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Abstract

Current procedures for inferring population history generally assume complete neutrality—that is, they neglect both
direct selection and the effects of selection on linked sites. We here examine how the presence of direct purifying selection
and background selection may bias demographic inference by evaluating two commonly-used methods (MSMC and
fastsimcoal2), specifically studying how the underlying shape of the distribution of fitness effects and the fraction of
directly selected sites interact with demographic parameter estimation. The results show that, even after masking
functional genomic regions, background selection may cause the mis-inference of population growth under models of
both constant population size and decline. This effect is amplified as the strength of purifying selection and the density of
directly selected sites increases, as indicated by the distortion of the site frequency spectrum and levels of nucleotide
diversity at linked neutral sites. We also show how simulated changes in background selection effects caused by pop-
ulation size changes can be predicted analytically. We propose a potential method for correcting for the mis-inference of
population growth caused by selection. By treating the distribution of fitness effect as a nuisance parameter and
averaging across all potential realizations, we demonstrate that even directly selected sites can be used to infer demo-
graphic histories with reasonable accuracy.

Key words: demographic inference, background selection, distribution of fitness effects, MSMC, fastsimcoal2, approx-
imate Bayesian computation (ABC).

Introduction
The characterization of past population size change is a cen-
tral goal of population genomic analysis, with applications
ranging from anthropological to agricultural to clinical (see
review by Beichman et al. 2018). Furthermore, use of an ap-
propriate demographic model provides a necessary null
model for assessing the impact of selection across the genome
(e.g., Teshima et al. 2006; Thornton and Jensen 2007; Jensen
et al. 2019). Multiple strategies have been proposed for per-
forming demographic inference, utilizing expectations related
to levels of variation, the site frequency spectrum, linkage
disequilibrium, and within- and between-population diver-
gence (e.g., Gutenkunst et al. 2009; Li and Durbin 2011;
Lukic and Hey 2012; Excoffier et al. 2013; Harris and Nielsen
2013; Bhaskar et al. 2015; Boitard et al. 2016; Sheehan and
Song 2016; Ragsdale and Gutenkunst 2017; Kelleher et al.
2019; Speidel et al. 2019; Steinrücken et al. 2019).

Although many methods perform well when evaluated
under the standard assumption of neutrality, it is difficult in
practice to assure that the nucleotide sites used in empirical

analyses experience neither direct selection nor the effects of
selection at linked sites. For example, inference is often per-
formed using intergenic, 4-fold degenerate, or intronic sites.
Although there is evidence for weak direct selection on all of
these categories in multiple organisms (e.g., Andolfatto 2005;
Chamary and Hurst 2005; Haddrill et al. 2005; Lynch 2007;
Zeng and Charlesworth 2010; Choi and Aquadro 2016;
Jackson et al. 2017), it is also clear that such sites near or in
coding regions will also experience background selection
(BGS; Charlesworth et al. 1993; Charlesworth 2013), and
may periodically be affected by selective sweeps as well (Messer
and Petrov 2013; Schrider et al. 2016). These effects are known to
affect the local underlying effective population size, and alter both
the levels and patterns of variation and linkage disequilibrium
(Charlesworth et al. 1993; Kaiser and Charlesworth 2009; O’Fallon
et al. 2010; Charlesworth 2013; Nicolaisen and Desai 2013; Ewing
and Jensen 2016; Johri et al. 2020).

However, commonly-used approaches for performing
demographic inference that assume complete neutrality, in-
cluding fastsimcoal2 (Excoffier et al. 2013) and MSMC/PSMC
(Li and Durbin 2011; Schiffels and Durbin 2014), have yet to
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be thoroughly evaluated in the light of this assumption, which
is likely to be violated in practice. There are, however, some
exceptions, as well as subsequent suggestions on how best to
choose the least-affected genomic data for analysis (Pouyet
et al. 2018). Rather than investigating existing software, Ewing
and Jensen (2016) implemented an approximate Bayesian
(ABC) approach quantifying the impact of BGS effects, dem-
onstrating that weak purifying selection can generate a skew
towards rare alleles that would be mis-interpreted as popu-
lation growth. Under certain scenarios, this resulted in a
many-fold mis-inference of population size change.
However, the effects of the density of directly selected sites
and the shape of the distribution of fitness effects (DFE),
which are probably of great importance, have yet to be fully
considered. Spanning the range of these potential parameter
values is important for understanding the implications for
empirical applications. For example, the proportion of the
genome experiencing direct purifying selection can vary
greatly between species, with estimates ranging from �3%
to 8% in humans, �12% in rice, 37% to 53% in Drosophila
melanogaster, and 47% to 68% in Saccharomyces cerevisiae
(Siepel et al. 2005; Liang et al. 2018). Furthermore, many
organisms have highly compact genomes, with �88% of
the Escherichia coli genome (Blattner et al. 1997), and effec-
tively all of many virus genomes, being functional (e.g.,>95%
of the SARS-CoV-2 genome, Wu et al. 2020).

Although such estimates allow us to approximate the
effects of BGS in some model organisms, in which recombi-
nation and mutation rates are well known, it is difficult to
predict these effects in the vast majority of study systems.
Moreover, although the genome-wide mean of B, a widely-
used measure of BGS effects that measures the level of var-
iability relative to neutral expectation, can range from �0.45
in D. melanogaster to �0.94 in humans (Charlesworth 2013;
but see Pouyet et al. 2018), existing demographic inference
approaches are usually applied across organisms without con-
sidering this important source of differences in levels of bias.
Here, we examine the effects of the DFE shape and functional
density on two common demographic inference
approaches—the multiple sequentially Markovian coalescent
(MSMC) and fastsimcoal2. Finally, we propose an extension
within the approximate Bayesian computation (ABC) frame-
work to address this issue, treating the DFE as a nuisance
parameter and demonstrating greatly improved demo-
graphic inference even when using directly selected sites
alone.

Results and Discussion

Effects of SNP Numbers, Density, and Genome Size on
Inference under Neutral Equilibrium
The accuracy and performance of demographic inference
were evaluated using two popular methods, MSMC
(Schiffels and Durbin 2014) and fastsimcoal2 (Excoffier et al.
2013). In order to assess performance, it was first necessary to
determine how much genomic information is required to
make accurate inference when the assumptions of neutrality
are met. Chromosomal segments of varying sizes (1 Mb,

10 Mb, 50 Mb, 200 Mb, and 1 Gb) were simulated under neu-
trality and demographic equilibrium (i.e., a constant popula-
tion size of 5,000 diploid individuals) with 100 independent
replicates each. For each replicate, this amounted to the
mean [SD] number of segregating sites for each diploid indi-
vidual being 1,944 [283], 9,996 [418], 40,046 [957], and
200,245 [1,887]; for 50 diploid individuals, these values were
10,354 [225], 51,863 [567], 207,118 [1,139], and 1,035,393
[2,476] for 10 Mb, 50 Mb, 200 Mb, and 1 Gb, respectively.
Use of MSMC resulted in incorrect inferences for all segments
smaller than 1 Gb (supplementary figs. 1 and 2,
Supplementary Material online). Specifically, very strong re-
cent growth was inferred instead of demographic equilibrium,
although ancestral population sizes were correctly estimated.
In addition, when two or four diploid genomes were used for
inference, MSMC again inferred a recent many-fold growth
for all segment sizes even when the true model was equilib-
rium, but performed well when using one diploid genome
with large segments (supplementary figs. 1 and 2,
Supplementary Material online). These results suggest cau-
tion when performing inference with MSMC on smaller
regions or genomes, specifically when the number of SNPs
is less than �200,000 per single diploid individual. Extra cau-
tion should be used when interpreting population size
changes inferred by MSMC when using more than one dip-
loid individual.

When using fastsimcoal2 to perform demographic infer-
ence, parameters were accurately estimated for all chromo-
somal segment sizes when the correct model (i.e.,
equilibrium) was specified (supplementary table 1,
Supplementary Material online). However, when model se-
lection was performed using a choice of four models (equi-
librium, instantaneous size change, exponential size change,
and instantaneous bottleneck), the correct model was chosen
more often (�30% of replicates) when the simulated chro-
mosome sizes were small (1 and 10 Mb), whereas an alterna-
tive model of either instantaneous size change or instant
bottleneck was increasingly preferred for larger regions (sup-
plementary tables 2 and 3, Supplementary Material online),
although the estimates of ancestral sizes were correct. This
finding suggests that the nonindependence of SNPs may re-
sult in model mis-identification. Indeed, since the model
choice procedure assumes that SNPs are independent, the
true number of independent SNPs is overestimated, which
results in an overestimation in the confidence of the model
choice with an increasing amount of data. However, it is in-
teresting to note that the parameter values underlying the
non-constant size preferred model were often pointing to-
wards a constant population size (see below). When model
selection was performed using sparser SNP densities (i.e., 1
SNP per 5, 50, or 100 kb), the correct model was recovered for
longer chromosomes up to 200 Mb (supplementary tables 2
and 3 and figs. 3 and 4, Supplementary Material online), al-
though model selection was slightly less accurate for smaller
chromosomes due to the decrease in the total amount of
data. As suspected, the biases introduced by the noninde-
pendence of SNPs were found to be concordant with the level
of linkage disequilibrium among SNPs used for the analysis
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(for ten SNP windows, in which SNPs were separated by 50 kb
[100 kb], mean r2¼ 0.027 (0.020), compared with the all-SNP
mean r2 of 0.118, and to the completely unlinked SNPs mean
r2 of 0.010; supplementary table 4, Supplementary Material
online). Additionally, AIC performed on partially linked SNPs
may impose an insufficient penalty on a larger number of
parameters, resulting in an undesirable preference for
parameter-rich models. We found that implementing a
more severe penalty improved inference considerably, even
for 1-Gb chromosome sizes (supplementary tables 5 and 6,
Supplementary Material online). This model selection perfor-
mance, the potential corrections related to increased penal-
ties, as well as the total number of SNPs and SNP thinning,
should be investigated on a case-by-case basis in empirical
applications, owing to the contribution of multiple underly-
ing parameters (e.g., chromosome length, recombination
rates, and SNP densities).

In the light of this performance assessment, all further
analyses were restricted to characterizing demographic infer-
ence on data that far exceeded 1 Gb and roughly matched the
structure and size of the human genome—for every diploid
individual, 22 chromosomes (autosomes) of size 150 Mb each
were simulated, which amounted to roughly 3 Gb of total
sequence. Ten independent replicates of each parameter
combination were performed throughout, and inference uti-
lized one and fifty diploid individuals for MSMC and fastsim-
coal2, respectively.

Effect of the Strength of Purifying Selection on
Demographic Inference
In order to test the accuracy of demographic inference in the
presence of BGS, all 22 chromosomes were simulated with
exons of size 350 bp each, with varying sizes of introns and
intergenic regions (see Materials and Methods) in order to
vary the fraction (5%, 10%, and 20%) of the genome under
selection. Because the strength of selection acting on delete-
rious mutations affects the distance over which the effects of
BGS extend, demographic inference was evaluated for various
DFEs (table 1). The DFE was modeled as a discrete distribution
with four fixed classes: 0 � 2Nancs < 1,
1 � 2Nancs < 10, 10 � 2Nancs < 100; and
100 � 2Nancs < 2Nanc, where Nanc is the ancestral effective
population size and s is the reduction in the fitness of the
homozygous mutant relative to wildtype. The fitness effects
of mutations were uniformly distributed within each bin, and
assumed to be semidominant, following a multiplicative fit-
ness model for multiple loci; the DFE shape was altered by
varying the proportion of mutations belonging to each class,
given by f0, f1, f2, and f3, respectively (see Materials and
Methods). Three DFEs highly skewed towards a particular
class were initially used to assess the impact of the strength
of selection on demographic inference (with the remaining
mutations equally distributed among the other three classes):
DFE1: a DFE in which 70% of mutations have weakly delete-
rious fitness effects (i.e., f1¼ 0.7); DFE2: a DFE in which 70% of
mutations have moderately deleterious fitness effects (i.e.,
f2¼ 0.7); and DFE3: a DFE in which 70% of mutations have
strongly deleterious fitness effects (i.e., f3¼ 0.7). A DFE with

equal proportions of all deleterious classes (i.e., DFE4:
f0 ¼ f1 ¼ f2 ¼ f3 ¼ 0:25) was also simulated to evaluate
the combined effect of different selective strengths. In addi-
tion, two bimodal DFEs consisting of only the neutral and the
strongly deleterious class of mutations were simulated to
characterize the role of strongly deleterious mutations
(DFE5: a DFE in which 50% of mutations have strongly dele-
terious effects (i.e., f3¼ 0.5) with the remaining being neutral;
and DFE6: a DFE in which 30% of mutations were strongly
deleterious (i.e., f3¼ 0.3) with the remaining being neutral).

In order to understand the effects of BGS, exonic sites were
masked, and only linked neutral intergenic and intronic sites
were used for demographic inference by both MSMC and
fastsimcoal2 (although comparisons are presented under cer-
tain models to analyses based on nonmasked data sets). The
three demographic models examined were: 1) demographic
equilibrium, 2) a 30-fold exponential growth, mimicking the
recent growth experienced by European human populations,
and 3) �6-fold instantaneous decline, mimicking the out-of-
Africa bottleneck in human populations (fig. 1a). Although
these models were parameterized using previous estimates of
human demographic history (supplementary table 7,
Supplementary Material online; Gutenkunst et al. 2009), these
basic demographic scenarios are applicable to many
organisms, although the magnitudes of population size
changes in this case may represent an extreme. Under neu-
trality, inference of parameters of all three simulated demo-
graphic models was highly accurate with both MSMC and
fastsimcoal2 (fig. 1a and supplementary table 8,
Supplementary Material online). However, when inferring
parameters using fastsimcoal2, the time of change in case of
the population decline model was consistently overestimated
when SNPs separated by 5 kb were used, whereas the time
was accurately inferred when using all SNPs (supplementary
table 8, Supplementary Material online). We therefore pre-
sent our results using all SNPs throughout (with comparisons
to one SNP per 5 kb and one SNP per 100 kb thinning, under
certain models), and recommend caution when implement-
ing thinning procedures.

Under demographic equilibrium, when 20% of the genome
experiences direct selection (with masking of the directly se-
lected sites), we found the true population size to be under-
estimated as expected, and recent population growth mis-
inferred (fig. 1 and supplementary fig. 5, Supplementary
Material online), even when only one SNP per 100 kb was
used and a higher AIC penalty was employed (supplementary
fig. 6, Supplementary Material online). Conversely, when the

Table 1. Proportion (fi) of Mutations in Each Class of the Discrete
Distribution of Fitness Effects (DFE) Simulated in This Study.

f0 f1 f2 f3

DFE1 0.1 0.7 0.1 0.1
DFE2 0.1 0.1 0.7 0.1
DFE3 0.1 0.1 0.1 0.7
DFE4 0.25 0.25 0.25 0.25
DFE5 0.5 0.0 0.0 0.5
DFE6 0.7 0.0 0.0 0.3
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true demographic model was characterized by a recent 30-
fold growth, demographic inference was accurate and per-
formed equally well for both MSMC and fastsimcoal2, with
the exception of a slight underestimation of the ancestral
population size for all DFE types. When the true model was
population decline, weakly deleterious mutations alone
did not affect inference drastically with either method,
and it was possible to recover the true model (i.e., decline
vs. growth) by fastsimcoal2 in all replicates (supplementary
fig. 7, Supplementary Material online). However, moder-
ately and strongly deleterious mutations resulted in an
underestimation of population size and the inference of
an instantaneous bottleneck and strong recent growth,

respectively, to the extent that population decline was
misinterpreted as a bottleneck/growth in all replicates
(supplementary figs. 5 and 7, Supplementary Material on-
line). Strong recent growth was inferred (in the presence of
moderately and strongly deleterious mutations) even
when SNPs separated by 100 kb were used, and an in-
creased penalty was employed against parameter-rich
models (supplementary fig. 6, Supplementary Material on-
line). We further tested the effect of BGS on demographic
inference when changes in population size were less severe,
namely, when population growth and decline were only 2-
fold, with qualitatively similar results (supplementary fig. 8,
Supplementary Material online).

FIG. 1. Inference of demography by MSMC (red lines; ten replicates) and fastsimcoal2 (blue lines; ten replicates) with and without BGS, under
demographic equilibrium (left column), 30-fold exponential growth (middle column), and�6-fold instantaneous decline (right column). The true
demographic models are depicted as black lines, with the x-axis origin representing the present day. (a) All genomic sites are strictly neutral. Exonic
sites experience purifying selection specified by (b) DFE1, (c) DFE2, and (d) DFE3 (see table 1). Exons represent 20% of the genome, and exonic sites
were masked (i.e., excluded) when performing demographic inference, quantifying the effects of BGS alone. The dashed lines represent indefinite
extensions of the ancestral population sizes. Detailed methods including command lines can be found at: https://github.com/paruljohri/demo-
graphic_inference_with_selection/blob/main/CommandLines/Figure1.txt.
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Finally, given the strong evidence that most organisms
have a bimodal DFE with a significant proportion of strongly
deleterious or lethal mutations (Sanju�an 2010; Jacquier et al.
2013; Kousathanas and Keightley 2013; Bank et al. 2014;
Charlesworth 2015; Galtier and Rousselle 2020), we investi-
gated the effect of this strongly deleterious class further. Thus,
for comparison with the above, we simulated a rather ex-
treme case in which 30% or 50% of exonic mutations were
strongly deleterious with fitness effects uniformly sampled
between 100� 2 Nancs< 2 Nanc , with the remaining muta-
tions being neutral (i.e., DFE5 and DFE6; see table 1). As with
the above results, both equilibrium and decline models were
falsely inferred as growth, with an order of magnitude under-
estimation of the true population size (fig. 2).

In sum, neglecting BGS frequently results in the inference
of population growth, almost regardless of the true underly-
ing demographic model.

Effects of Density and Inclusion/Exclusion of Directly
Selected Sites on Inference
Although we have shown that the presence of purifying se-
lection biases demographic inference, the extent of mis-
inference necessarily depends on the fraction of the genome
experiencing direct selection. We therefore compared models
in which 5%, 10%, or 20% of the genome was functional. For
this comparison, equal proportions of mutations in each DFE
bin were assumed corresponding to DFE4 (table 1). As before,
when the true model was growth, inference was unbiased,
with a slight underestimation of ancestral population size
when 20% of the genome experienced selection (fig. 3).
Population decline was inferred reasonably well if less than

10% of the genome experienced direct selection, but could be
mis-inferred as growth with greater functional density, as
shown in figure 3. Similarly, the extent to which population
size was underestimated at demographic equilibrium in-
creased with the fraction of the genome under selection.
Finally, it is noteworthy that many changes in population
size that were falsely inferred were greater than 2-fold in
size, suggesting the need for great caution when inferring
such changes from real data.

Importantly, the results presented do not significantly dif-
fer between inference performed while including directly se-
lected sites (i.e., no masking of functional regions;
supplementary fig. 9, Supplementary Material online) versus
inference performed using linked neutral sites (i.e., masking
functional regions; figs. 1–3). These results suggest that the
exclusion of exonic sites, which is often assumed to provide a
sufficiently neutral data set to enable accurate demographic
inference, is not necessarily a satisfactory solution unless gene
density is low. For example, demographic inference would
naturally be expected to be less biased by BGS for human-
like genomes with a relatively low functional density, and
more biased in genomes with higher functional density like
D. melanogaster.

Effect of BGS on Model Selection and Inferred Time of
Size Change Using fastsimcoal2
In order to quantify the effects of BGS on model selection,
four competing models were used for inference: equilibrium,
instantaneous size change (growth/decline), exponential size
change (growth/decline), and an instantaneous bottleneck.
Although demographic equilibrium was almost always

FIG. 2. Inference of demography by MSMC (red lines; ten replicates) and fastsimcoal2 (blue lines; ten replicates) in the presence of BGS generated by
strongly deleterious mutations. Directly selected sites comprised 20% of the genome and were masked when performing demographic inference.
Exons experience purifying selection specified by (a) DFE6 and (b) DFE5 (see table 1). The true demographic models are given as black lines, with
the x-axis origin representing the present day. The dashed lines represent indefinite extensions of the ancestral population sizes. Detailed methods
including command lines can be found at: https://github.com/paruljohri/demographic_inference_with_selection/blob/main/CommandLines/
Figure2.txt.
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inferred as an instantaneous size change (70–100% of repli-
cates), the fitted parameters of the size change model were
nearly indistinguishable from the correct model (fig. 1a). In
other words, the inferred size change was so inconsequential
so as to be nearly a constant-size model, suggesting that pa-
rameter estimation is usually more reliable than model selec-
tion. When there was a substantial proportion of highly
deleterious mutations (DFE3 and DFE5), exponential growth
was generally inferred. However, when there was a true size
change, fastsimcoal2 performed well in distinguishing be-
tween exponential versus instantaneous change models
even in the presence of BGS (supplementary figs. 5 and 6,
Supplementary Material online), provided that the magni-
tude of size change was large. When size changes were on
the order of 2-fold, exponential growth was consistently in-
ferred to be instantaneous.

With respect to model choice between growth and decline
in the presence of BGS (irrespective of instantaneous vs. ex-
ponential change), as the density of selected sites and
strength of purifying selection increased, both equilibrium
and decline models were more likely to be inferred as growth

and occasionally as instantaneous bottlenecks (supplemen-
tary fig. 7, Supplementary Material online), whereas true
growth models were generally chosen correctly. It should
be added that with such large chromosome sizes (3 Gb of
total sequence data), model selection was not observed to
vary between replicates using fastsimcoal2 for any given pa-
rameter combination. Thus, in the presence of BGS, high-
confidence calls of an incorrect underlying demographic
model appear likely.

With regard to the time of inferred size change, when the
true model was exponential growth, the model was always
correctly identified and inference of the time of change was
slightly underestimated in the presence of BGS (supplemen-
tary figs. 10 and 11, Supplementary Material online), consis-
tent with the fact that BGS will further skew the site
frequency spectrum towards rare alleles. When the true
model was decline, and the model was correctly identified
as such, the time of change was modestly overestimated
(supplementary figs. 12 and 13, Supplementary Material on-
line)—up to �2-fold for 6� growth and 2.5-fold for 2�
growth (when 20% of the genome was exonic).

FIG. 3. Inference of demography by MSMC (red lines; ten replicates) and fastsimcoal2 (blue lines; ten replicates) in the presence of BGS with varying
proportions of the genome under selection, for demographic equilibrium (left column), exponential growth (middle column), and instantaneous
decline (right column). Exonic sites were simulated with purifying selection with all fi values equal to 0.25 (DFE4; see table 1), and were masked
when performing inference. Directly selected sites comprise (a) 20% of the simulated genome, (b) 10% of the simulated genome, and (c) 5% of the
simulated genome. The true demographic models are given by the black lines, with the x-axis origin representing the present day. The dashed lines
represent indefinite extensions of the ancestral population sizes. Detailed methods including command lines can be found at: https://github.com/
paruljohri/demographic_inference_with_selection/blob/main/CommandLines/Figure3.txt.
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Effect of Heterogeneity in Recombination Rates,
Mutation Rates, and Repeat Masking
Variation in recombination and mutation rates, as well as the
masking of repeat regions, may also affect demographic in-
ference procedures. We evaluated this issue by simulating
heterogeneity in both mutation and recombination rates
(based on estimated human genome maps, as described in
Materials and Methods), and masking 10% of each simulated
segment drawing from the empirical distribution of repeat
lengths in the human genome (supplementary fig. 14,
Supplementary Material online). In general, inferences under
neutrality (supplementary figs. 15–17, Supplementary
Material online) as well as under BGS (supplementary figs.
18–20, Supplementary Material online) were not affected to a
great extent, suggesting such heterogeneity to have a com-
paratively minor role for the parameter space considered in
this study. Thus, serious mis-inference is more likely to be
caused by selection. These observations also suggest that
simulations performed with mean rates of recombination
and mutation, as in this study, are sufficient to evaluate biases
caused by BGS.

Effects of BGS on Diversity and the SFS under Various
Demographic Models: Theoretical Expectations versus
Simulation Results
To better understand how BGS can lead to different biases in
the inference of population history, we investigated the ex-
tent of BGS effects under all three demographic models, with
respect to both the expected diversity in the presence of BGS
relative to neutrality (B), as well as the shape of the SFS at
linked neutral sites. First, we found that B differed among
demographic scenarios, with much lower values in the case
of equilibrium and decline, concordant with stronger demo-
graphic mis-inference (fig. 4). After a population decline, B
was lower than that before the size change; whereas after
population expansion, B increased relative to that in the an-
cestral population, sometimes approaching 1 (fig. 4). This may
seem paradoxical, given that the magnitude of the scaled
selection coefficient (2Nes) decreases with decreasing Ne

(i.e., the efficacy of purifying selection decreases, and could
thus be expected to result in larger values of B under popu-
lation decline). Conversely, with increasing Ne, B should be
expected to reduce.

However, these expectations apply only once a population
has maintained a given Ne for sufficient time such that
mutation-drift-equilibrium has been approached. During
the initial stages of population size change, and shortly after-
wards, the dynamics of B tend to show a trend opposing
these long-term expectations (see also Figure 5 of Torres
et al. 2020). This is because differences in Ne caused by differ-
ent initial levels of BGS cause differences in the rates of re-
sponse to changes in population size—a small value of Ne

(corresponding to low B) results in a faster response com-
pared with a high value (Fay and Wu 1999; Hey and Harris
1999; Pool and Nielsen 2007, 2009; Campos et al. 2014; Torres
et al. 2020). In other words, diversity in a growing population
will increase more rapidly in regions experiencing stronger

BGS than in completely neutral regions, whereas diversity in
a declining population will decrease at a faster rate in regions
with BGS relative to those with neutrality, resulting in tem-
porarily higher and lower B, respectively. The relative diversity
values observed with different initial equilibrium B values after
a short period of population size change may thus be very
different from both the initial and final equilibrium values.
The overall effect is that there is an apparent increase in B
immediately following a population decline, and a decrease
immediately following an expansion. Analytical models de-
scribing these effects are presented in Appendix. These mod-
els used the simulated values of B at equilibrium before the
population size changes to predict the apparent B values at
the ends of the periods of size change (see Materials and
Methods and Appendix). It can be seen from figure 4 that
there is good agreement between these predictions and the
simulation results.

Because several demographic estimation methods are
based on fitting a demographic model to the SFS, it is also
of interest to determine whether BGS can skew the SFS to
different extents under different demographic models.
Although it is well known that BGS causes a skew of the
SFS towards rare variants under equilibrium models
(Charlesworth et al. 1995; Nicolaisen and Desai 2013), the
effect of BGS on the SFS with population size change has
not been much explored (but see Johri et al. 2020; Torres
et al. 2020). As shown in figure 5, with a population size
decline, the SFS of derived alleles is more skewed towards
rare variants when BGS is operating, especially when B is
initially small, since the effects of BGS work in opposition
to the effects of the population size reduction. This difference
in the left skew of the SFS with and without BGS is much less
noticeable in the case of population expansion, since here the
effects of BGS and the expansion act in a similar direction.

As with the estimates of the apparent B values discussed
above, analytical predictions of the expected SFS after an
instantaneous/exponential change in population size can be
made, using the values of B and the SFS at equilibrium in
the ancestral population before the population size change
using the formulae of Polanski and Kimmel (2003) and
Polanski et al. (2003) for the purely neutral case, as de-
scribed in Materials and Methods. Importantly, the use of
the B parameter does not in itself cause a skew in the SFS, it
merely affects overall diversity values. Figure 5 shows that
the overall shape of the SFS is predicted reasonably well by
the analytical results, although deviations are to be expected
for the rare allele classes, which are the most sensitive to
demographic change and selection. Overall, the results im-
ply that BGS is more likely to bias demographic inference
post-decline compared with post-expansion, consistent with
the performance of the methods described above. Although
it is notable that the SFS can be reasonably well predicted
by correcting for the rescaling effects of BGS if the effects of
BGS in the ancestral population are accurately known, the
exact allele frequency patterns observed will depend on the
timing of population size changes relative to the time of
sampling, as well as the value of B prior to the size change.
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The patterns described here thus represent only a small
subset of the possibilities.

A Potential Solution: Averaging across All Possible
DFEs
As shown above, demographic inference can be strongly af-
fected by BGS effects that have not been taken into account,
as well as by direct purifying selection. A potential solution is
thus to correct for these effects when performing inferences
of population history. A widely-used approach to estimating
direct selection effects, DFE-alpha, takes a stepwise approach
to inferring demography, by using a presumed neutral class

(synonymous sites); conditional on that demography, it then
estimates the parameters of the DFE (Keightley and Eyre-
Walker 2007; Eyre-Walker and Keightley 2009; Schneider
et al. 2011; Kousathanas and Keightley 2013). However, this
approach does not include the possibility of effects of selec-
tion at linked sites, which can result an overestimate of pop-
ulation growth, and while the DFE may not be mis-inferred
strongly (Kim et al. 2017), there is substantial mis-inference of
the DFE if synonymous sites experience direct selection (Johri
et al. 2020).

Building on this idea, Johri et al. (2020) recently proposed
an approach that includes both direct and background effects

FIG. 4. Nucleotide site diversity with BGS (B) relative to its purely neutral expectation (p0) for varying DFEs (specified in table 1) and demographic
scenarios. The results are shown for (a) demographic equilibrium, (b) population growth, and (c) population decline. All cases refer to size changes
forward in time, the ancestral B (i.e., B pre-change in population size) is shown in white bars, B post-change in population size is shown in solid gray
bars, and the analytical expectations for the post-size change B are shown as red bars. Exonic sites comprised �10% of the genome, roughly
mimicking the density of the human genome. Detailed methods including command lines can be found at: https://github.com/paruljohri/
demographic_inference_with_selection/blob/main/CommandLines/Figure4.txt.
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of purifying selection, and simultaneously infers the deleteri-
ous DFE and demography. By utilizing the decay of BGS
effects around functional regions, they demonstrated
high accuracy under the simple demographic models ex-
amined. Moreover, the method makes no assumptions
about the neutrality of synonymous sites, and can thus
be used to estimate selection acting on these sites, as well
as in noncoding functional elements. However, this com-
putationally intensive approach is specifically concerned
with jointly inferring the DFE and demographic

parameters. As such, if an unbiased characterization of
the population history is the sole aim, this procedure
may be needlessly involved. We thus here examine the
possibility of instead treating the DFE as an unknown
nuisance parameter, averaging across all possible DFE
shapes, in order to assess whether demographic inference
may be improved simply by correcting for these selection
effects without inferring their underlying parameter val-
ues. This approach utilizes functional (i.e., directly se-
lected) regions, a potential advantage in populations for

FIG. 5. The site frequency spectrum (SFS) of derived allele frequencies at neutral sites from ten diploid genomes under (a) demographic
equilibrium, (b) population growth, and (c) population decline, under the same DFEs as shown in figure 4. The x-axis indicates the number of
sampled alleles (out of 20) carrying the derived variant. Exonic sites comprised�10% of the genome, roughly mimicking the density of the human
genome. The red solid circles give the values predicted analytically with a purely neutral model, but correcting for BGS by using the B values of the
ancestral population (i.e., pre-change in population size) obtained from simulations, in order to quantify the effective population size. Detailed
methods including command lines can be found at: https://github.com/paruljohri/demographic_inference_with_selection/blob/main/
CommandLines/Figure5.txt.
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which only coding data may be available (e.g., exome-
capture data; see Jones and Good 2016), or more generally
in organisms with largely functional genomes.

In order to illustrate this approach, a functional genomic
element was simulated under demographic equilibrium, 2-
fold exponential population growth and 2-fold exponential
population decline with four different DFE shapes (as de-
scribed previously, and shown in fig. 6). A number of sum-
mary statistics were calculated (see Materials and Methods)
for the entire functional region. Inference was first performed
assuming strict neutrality, and inferring a one-epoch size
change (thus estimating the ancestral [Nanc] and current pop-
ulation sizes [Ncur]). As was found with the other inference
approaches examined, population sizes were underestimated
and a false inference of population growth was observed in
almost all cases when selective effects are ignored (fig. 6).

Next, the assumption of neutrality was relaxed, and muta-
tions were simulated with fitness effects characterized by a
discrete DFE, with the fitness classes used above (f0, f1, f2, f3).
Values for fi were drawn from a uniform prior between 0 and
1, such that

P
fi¼ 1. Note that no assumptions were made

about which sites in the genomic region were functionally
important, or regarding the presence/absence of a neutral
class. These directly selected sites were then used to infer
demographic parameters. We found that, by varying the
shape of the DFE, averaging across all realizations, and only
estimating parameters related to population history, highly
accurate inference of modern and ancestral population sizes
is possible (fig. 6). These results demonstrate that, even if the
true DFE of a population is unknown (as will always be the
case in reality), it is possible to infer demographic history with
reasonable accuracy by approximately correcting for these
selective effects.

This proposed method is most applicable to organisms in
which recombination rates are reasonably well known. If the
assumed recombination rate is 2-fold lower than the true
rate, the ABC approach infers growth by overestimating the
current population size; correspondingly, if the assumed re-
combination rate is higher than the true rate, the current
population size is underestimated (supplementary fig. 21,
Supplementary Material online). Interestingly, in both cases
the ancestral population sizes are correctly inferred, consis-
tent with previous results (Johri et al. 2020).

Conclusions
Although commonly used approaches for inferring demogra-
phy assume neutrality and independence among segregating
sites, these assumptions are likely to be violated in practice. In
addition, there is considerable evidence for wide-spread
effects of selection at linked sites in many commonly studied
organisms (Hernandez et al. 2011; Cutter and Payseur 2013;
Williamson et al. 2014; Elyashiv et al. 2016; Campos et al. 2017;
Booker and Keightley 2018; Pouyet et al. 2018; Ragsdale et al.
2018; Torres et al. 2018; Castellano et al. 2020). Accordingly,
we have explored how violations of the assumption of neu-
trality may affect demographic inference, particularly with
regard to the underlying strength of purifying selection and

the genomic density of directly selected sites. Generally speak-
ing, the neglect of these effects (i.e., background selection)
results in an inference of population growth, with the severity
of the growth model roughly scaling with selection strength
and density, as well as the inference of historical bottlenecks
with some frequency. Thus, when the true underlying model
is in fact growth, demographic mis-inference is not particu-
larly severe; when the true underlying model is constant size
or decline, the mis-inference can be extreme, with a many-
fold underestimation of population size.

However, given that BGS will lead to the false inference of
recent growth nearly regardless of the true history, it would be
difficult in practice to determine the accuracy of this model
without independent information on any given empirical ap-
plication. Moreover, as the two very different methods inves-
tigated here result in highly similar mis-inference, we propose
that this performance is unlikely to be a feature of these
specific approaches, but rather a quantification of the fact
that the underlying genealogies are distorted in the presence
of BGS. Thus, these problems are likely to be common to all
demographic inference based on polymorphism data.

It is important to note that BGS effects extend over geno-
mic distances in a way that is positively related to the strength
of purifying selection. For instance, strongly and moderately
deleterious mutations affect patterns of diversity at large ge-
nomic distances, whereas mildly deleterious mutations pri-
marily skew allele frequencies at adjacent sites. Thus, if
intergenic regions further away from exons are used to per-
form demographic inference, it is predominantly moderately
deleterious mutations that are likely to bias inferences; if these
are relatively rare, they may not cause significant problems. In
contrast, if synonymous sites are used to infer demographic
history, mildly deleterious mutations arising in the coding
sequences to which they belong may have significant effects.
As we have focused here on relatively sparsely-coding
genomes (with human-like gene densities) and used inter-
genic sites for inference, moderately deleterious mutations
resulted in more severe mis-inference. The effect of the decay
with distance of BGS due to mildly deleterious mutations
depends on multiple parameters. For instance, with an
exon of length 500 bp and Drosophila-like parameters (e.g.,
Ne¼ 106; recombination rate¼mutation rate¼ 10�8/site/
generation), B increases from 0.53 (at ten bases from the
end of the exon) to 0.94 at a distance of 1,000 bases. On
the other hand, with human-like parameters (Ne¼ 104; re-
combination rate¼mutation rate¼ 10�8/site/generation)
the corresponding change in B is only from 0.981 to 0.982
(supplementary table 9, Supplementary Material online).

Thus, mildly deleterious mutations have drastically differ-
ent effects, depending on the underlying population param-
eters. Although these results certainly suggest that
demographic inference ought to be less biased by BGS in
neutral regions very distant from functional elements (for
species with sufficiently high recombination/functionally
sparse genomes), it is noteworthy that purifying selection
on moderately and strongly deleterious mutations can have
long-range effects, and that the complex interaction of pop-
ulation history with purifying/background selection
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FIG. 6. Comparison of estimates of ancestral (Nanc) and current (Ncur) population sizes when assuming neutrality versus when varying the DFE
shape as a nuisance parameter, using an ABC framework. Inference is shown for demographic equilibrium (left column), 2-fold exponential growth
(middle column), and 2-fold population decline (right column), for five separate DFE shapes that define the extent of direct purifying selection
acting on the genomic segment for which demographic inference is performed: (a) neutrality, (b) DFE1, (c) DFE2, (d) DFE3, and (e) DFE4 (see
table 1). In each case, the horizontal lines give the true values (black for Nanc and gray for Ncur) and the box-plots give the estimated values. Black
and gray boxes represent estimates when assuming neutrality, whereas red boxes represent estimates when the DFE is treated as a nuisance
parameter. Detailed methods including command lines can be found at: https://github.com/paruljohri/demographic_inference_with_selection/
blob/main/CommandLines/Figure6.txt.
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necessitates a consideration of this topic in any given empir-
ical application.

Comparing the two inference methods investigated here,
it appears that fastsimcoal2 is less prone to inferring false
fluctuations in population size. However, both methods
falsely infer growth in the presence of BGS, with increasing
severity as the density of coding regions increases. The times
of population growth inferred by both methods appear to be
affected in unpredictable ways when the inferred model is
incorrect. When the general model is correctly identified, BGS
leads to inference of more recent growth, and more ancient
decline, than the reality. In addition, although variation in
mutation and recombination rates across the genome alone
did not strongly affect demographic inference, our evalua-
tions in the current study are restricted to a specific param-
eter space resembling those of human populations. The
effects of this variation on organisms with more extreme
rate fluctuations remain in need of investigation.

It is noteworthy that, even when all sites are strictly neutral
or only 5% of the genome experiences direct selection, de-
mographic equilibrium is mis-estimated by MSMC as a series
of size changes. The pattern of these erroneous size changes
lend a characteristic shape to the MSMC curve (i.e., ancient
decline and recent growth) which appears to resemble the
demographic history previously inferred for the Yoruban pop-
ulation (Schiffels and Durbin 2014), including the time at
which changes in population size occurred (supplementary
fig. 22). Previous work has demonstrated that the resulting
demographic model does not in fact fit the observed SFS in
the Yoruban population (Beichman et al. 2017; Lapierre et al.
2017). A similar shape has also been inferred in the vervet
subspecies (Warren et al. 2015; fig. 4), in passenger pigeons
(Hung et al. 2014; fig. 2), in elephants (Palkopoulou et al. 2018;
fig. 4), in Arabidopsis (Fulgione et al. 2018; fig. 3), and in
grapevines (Zhou et al. 2017; fig. 2A).

Although the inferred population size fluctuations under
simulated neutrality are only �1.2-fold, in most empirical
applications the fluctuations are of a somewhat larger mag-
nitude (�2-fold in pigeons, Arabidopsis, and grapevines).
Nonetheless, this performance of MSMC under neutral de-
mographic equilibrium is concerning, and adds to the other
previously published cautions concerning the interpretation
of MSMC results. For example, Mazet et al. (2016) and Chikhi
et al. (2018) demonstrated that, under constant population
size with hidden structure, MSMC may suggest false size
changes (see also Orozco-terWengel 2016). In addition,
MSMC has been reported to falsely infer growth prior to
instantaneous bottlenecks (Bunnefeld et al. 2015). In addition,
we observed that, if insufficient genomic data are used, or
more than one diploid genome is used to perform inference,
MSMC falsely infers recent growth of varying magnitudes, the
latter having been previously observed by Beichman et al.
(2017) and Adrion et al. (2020).

In sum, we find that the effects of purifying and back-
ground selection result in similar demographic mis-
inference across approaches, and that masking functional
sites does not yield accurate parameter estimates. In order
to side-step many of these difficulties, our proposed approach

of inferring demography by averaging selection effects across
all possible DFE shapes within an ABC framework appears to
be promising. Utilizing only functional regions, we found a
great improvement in accuracy, without making any assump-
tions regarding the true underlying shape of the DFE or the
neutrality of particular classes of sites. As such, this approach
represents a more computationally efficient avenue if only
demographic parameters are of interest, and ought to be
particularly useful in the great majority of organisms in which
independent neutral sites either do not exist, or are difficult to
identify and verify.

Materials and Methods

Simulations of Chromosomal Segments under Neutral
Equilibrium
When assessing the amount of genomic information required
for accurate demographic inference, chromosomal segments
of varying sizes (1 Mb, 10 Mb, 50 Mb, 200 Mb, and 1 Gb) were
simulated under neutral equilibrium. In all cases, the effective
population size (Ne) simulated was 5,000, and mutation and
recombination rates were both 1 � 10�8 per site per gen-
eration. Simulations were performed with both SLiM 3.1
(Haller and Messer 2019) for a 10Ne generation burn-in,
and with msprime 0.7.3 (Kelleher et al. 2016). In all cases
100 replicates were simulated, with the exception of 1-Gb
chromosomes simulated by SLiM, in which only ten replicates
were obtained.

Simulations of Human-Like Chromosomes (with and
without Selection)
Simulations were performed using SLiM 3.1 (Haller and
Messer 2019) for a burn-in of 10Nanc generations, with ten
replicates per evolutionary scenario. For every replicate, 22
chromosomes of 150 Mb each were simulated, totaling
�3 Gb of information per individual genome (similar to the
amount of information in a human genome). Within each
chromosome, three different types of regions were simulated,
representing noncoding intergenic, intronic, and exonic
regions. Based on the NCBI RefSeq human genome annota-
tion, downloaded from the UCSC genome browser for hg19
(http://genome.ucsc.edu/; Kent et al. 2002), mean values of
exon sizes and intron numbers per gene were calculated. To
represent mean values for the human genome (Lander et al.
2001), each gene comprised eight exons and seven introns,
and exon lengths were fixed at 350 bp. By varying the lengths
of the intergenic and intronic regions, three different genomic
configurations with varying densities of functional elements
were simulated and compared—with 5%, 10%, and 20% of
the genome being under direct selection—hereafter referred
to as genome5, genome10, and genome20, respectively.
Genome5 was comprised of introns of 3,000 bp and inter-
genic sequence of 31,000 bp, genome10 of introns of 1,500 bp
and intergenic sequence of 15,750 bp, whereas genome20 was
comprised of introns of 600 bp and intergenic sequence of
6,300 bp. The total chromosome sizes of these genomes were
approximately 150 Mb (150,018,599, 150,029,949, and
150,003,699 bp) with 2737, 5164, and 11278 genes per
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chromosome in genome5, genome10, and genome20, respec-
tively. In order to be conservative with respect to the perfor-
mance of existing demographic estimators, intronic and
intergenic regions were assumed to be neutral.

Recombination and mutation rates were assumed to be
equal to 1�10�8/site/generation. Neither crossover interfer-
ence nor gene conversion was modeled (see the Discussion in
Campos and Charlesworth 2019). Exonic regions in the
genomes experienced direct purifying selection given by a
discrete DFE comprised of four fixed classes (Johri et al.
2020), whose frequencies are denoted by fi: f0, with
0� 2 Nes < 1 (i.e., effectively neutral mutations), f1, with
1� 2 Nes< 10 (i.e., weakly deleterious mutations), f2, with
10� 2 Nes< 100 (i.e., moderately deleterious mutations),
and f3, with 100� 2 Nes< 2 Ne (i.e., strongly deleterious
mutations), where Ne is the effective population size and s
is the reduction in fitness of the mutant homozygote relative
to wild-type. Within each bin, the distribution of s was as-
sumed to be uniform. All mutations were assumed to be
semidominant. In all cases, the Ne corresponding to the
DFE refers to the ancestral effective population size.

Six different types of DFE were simulated, described by the
parameters provided in table 1. Three different demographic
models were tested for each of these DFEs (supplementary
table 7, Supplementary Material online): 1) demographic
equilibrium, 2) recent exponential 30-fold growth, resembling
that estimated for the human CEU population (Gutenkunst
et al. 2009), and 3)�6-fold instantaneous decline, resembling
the out-of-Africa bottleneck in humans (Gutenkunst et al.
2009). For simulations of demographic equilibrium and de-
cline, population sizes and time of change were scaled down
by a factor of 10 (with corresponding scaling of the recom-
bination rate, mutation rate, and selection coefficients),
whereas simulations of growth were not scaled.

Running MSMC
In order to quantify the effect of purifying selection on de-
mographic inference, we used entire chromosomes generated
by SLiM to generate input files for MSMC. For comparison,
and in order to quantify the effect of BGS alone on demo-
graphic inference, we masked the exonic regions to generate
input files. For all parameters, MSMC was performed on a
single diploid genome, as the results for this case were the
most accurate (supplementary figs. 1 and 2, Supplementary
Material online). Input files were made using the script
ms2multihetsep.py provided in the msmc-tools-Repository
downloaded from https://github.com/stschiff/msmc-tools.
MSMC1 and 2 were run as follows:

msmc_1.1.0_linux64bit -t 5 -r 1.0 -o output_

genomeID input_chr1.tab input_chr2.tab

. . . input_chr22.tab.

Population sizes obtained from MSMC were plotted up to
the maximum number of generations obtained from MSMC,
and the final value of the ancestral population size was ex-
tended indefinitely as a dashed line.

Running fastsimcoal2
Inference was performed by masking all exonic SNPs and
using all intronic and intergenic SNPs in order to obtain the
most accurate estimates. In order to minimize the effects of
linkage disequilibrium (LD), SNPs separated by 5 or 100 kb
were also used for inference in some cases to assess the im-
pact of violating the assumption of independence. When
choosing SNPs separated by a particular distance, the first
SNP from each chromosome was chosen and if the distance
to the next consecutive SNP was greater than or equal to
5 kb/100 kb, that SNP was included, otherwise the next down-
stream SNP was evaluated. Site frequency spectra (SFS) were
obtained for all sets of SNPs for all ten replicates of every
combination of demographic history and DFE. SNPs from
all 22 chromosomes were pooled together to calculate the
SFS. In the case of SNPs separated by 5 kb/100 kb, the “0” class
of the SFS was scaled down by the same extent as the de-
crease in the total number of SNPs. Fastsimcoal2 was used to
fit each SFS to four distinct models: (a) equilibrium, which
estimates only a single population size parameter (N); (b)
instantaneous size change (decline/growth), which fits three
parameters—ancestral population size (Nanc), current popu-
lation size (Ncur), and time of change (T); (c) exponential size
change (decline/growth), which also estimates three param-
eters—Nanc, Ncur , and T; and (d) an instantaneous bottleneck
model with three parameters—Nanc, intensity, and time of
bottleneck. The parameter search ranges for both ancestral
and current population sizes in all cases were specified to be
uniformly distributed between 100 and 500,000 individuals,
whereas the parameter range for time of change was specified
to be uniform between 100 and 10,000 generations in all
models. The intensity of the bottleneck was sampled from
a log-uniform distribution between 10�5 and 2. The following
command line was used to run fastsimcoal2:

fsc26 -t demographic_model.tpl -n 150000 -d -e dem-

ographic_model.est -M -L 50 -q.

Model selection was performed as recommended by
Excoffier et al. (2013). For each demographic model, the max-
imum of maximum likelihoods from all replicates was used to
calculate the Akaike Information Criterion (AIC)¼ 2� number
of parameters—2� ln(likelihood)¼ 2� number of parame-
ters—2� ln(10)� L10, where L10 is the logarithm (with respect
to base 10) of the best likelihood provided by fastsimcoal2. For
model choice comparison, we also implemented a stricter pen-
alty of 25� (see supplementary tables 5 and 6, Supplementary
Material online), in which case AIC¼ 25� number of param-
eters—2� ln(likelihood). The relative likelihoods (Akaike’s
weight of evidence) in favor of the ith model were then calcu-
lated as:

w ið Þ ¼ e�0:5DiP4
j¼1 e�0:5Dj

;

where Di ¼ AICi � AICmin. The model with the highest rel-
ative likelihood was selected as the best model, and the
parameters estimated using that model were used to plot
the final inferred demography.
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Simulations of Variable Recombination and Mutation
Rates, and Repeat Masking
In order to simulate variation in recombination and mutation
rates, all 22 chromosomes were simulated by mimicking chro-
mosome 6 (�171 Mb) of the human genome.
Recombination rates (HapMap) obtained from Yoruban pop-
ulations (McVean et al. 2004; Myers et al. 2005) were obtained
from the UCSC genome browser, whereas the mutation rate
map (https://molgenis26.target.rug.nl/downloads/gonl_pub-
lic/mutation_rate_map/release2/) was assumed to corre-
spond to estimates obtained from de novo mutations
(Francioli et al. 2015), as in Castellano et al. (2020).
Absolute values of mutation rates were normalized in order
to maintain the mean mutation rate across the genome at
� 1.0� 10�8 per site per generation. Recombination and
mutation rate estimates were taken from positions of
�10–160 Mb, with the recombination map starting at
10,010,063 bp and the mutation map starting at
10,010,001 bp. Regions with missing data for either of the
two estimates were simulated with rates corresponding to
the previous window, except for the case of centromeres in
which no recombination was assumed. In order to under-
stand the effect of excluding centromeric regions in empirical
studies, the 4Mb region corresponding to the centromere was
masked, corresponding to 48.5–52.5 Mb of the simulated
150Mb chromosomes. In order to evaluate the effect of mask-
ing repeat regions, random segments comprising 10% of each
chromosome were masked. The lengths of these segments
were drawn from the lengths of repeat regions found in the
human genome (supplementary fig. 14, Supplementary
Material online), as obtained from the repeat regions in the
hg19 assembly of the human genome from the UCSC genome
browser.

Performing Inference by ABC
ABC was performed using the R package “abc” (Csill�ery et al.
2010), and nonlinear regression aided by a neural net (used
with default parameters as provided by the package) was
used to correct for the relationship between parameters
and statistics (Johri et al. 2020). To infer posterior estimates,
a tolerance of 0.1 was applied (i.e., 10% of the total number of
simulations were accepted by ABC in order to estimate the
posterior probability of each parameter). The weighted
medians of the posterior estimates for each parameter were
used as point estimates. ABC inference was performed under
two conditions: 1) complete neutrality, or 2) the presence of
direct purifying selection. In both cases, only two parameters
were inferred—ancestral (Nanc) and current (Ncur) population
sizes. However, in scenario 2, the shape of the DFE was also
varied. Specifically, the parameters f0, f1, f2, and f3 were treated
as nuisance parameters and were sampled such that
0� fi� 1, and Ri fi¼ 1, for i¼ 0–3. In addition, in order to
limit the computational complexity involved in the ABC
framework, values of fi were restricted to multiples of 0.05
(i.e., fi � f0.0, 0.05, 0.10, . . ., 0.95, 1.0g 8 i), which allowed us to
sample 1,771 different DFE realizations. Simulations were per-
formed with functional genomic regions, and the demo-
graphic model was characterized by 1-epoch changes in

which the population either grows or declines exponentially
from ancestral to current size, beginning at a fixed time in the
past.

For the purpose of illustration, and for a contrast with the
human-like parameter set above, parameters for ABC testing
were selected to resemble those of D. melanogaster African
populations. Priors on ancestral and current population sizes
were drawn from a uniform distribution between 105 and 107

diploid individuals, whereas the time of change was fixed at
106 (�Ne) generations. In order to simulate functional
regions, 94 single-exon genes, as described in Johri et al.
(2020) and provided in https://github.com/paruljohri/BGS_
Demography_DFE/blob/master/DPGP3_data.zip, were simu-
lated with recombination rates specific to those exons
(https://petrov.stanford.edu/cgi-bin/recombination-rates_
updateR5.pl) (Fiston-Lavier et al. 2010; Comeron et al. 2012).
Mutation rates were assumed to be fixed at 3� 10�9 per site
per generation (Keightley et al. 2009, 2014).

All parameters were scaled by the factor 320 in order to
decrease computational time, using the principle first de-
scribed by Hill and Robertson (1966), and subsequently
employed by others (Comeron and Kreitman 2002; Hoggart
et al. 2007; Kim and Wiehe 2008; Kaiser and Charlesworth
2009; Uricchio and Hernandez 2014; Campos and
Charlesworth 2019). The scaled population sizes thus ranged
between�300 and 30,000 and were reported as scaled values
in the main text. One thousand replicate simulations were
performed for every parameter combination (Nanc, Ncur, f0, f1,
f2, f3); for performing ABC inference, 50 diploid genomes were
randomly sampled without replacement, and summary sta-
tistics were calculated using pylibseq 0.2.3 (Thornton 2003).
The following summary statistics were calculated across the
entire exonic region for every exon: nucleotide site diversity
(p), Watterson’s h, Tajima’s D, Fay and Wu’s H (both absolute
and normalized), number of singletons, haplotype diversity,
LD-based statistics (r2, D, D’ ), and divergence (i.e., number of
fixed mutations per site per generation after the burn-in pe-
riod). Means and variances (between exons) of all of the
above (a total of 22) were used as final summary statistics
to perform ABC. As opposed to the above examples, in this
inference scheme only exonic data (i.e., directly selected sites)
were utilized. Test data sets were generated in exactly the
same fashion as described above.

Analytical Expectations for the Relative Site
Frequencies
To compute the expected relative frequencies of site fre-
quency classes, the approach of Polanski and Kimmel
(2003) was followed. They describe a method for computing
the “probability that a SNP has b mutant bases,” which is
equivalent to the expected site frequency spectrum (SFS) of
derived variants. This method (their eqs. 3–10) allows for the
specification of arbitrary population size histories and sample
sizes. For reasons of computational precision, a sample size of
ten diploid genomes was chosen. The demographic scenarios
were implemented as piecewise functions of the effective
population size (counting haploid genomes), and the effect
of BGS was included by scaling these functions by values of B
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before population size change as obtained from the forwards-
in-time simulations described above. A Mathematica note-
book detailing these results is available online (see Data
Availability statement). In addition, analytical expressions
can be obtained for pairwise diversity values when there are
step changes or exponential growth in population size, as
described in the Appendix and in an example program that
calculates diversity values after exponential growth.
Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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Appendix
There are two scenarios of population size change for which
simple explicit expressions for the expected pairwise coa-
lescent time or diversity can be obtained, without using the
methodology of Polanski and Kimmel (2003) and Polanski
et al. (2003)—a step change in N or an exponential growth
in N. First consider the coalescent process for a step change,
where the current and initial effective population sizes are
denoted by Ne1 and Ne0, respectively. Let B be the back-
ground selection parameter at the start of the process of
change, corresponding to effective size Ne0. For conve-
nience, time is scaled in units of 2 Ne1 generations, and
the time of the change in population size on this scale is
denoted by T0, counting back from the present time, T¼ 0.
T0 is assumed to be sufficiently small that B remains

approximately constant during the period since the change
in size. Denote the ratio Ne0/Ne1 by R. The derivation for the
case of a step change in population size is similar to that
given by Pool and Nielsen (2009) for the purpose of com-
paring X chromosomes and autosomes.

Between times T and T0, coalescence occurs at a rate B�1

on the chosen timescale, so that the contribution from this
period to the net coalescent time for a pair of alleles sam-
pled at T¼ 0 is:

B�1

ðT0

0

T exp �B�1Tð Þ dT ¼ B� B exp �B�1T0ð Þ

� T0 exp �B�1T0ð Þ:

There is a probability of exp(–B�1T0) that there is no
coalescence when T lies between 0 and T0, after which co-
alescence occurs at a rate 1/BR, giving a net contribution to
the coalescence time of:

BRþ T0ð Þ expð�B�1T0Þ:

The net coalescence time for the stepwise change with
BGS is given by the sum of these two expressions:

B½1þ R� 1ð Þ exp �B�1T0ð Þ�: (1a)

If this expression is compared with the corresponding
equation with B¼ 1, the apparent value of B at the time of
sampling of the pair of alleles is given by:

Bs ¼
B½1þ R� 1ð Þ exp �B�1T0ð Þ�
½1þ R� 1ð Þ exp –T0ð Þ� : (1b)

Next, consider a process of exponential change in pop-
ulation size, starting at an initial effective size of Ne0 at t0

generations in the past and ending at size Ne1, such that the
instantaneous growth rate r per generation is r¼ ln(Ne1/
Ne0)/t0. The effective population size at time t in the past is
Ne(t)¼Ne1exp(–rt); with BGS, the rate of coalescence at
time t is 1/BNe(t). As before, the BGS parameter is assumed
to remain constant over the period of population size
change. It follows that the probability of no coalescence
by generation t in the past is:

Pnc tð Þ ¼ exp½�
ðt

0

2BNe1ð Þ�1 exp rtð Þ dt�

¼ exp½c�1ð1� ertÞ�; (2)

where c¼ 2BNe1r.
The pre-growth period with t> t0 contributes an

expected coalescent time of (2BNe0þ t0ÞPnc t0ð Þ; on the
scale of generations.

Following Slatkin and Hudson (1991), to obtain the con-
tribution from the period with t> t0, it is convenient to
measure time as s¼ rt. The probability of coalescence be-
tween s and sþ ds is then given by:

Pc sð Þ ¼ c�1esexp c�1 1� esð Þ½ �ds: (3)

The contribution from this period to the expected coa-
lescent time is given by the integral of s Pc(s) between 0 and
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s 0. Following Slatkin and Hudson (1991), by transforming
to u¼ exp(s), this contribution can be expressed as the
following integral:

�s1 ¼ c�1ec�1

ðu0

1

lnðuÞe�uc�1

du: (4)

This integral can easily be evaluated numerically. The
corresponding mean coalescent time on the scale of
generations is obtained by division by r, and the result
can be added to (2BNe0þ t0ÞPnc t0ð Þ, yielding the net
expected coalescent time. By dividing the resulting ex-
pression by the corresponding expression with B¼ 1,
the apparent BGS effect at the time of sampling can
be obtained, in the same way as for the step change
model.
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