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Glossary Mutational Meltdown The accumulation of stochastic
Background Selection Reduction in genetic diversity effects which may result in population decline and

due to purifying selection against deleterious mutations ultimately extinction.

at linked sites. Selective Sweep The result of a beneficial mutation being
Distribution of Fitness Effects (DFE) The statistical driven to high frequency by positive selection, together with
distribution of selection coefficients of newly linked variation.

arising mutations, as compared to a reference Site Frequency Spectrum (SFS) Summary of the frequencies
genotype. of observed segregating mutations in a population.

In this article, I briefly summarize the population genetic environment in which within-patient viral populations are evolving -
discussing the roles of genetic drift as modulated by the infection history of the patient, selection acting on newly arising
deleterious and beneficial variants and the related linked selection effects on the genome, and the underlying mutation and
recombination/reassortment rates as well as replication behavior. I conclude with a consideration of how an improved
understanding of these processes specifically, and evolutionary genomics in general, can inform therapeutic strategies in the
future.

The Population Dynamics of Infection

The natural starting point in any evolutionary analysis is a consideration of the effects of genetic drift. This stochastic evolutionary
force is generally described in terms of the effective population size (N,) - that is, the idealized size of the population which would
experience the observed amount of genetic drift. This is opposed to the census population size (N), that is, the current number of
individuals in the population. There are multiple reasons why N, may be strongly reduced relative to N, including changes in
census population sizes over time as well as natural selection itself, as will be described throughout this article. While viral
population census sizes are known to often be exceptionally large, it is important to appreciate that viral effective population sizes
are much more constrained, owing both to underlying modes of transmission and infection dynamics as described below - with
N, having been estimated to only be on the order of hundreds to thousands (Hughes, 2009; Miyashita and Kishino, 2010;
Renzette et al., 2013). This is significant with regards to viral population genetics as it suggests an upper limit on the efficiency of
natural selection, given that this efficacy is dictated by N,. It relatedly serves as a reminder of the pervasively important role of
genetic drift in governing evolutionary outcomes, and the generally unjustified adaptation-centric view of virus genome evolution
still forwarded in certain sections of the virology community.

Thus, before treating the topic of selection, one must firstly consider the neutral population dynamics of the organism in
question. In the case of a viral population sampled from a patient, these dynamics likely include a strong population bottleneck
(i.e., a temporary reduction in population size) associated with the initial infection - these bottlenecks may be quite severe, with
some primary infections being established by a very small number of infecting units. After this initial infection, the viral popu-
lation will often next enter a phase of rapid population growth. This combination of bottlenecking and growth will leave
signatures in the genomic patterns of variation, which in turn may be used to estimate the timing of infection, the severity of the
bottleneck, the rate of within-patient population growth, and indeed the relative difference between N, and N. In certain viruses
that compartmentalize, these dynamics might also include population sub-structuring, in which isolated or semi-isolated viral
populations are established in different compartments (e.g., in different organs) within a single host. These compartments may or
may not be connected by gene flow, via the plasma for example.

Multiple approaches have been developed within the field of population genetics to infer these demographic models and their
underlying parameters. It is perhaps most helpful to introduce such methodology within the context of a specific application. For
this purpose, I will examine recent work in human cytomegalovirus (HCMV), a member of the Herpesviridae family of dsDNA
viruses. HCMV is characterized by a particularly large genome (~235,000 base pairs), and is nearly ubiquitous in human
populations, with a seroprevalence of 30%-90% in the US and >90% in adults outside of the developed world (Kenneson and
Cannon, 2007; Boeckh and Geballe, 2011). Though asymptomatic in most individuals, HCMV can lead to severe symptoms in
immunocompromised patients and neonates, and is the most common cause of birth defects resulting from an infectious agent
(Hassan and Connell, 2007; Manicklal et al., 2013).
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A large literature has accumulated demonstrating that HCMV has high levels of genetic variation within a host (Spector et al., 1984;
Drew et al., 1984; Haberland et al., 1999; Meyer-Konig et al., 1998; Faure-Della Corte et al., 2010), despite encoding a DNA polymerase
with proofreading activity (Nishiyama et al., 1983), with several recent high-throughput whole-genome studies revealing the full extent
of this variation (Renzette et al., 2011, 2013, 2014, 2015, 2016, 2017; Hage et al., 2017; Pokalyuk et al., 2017). Utilizing such whole-
genome data sampled from the urine and plasma compartments of five congenitally infected infants, Renzette et al. (2013) found that
the sub-structuring effect of compartmentalization was particularly strong - as assessed by Fsr, a measure of differentiation between
populations - with these two compartments from a single patient being as diverged as samples from two unrelated patients. Utilizing
the observed frequencies of genome-wide segregating sites in these congenitally infected patient samples - the site frequency spectrum
(SFS) - they additionally inferred the demographic model characterizing each infection. Specifically, Renzette et al. inferred a
population bottleneck associated with the initial infection (i.e., the movement of the virus from the maternal compartment to the fetal
plasma compartment), and a second bottleneck associated with the subsequent infection of the kidney compartment (i.e., as assessed
by the urine sample). The severity of the bottleneck characterizing the initial infection was not as strong as earlier results had suggested,
with dozens or even hundreds of virions characterizing fetal infection. By estimating the age of the bottleneck, this work also provided
the first inference of the timing of fetal infection.

In follow-up work with longitudinal sampling of the plasma, urine, and saliva compartments, Pokalyuk et al. (2017) also found
evidence for subsequent admixture with maternal HCMV populations after the initial infection and compartmentalization, suggesting
re-infection post-birth via, for example, breast milk (Numazaki, 1997; Enders et al., 2011). While these mixed infections can certainly be
a significant player in governing levels and patterns of genomic variation as described by Pokalyuk et al., there has been an unfortunate
tendency of some authors to only focus on this admixture process while neglecting the variety of other selective and demographic
processes which also determine levels of variation (e.g., Cudini et al., 2019; though see Jensen and Kowalik, 2020).

Given that no current method exists to prevent maternal-fetal transmission, or to reduce the severity of fetal infection (Britt,
2017), such a characterization of population dynamics may be crucial to future therapeutic strategies. For example, clinically-
imposing a more severe population bottleneck during pregnancy may reduce HCMV variability within the fetus, limiting the pool
of variation on which natural selection may subsequently act, thereby potentially improving treatment outcomes. Immunotherapy
advances have produced therapeutics capable of reducing the rate of maternal transmission in other viruses, including hepatitis B
and HIV, and may thus represent a promising route for HCMV as well (Tseng and Kao, 2017; Voronin et al., 2017).

Direct Selection and Linked Selection Effects

With regards to the direct action of natural selection in viral populations, positive selection related to antiviral drug resistance or
immune evasion has received particular attention for obvious reasons (see review of Irwin et al., 2016a). This search for adaptive
loci is generally based around identifying the patterns of selective sweeps (Maynard Smith and Haigh, 1974) in viral genomes,
owing to the genetic hitchhiking effects induced from the rapid rise in frequency of the beneficial mutation towards fixation.
However, though it receives comparatively less attention in the virology literature, it is well understood that the vast majority of
new fitness-impacting mutations in any organism are deleterious rather than beneficial (e.g., Crow, 1993; Lynch et al., 1999; Bank
et al., 2014b; and see reviews of Eyre-Walker and Keightley, 2007; Bank et al., 2014a). The selective removal of these harmful
variants by purifying selection will serve to further reduce the effective population size to an extent largely dictated by the rate of
recombination and the strength of selection (Charlesworth et al., 1993; Charlesworth, 2013). In addition, genomic linkage to this
frequent input of deleterious mutations will reduce the probability of fixation of other linked sites - including reducing the
likelihood of adaptation (Hill and Robertson, 1966; and see Pénisson et al., 2017).

Importantly, just as the increase in frequency of a beneficial mutation can lead to the genetic hitchhiking of linked variation
towards fixation in the genome (leading to a selective sweep effect), so too can the removal of the much larger input of deleterious
mutations lead to the genetic hitchhiking of linked neutral variants towards loss. This effect - the loss and reduction in frequency
owing to linkage with deleterious variants - is known as background selection (Charlesworth et al., 1993). This effect can be of
major consequence in viral populations given their coding-dense genomes (in which most new mutations are expected to be
deleterious), particularly in the absence of recombination. Though this is yet to be thoroughly studied in viral populations, initial
work has found a much more dominant role for background selection relative to selective sweeps in shaping within-patient
genomic variation (e.g., Renzette et al., 2016).

Quantifying the relative input of deleterious, neutral, and beneficial mutations, means understanding the shape of the dis-
tribution of fitness effects (DFE). There are three general types of methods for performing such inference. The first involves the
artificial creation of a mutation, one at a time or in combination, in order to measure the resulting fitness effect on an otherwise
wildtype background under lab-controlled environmental conditions (e.g., Fowler et al., 2010; Hietpas et al., 2011, 2012; Bank
et al., 2014b). The second approach, mutation-accumulation, maintains a population in a laboratory and allows mutations to
naturally occur and accumulate, and fitness is generally quantified and related to this accumulation at multiple time points
(e.g., Foll et al., 2014; Ferrer-Admetlla et al., 2016; Lynch et al., 2016; Long et al., 2018). Aside from these two experimental
approaches, a third approach is based on the direct sampling of natural population data (e.g., from a patient infection, in the case
of viral populations) - using either single time point (e.g., Keightley and Eyre-Walker, 2007; Schneider et al., 2011; Tataru et al.,
2017; Johri et al., 2020) or multiple time point data (e.g., Malaspinas et al., 2012; Mathieson and McVean, 2013; Foll et al., 2015;
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Sackman et al., 2019). These approaches generally rely on fitting a population history using patterns of variation at neutral sites,
and then using that history to quantify the DFE at putatively selected sites.

One particularly important aside here of great relevance to the virology community, is the danger of basing such selection
analyses on consensus sequences (i.e., the representation of each patient's viral sample by a single sequence, which represents the
most common allele at each site in a given within-patient viral population). While common practice, this tremendous loss of
information (e.g., all rare alleles — which represent the vast majority of variation - are neglected), combined with the associated
ascertainment issue of only viewing high frequency mutations, can wreak havoc on evolutionary inference. For example, Renzette
et al. (2017) demonstrated that earlier work based on consensus sequences had incorrectly arrived at the conclusion that most
sampled segregating variation in HCMV was strongly selected owing to this consensus ascertainment - whereas when full within-
patient population-level data was considered, it was clear that most segregating variation was in fact neutral or nearly neutral,
consistent with general expectations (Kimura, 1968; Ohta, 1973; and see Jensen et al., 2019; Morales-Arce et al., 2020b).

Finally, it is important in this regard to appreciate that the correct evolutionary null model must necessarily account for the
population infection dynamics discussed in the first section, together with the purifying and background selection effects discussed
above. As viral populations are characterized by changing population sizes owing to infection bottlenecks and subsequent growth,
and as the input of deleterious mutations is a constant process, an accounting for these processes is necessary to establish a
baseline expectation for levels and patterns of variation, on top of which positively selected outliers may be identified. A neglect of
these neutral dynamics can lead to serious mis-inference. For example, Feder et al. (2016) examined consensus HIV-1 population
sequence data from 6717 drug-treated patients sequenced over a 24-year span. They found, as expected, that the change in
variation observed in the viral population was correlated with the degree of treatment effectiveness. They used this pattern to argue
that less effective treatments may be associated with so-called soft selective sweeps (i.e., positive selection on a previously neutrally
segregating genomic variant, or on multiple simultaneously occurring and identical genomic variants), whereas more effective
treatments may be associated with hard selective sweeps (i.e., positive selection on a de novo beneficial mutation). Perplexingly,
they assumed identical strengths of positive selection, and identical within-patient demographic histories, between patients
receiving effective and ineffective treatments. Revisiting this data, Harris et al. (2018) demonstrated that if one accounts for these
variable fitness effects, and the inherent reality that more effective treatments reduced viral population sizes more than less
effective treatments, these data observations can be explained entirely without invoking soft selective sweeps. Hence, it is always
crucial to first account for the underlying neutral dynamics.

Other Key Aspects of the Population Genetic Environment

Apart from the effects of genetic drift and direct and linked selection described above, multiple other evolutionary processes are
necessary to consider in order to develop a more holistic view of within-host viral population dynamics. For example, while the
DFE describes the fitness effects of mutations, the rate of input of mutation is itself an important evolutionary parameter, as is the
rate of recombination/reassortment, as that dictates the extent to which these newly arising mutations will be linked (and thus
experience Hill-Robertson interference). Inference about mutation and recombination is similarly possible from with-patient
polymorphism data. Returning to the HCMV example, Renzette et al. (2015) calculated genome-wide rates of mutation and
recombination in 500 base pair windows across the genome for 48 longitudinal samples from 18 patients, inferring an average
mutation rate of 2.0 x 1077 new mutations per site per replication, similar to rates observed from murine cytomegalovirus (Drake
and Hwang, 2005; Sanjuan et al., 2010; and see review of Sackman et al., 2018).

Importantly, viral mutation rates have generally been thought to be inversely correlated with genome size (Gago et al., 2009),
with the general interpretation being, for example, that RNA-based viral genomes are smaller than DNA genomes owing to
intrinsically error-prone polymerases (Drake and Holland, 1999; Elena and Sanjudn, 2005). However, it appears more likely that,
given that selection operates on the total genome-wide deleterious mutation rate (Kimura, 1967; Lynch, 2008), the selection
pressure for replication fidelity (per site) is simply reduced in smaller genomes. This interpretation, as described in the 'drift-barrier
hypothesis', has been widely supported across the tree of life (Lynch, 2011, 2012). In other words, genome-wide viral mutation
rates are pushed to the lowest levels possible by natural selection, thus predicting the widely-observed correlation between effective
population size and mutation rate, as well as between genome size and mutation rate. While some in the virology community
retain the notion that viruses may be selected to maintain high mutation rates to better deal with fitness challenges, there is simply
neither empirical nor theoretical support for the validity of such a view.

Finally, as much of population genetic inference is based on the Wright-Fisher model and Kingman coalescent - in which there
is an assumption of a Poisson-shaped progeny distribution in which the variance equals the mean and is small relative to the
population size - there is a growing appreciation that violations of this assumption must be accounted for when studying virus
populations, which are highly variable in this regard. As such, virus genealogies are better characterized by more generalized Moran
and multiple-merger coalescent models (see Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999; Schweinsberg, 2000; Eldon
and Wakeley, 2008; Matuszewski et al., 2018; and see reviews of Tellier and Lemaire, 2014; Irwin et al., 2016b). Specifically,
violations of this progeny distribution assumption may elevate linkage disequilibrium even in the presence of frequent recom-
bination (Eldon and Wakeley, 2008; Birkner et al., 2013), and skew estimates of Fs; (Eldon and Wakeley, 2009). As such, these
model violations may be mistaken for either population size change or positive selection if not accounted for (Matuszewski et al.,
2018; Sackman et al., 2019).
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Recent theoretical and statistical developments have provided some inroads into estimating, and thus accounting for, progeny
skew from within-host pathogen populations. This work has demonstrated an ability to co-estimate the degree of progeny skew
together with population size change, mutation rate, and positive selection from within-patient polymorphism data (Eldon et al.,
2015; Matuszewski et al., 2018; Sackman et al., 2019; Morales-Arce et al., 2020a), providing a more appropriate null model for the
study of pathogen evolution.

An Outlook on Evolutionarily Informed Treatment Strategies

The ability of the above described inference approaches to study drug-resistance mechanisms, and thus quantify the like-
lihood of adaptively evading a given therapeutic strategy within an experimental evolution setting, has been well-justified in
the literature. Namely, identifying positively selected mutations in experimental viral populations challenged with possible
drug-treatments individually or in combination, may elucidate potential routes to resistance, and highlight drugs requiring
more complex (and lower probability) mutational evasion routes. For example, the commonly used influenza drug oselta-
mivir acts as a competitive inhibitor by binding to a hydrophobic pocked in the viral surface protein - an action which can be
effectively blocked by mutations near the binding site (Collins et al.,, 2008). Initially, the high fitness cost of the most
common oseltamivir-resistant mutation, NA H275Y, was hypothesized to make the development of resistance unlikely (Ives
et al., 2002) - though resistance spread rapidly in the 2007-8 flu season owing to the limited number of required mutational
steps (Moscona, 2009; Bloom et al., 2010), an important drawback that became clearer in subsequent experimental evolution
studies (e.g., Foll et al., 2014).

Other strategies with wider genomic effects may thus prove more fruitful - ideally ones requiring at least multiple mutation
steps in order to confer resistance. Over the past decades, the notion that an excessive input of mutations can drive population
extinction has been explored both theoretically and empirically, beginning with the foundational work of Lynch and Gabriel
(1990) and Lynch et al. (1993). This possibility owes to the fact that the vast majority of fitness-impacting mutations are
deleterious, or said another way, there are many more ways to disrupt rather than improve genomic function. This so-called
mutational meltdown is achieved once the mean viability of the population drops to the point that the average individual cannot
replace itself, at which time the population begins to decline resulting in a snowball effect leading to ultimate extinction. The cause
of this final meltdown-phase is in fact the accelerated reduction in the efficacy of natural selection that results from the decline in
N, - that is, the declining population size allows for the further fixation of deleterious mutations via genetic drift, which in turn
further reduces the efficacy of selection, allowing for further deleterious fixations, and so on.

Given that many viruses are naturally characterized by high mutation rates, and thus may commonly reside near a threshold of
mutational load, a therapeutic increase in mutation rates may indeed induce this phase in which the input of new mutation
overwhelms the ability of natural selection to remove this deleterious load. While such a scenario is often referred to as lethal
mutagenesis in the virology literature (Bull et al., 2007), the mutational meltdown framework is more general and critically
incorporates the additional effects of genetic drift inherent to all populations (see Matuszewski et al., 2017). The ability of an
increased mutation rate to induce such extinction in a patient viral population has been relatively well explored and justified in
RNA viruses (Loeb et al., 1999; Crotty et al., 2000; Lanford et al., 2001; Crotty et al., 2001; Severson et al., 2003; Airaksinen et al.,
2003), using a variety of drugs including ribavirin and, more recently, favipiravir (Furuta et al., 2013; Baranovich et al., 2013; Bank
et al., 2016; Ormond et al., 2017). Pertinent to the 2020 pandemic, Sheahan et al. (2020) recently demonstrated that the
ribonucleoside analog EEID-1931 has a mutagenic effect in SARS-CoV-2 passaged in cell culture and, working in a mouse model,
found a positive correlation between increased viral mutation rates and the degree of therapeutic efficacy. This work lends support
to other recent calls to better investigate the potential therapeutic strategy of mutational meltdown in the context of CoV-2 (Jensen
and Lynch, 2020; Santiago and Caballero, 2020; Jensen et al., 2020).

While this represents a potentially promising and generalized treatment strategy for existing (and future unknown) pathogens,
a number of important open questions remain in this regard. These will necessitate further theory work related to the necessary
mutation rate turn-up required to induce this effect with realistic DFEs, as well as a more complete exploration of the interplay
with underlying recombination rates (when applicable); as well as a more cohesive experimental effort to accurately quantify
natural viral mutation rates via mutation-accumulation studies, in order to establish baseline values. What is clear however is that
new viral pathogens will continue to emerge, a comprehensive understanding of their evolutionary trajectories will be critical for
designing effective clinical treatments and interventions, and hence that a better union of the fields of population genetics and
medicine will prove to be of great value.

See also: Antiretroviral Therapy — Nucleoside/Nucleotide and Non-Nucleoside Reverse Transcriptase Inhibitors. Antiviral Classification.

HIV Integrase Inhibitors and Entry Inhibitors. Management of Adenovirus Infections (Adenoviridae). Management of Hepatitis A and E Virus
Infection. Management of Herpes Simplex Virus Infections (Herpesviridag). Management of Influenza Virus Infections (Orthomyxoviridag).
Management of Patients With Chronic Hepatitis B (Hepadnaviridae) and Chronic Hepatitis D Infection (Delfavirus). Management of Respiratory
Syncytial Virus Infections (Pneumoviridae). Management of Varicella-Zoster Virus Infections (Herpesviridag). Protease Inhibitors. Treatment and
Prevention of Herpesvirus Infections in the Immunocompromised Host
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