2019),
potentially improving the ability to disentangle signatures
of demography and selection.

Dealing with Model Complexity and
Uncertainty
The joint inference of selection and demography comes
with the statistical challenge of both accurately inferring
multiple parameters within the context of parameter-rich
models, and more generally of identifying potentially ex-
planatory models in the first place (i.e. which models are
worth investigating/fitting for comparison). Hence, the
two-step approach of first inferring demography from pu-
tatively neutral sites, followed by inferring selection from
selected sites (fig. 1a), has certain advantages in this regard.
Firstly, conditioning on the demographic model when infer-
ring the DFE reduces the total number of parameters to be
inferred simultaneously, simplifying the inference problem.
Secondly, the use of interdigitated putatively neutral sites
for this purpose may provide a control for the effects of se-
lection on linked sites, at least to some extent. For example,
while the PRF approach assumes independence among
sites (Sawyer and Hartl 1992)—neglecting interference
among variants—the deleterious variants and interdigi-
tated putatively neutral variants are on the same underlying
genealogy. Simulation studies have shown that correct DFE
inference can be obtained when these BGS effects are ne-
glected, even when the true demography is more complex
than the model used for inference (as will always be the
case in natural populations). Specifically, Kim et al. (2017)
simulated data with cryptic population structure and lim-
ited recombination, where the true demography was that
of a population that expanded and split into eight sub-
populations. Individuals from the eight sub-populations
were then pooled together as a single population for infer-
ence, mimicking what might be done in practice. By fitting
a population size changemodel to the synonymous SFS and
using that incorrect demographic model for inference of
the DFE, they found that unbiased estimates of the DFE
parameters were still obtained. However, if the demo-
graphic history is itself of interest, this inference may be
strongly biased by these neglected BGS effects, as noted
previously (Ewing and Jensen 2016; Johri et al. 2021).

There are several additional limitations of note, which
suggest opportunities for future work. First, the choice of
the putatively neutral class is not always obvious.
Synonymous mutations could themselves be under selec-
tion (Hershberg and Petrov 2008; Plotkin and Kudla
2011; Ragsdale et al. 2018; Machado et al. 2020), and un-
der this scenario mis-inference may be severe (Johri et al.
2021), although the topic remains in need of additional in-
vestigation. When trying to infer the DFE for noncoding
mutations in putatively functional regions of the genome,
the choice of neutral sites is even more elusive. This high-
lights the value of joint-inference approaches which do
not require an a priori definition of neutral sites (Johri
et al. 2020)—however, these approaches need to be
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extended to more complex demographic scenarios as dis-
cussed above, insofar as they are currently restricted to sin-
gle size-change models and assume panmictic populations
(Table 1). It remains to be explored how population struc-
ture with migration may bias DFE inference and what as-
sumptions might be appropriate to model the differences
in DFEs between populations (Huang et al. 2021).
Moreover, whenmodeling the effects of selection genome-
wide, current studies generally group the fitness effects of
newmutations at non-synonymous, synonymous and regu-
latory sites into a single distribution, which may not be a
reasonable assumption. Existing models of selection based
on a DFE also assume that selection coefficients are con-
stant over time; and while limited inference approaches
have been explored for characterizing temporally changing
selective effects, they have been on the scale of individual
mutations rather than full DFEs and rely on time-sampled
data (e.g. Shim et al. 2016).

Finally, the impact of even subtle mis-specifications of
the underlying models are likely to be exacerbated as the
size of the datasets used for inference increase. For ex-
ample, not accurately modeling subtle recent population
structure and human population growth is likely to matter
more when considering samples in the thousands as op-
posed to a smaller sample size (e.g. < 500); neglecting to
model multiple mutations at the same site additionally be-
comes more problematic with increasing sample size
(Harpak et al. 2016). However, larger samplesmay also pro-
vide an opportunity to better address linkage effects.
Indeed, the recent TopMed (Trans-Omics for Precision
Medicine) study found that as the sample sizes grew to
>3000 individuals, estimates of recent population growth
from synonymous variants approached estimates for puta-
tively neutral (i.e. identified after removing sites that were
phylogenetically conserved, potentially linked to regions ex-
periencing selective sweeps, and so on; Torres et al. 2018)
and unlinked variants (Taliun et al. 2021). For populations
for which this is feasible, future sampling studies may allow
for more accurate inference of population history from syn-
onymous sites, which in turn might allow for more accurate
inference of parameters of the DFE.

The Importance of Fine-Scale Mutation
and Recombination Rate Heterogeneity
The above discussed methods attempting to jointly infer
the DFE with demography typically assume that the muta-
tion and recombination rates are uniform across the gen-
omic region being considered. However, in reality both
vary in ways that are potentially challenging. The mutation
rate is known to vary at a variety of spatial scales from the
single nucleotide to the chromosomal level (reviewed in
Hodgkinson and Eyre-Walker 2011; Pfeifer 2020). For ex-
ample, it has long been known that the mutation rate of

a site depends on the adjacent nucleotides (Gojobori
et al. 1982); this is best exemplified by the dinucleotide
CG in mammals, which has an elevated mutation rate be-
cause of the epigenetic methylation of the cytosine, which
tends to spontaneously deaminate to thymine (Coulondre
et al. 1978). Variation in the mutation rate between sites
is challenging for methods that employ two or more cat-
egories of sites to make inferences about the DFE and dem-
ography, because the mutation rate is expected to vary
systematically between categories of sites for two reasons.
First, natural selection tends to preserve hypermutable sites
that otherwise dissipate if the mutation is neutral, and this
leads to higher mutation rates in selected regions (Schmidt
et al. 2008; Michaelson et al. 2012). Second, the mutation
rate appears to depend on rates of recombination (Pratto
et al. 2014; Arbeithuber et al. 2015) and epigenetic marks
(Francioli et al. 2015; Smith et al. 2018) that may differ sys-
tematically between selected and neutral sites that are spa-
tially separated. This may cause problems for methods that
employ the increase in diversity away from a selected
region.

Variation in the mutation rate can also potentially have
consequences for methods that use the unfolded SFS, be-
cause identifying derived alleles depends on estimating
their ancestral state. There are three approaches to this
problem; in the first, methods have been developed to es-
timate the ancestral state (Hernandez et al. 2007) or the
SFS (Williamson et al. 2007; Keightley et al. 2016;
Keightley and Jackson 2018) taking into account some
form of variation in the mutation rate. However, these
methods still do not control for all the influences of adja-
cent nucleotides on the underlying rate (Hwang and
Green 2004; Aggarwala and Voight 2016), or variation
that is independent of context (Hodgkinson et al. 2009;
Johnson and Hellmann 2011; Harpak et al. 2016).
Uncorrected mutation rate variation may lead to the mis-
inference of the SFS, and particularly impact the inference
of high frequency polymorphisms. This pattern of mis-
inference is likely to affect selected sites more than neutral
sites, because highly mutable nucleotides are more likely to
be preserved at the former. An alternative to the problem of
mis-inference is to estimate the rate as a part of the meth-
od; this is potentially feasible given that the signature of
mutation rate variation is different than that of selection
when population sizes are stationary (Glémin et al. 2015).
However, it remains possible that some of this signal may
be mis-inferred as a part of the demographic model.
Finally, if the demographic history is not of interest, it has
been argued that the weighted SFS method will control
much of this variation, provided that it is similar for neutral
and selected sites (Galtier 2016).

The recombination rate is also known to vary between
sites. As with the mutation rate, variation seems to occur
over a variety of scales (reviewed in Peñalba and Wolf
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2020). Most pertinent to the inference of demography and
the DFE is fine-scale variation (see Dapper and Payseur
2017, 2018). In many organisms, recombination is concen-
trated in hotspots, whilst in others it appears to be more
uniformly distributed (reviewed in Stapley et al. 2017).
Recombination frequency also seems to depend on epigen-
etic marks in the genome (reviewed in Brachet et al. 2012),
and these are likely to differ between genomic locations; as
a consequence, regions subject to selection, such as a
protein-coding sequence, may have a different recombin-
ation rate than those outside the sequence. The uneven dis-
tribution of recombination events will have two
consequences. First, for all methods inferring parameters
of selection, unaccounted for recombination rate variation
will downwardly bias error estimates, and second, for
methods that consider diversity as a function of the dis-
tance from a selected region, it will lead to biased param-
eter estimates, unless correctly modeled. Importantly
however, the impact of rate heterogeneity and uncertainty
on downstream inference can be quantified in any given
empirical application using simulated data, though future
method development will ultimately need to tackle the in-
corporation of realistic mutation and recombination rate
maps directly into inference procedures.

Concluding Thoughts
While significant progress has beenmade in developing stat-
istical approaches to jointly infer demography and selection
—both in the development of analytical frameworks, as
well as simulation-based inference procedures—much
work still remains to extend existing approaches to account
for various simultaneously acting evolutionary processes at a
genome-wide level and to include more complex/realistic
evolutionary scenarios. For species with gene-sparse and suf-
ficiently recombining genomes, where unlinked neutral sites
can be accurately identified, current two-step approaches
can be employed confidently with careful analysis and an
evaluation of possible model violations. However, for organ-
isms with complex life history traits (e.g. non-standard mat-
ing systems), limited recombination, and/or compact
genomes, the utilization of simultaneous inference methods
will be essential (Johri et al. 2022b). Indeed, disentangling
the effects of selection and demography ismore complicated
in organisms characterized by genomes with high functional
densities, stronger selective effects, and/or little or no recom-
bination, such that genetic hitchhiking effects may be perva-
sive genome-wide (i.e. as with the effects of population
history). Complicating the matter, non-model organisms
with poorly annotated genomes and uncharacterized re-
combination rate maps add another layer of uncertainty in
even quantifying these potential effects.

Yet, the statistical identifiability of models, and para-
meters within those models, remains a fundamentally

important consideration in all scenarios. As the model
space to be explored is so much larger than the limited in-
formation in sequence variation within individuals, it is in-
herently difficult to distinguish between competing
models. While utilizing the variety of newly developed ap-
proaches here discussed may help distinguishing between
certain models, comprehensively evaluating competing
models and following a probabilistic approach of assigning
posterior probabilities to each should prove useful (Gelman
and Shalizi 2013). Importantly, instead of exploring the par-
ameter space by selecting models based on the preference
of the authors’ narrative, a more principled alternative in-
volves beginning with a baseline model and comparing
that against a series of nested alternative models.
Specifically, by constructing a baseline evolutionary model
for each species and population under study, one may
quantify the extent to which hypothesized evolutionary
processes (e.g. selective sweeps) may be distinguished
and quantified on top of commonly acting processes (e.g.
purifying and background selection) (see Johri et al.
2022a, 2022b). Helpfully, with the advent of highly effi-
cient forward simulation software (Thornton 2014; Haller
and Messer 2019), this type of model evaluation and com-
parison is now feasible. By quantifying the variety of scen-
arios that are capable of explaining the observed data,
one creates a useful template for future experimentation,
sampling, and statistical method development that may
better differentiate and dissect potential evolutionary
explanations.
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