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ABSTRACT 32 

Current procedures for inferring population history are generally performed under the 33 

assumption of complete neutrality - that is, by neglecting both direct selection and the effects of 34 

selection on linked sites. We here examine how the presence of direct purifying and background 35 

selection may bias demographic inference by evaluating two commonly-used methods (MSMC 36 

and fastsimcoal2), specifically studying how the underlying shape of the distribution of fitness 37 

effects (DFE) and the fraction of directly selected sites interact with demographic parameter 38 

estimation. The results show that, even after masking functional genomic regions, background 39 

selection effects may result in the mis-inference of population growth under models of both 40 

constant population size as well as decline. This effect is amplified as the strength of purifying 41 

selection and the density of directly selected sites increases, as indicated by the distortion of the 42 

site frequency spectrum and levels of nucleotide diversity at linked neutral sites. We also show 43 

how simulated changes in background selection effects caused by population size changes can be 44 

predicted analytically. We propose a potential method for correcting for the mis-inference of 45 

population growth caused by selection. By treating the DFE as a nuisance parameter and 46 

averaging across all potential realizations, we demonstrate that even directly selected sites may 47 

be used to infer demographic histories with reasonable accuracy.  48 

 49 

Keywords: demographic inference, background selection, distribution of fitness effects, MSMC, 50 

fastsimcoal2, approximate Bayesian computation (ABC) 51 
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INTRODUCTION 63 

The characterization of past population size change is a central goal of population genomic 64 

analysis - with applications ranging from anthropological to agricultural to clinical (see review 65 

by Beichman et al. 2018). Furthermore, use of an appropriate demographic model provides a 66 

necessary null model for assessing the impact of selection across the genome (e.g., Teshima et 67 

al. 2006; Thornton and Jensen 2007; Jensen et al. 2019). Multiple strategies have been proposed 68 

for performing demographic inference, utilizing expectations related to levels of variation, the 69 

site frequency spectrum, linkage disequilibrium, and within- and between-population relatedness 70 

(e.g., Gutenkunst et al. 2009; Li and Durbin 2011; Lukic and Hey 2012; Harris and Nielsen 71 

2013; Excoffier et al. 2013; Bhaskar et al. 2015; Sheehan and Song 2016; Ragsdale and 72 

Gutenkunst 2017; Steinrücken et al. 2019; Kelleher et al. 2019; Speidel et al. 2019).  73 

 Although many methods perform well when evaluated under the standard assumption of 74 

neutrality, it is difficult in practice to assure that the nucleotide sites used in empirical analyses 75 

experience neither direct selection nor the effects of selection at linked sites. For example, 76 

inference is often performed using intergenic, 4-fold degenerate, or intronic sites. While there is 77 

evidence for weak direct selection in all of these categories in multiple organisms (e.g., Haddrill 78 

et al. 2005; Chamary and Hurst 2005; Andolfatto 2005; Lynch 2007; Zeng and Charlesworth 79 

2010; Choi and Aquadro 2016; Jackson et al. 2017), it is also clear that such sites near or in 80 

coding regions will also experience background selection (BGS; Charlesworth et al. 1993; 81 

Charlesworth 2013), and may periodically be affected by selective sweeps as well (Messer and 82 

Petrov 2013; Schrider et al. 2016). These effects are known to affect the local underlying 83 

effective population size, and alter both the levels and patterns of variation and linkage 84 

disequilibrium (Charlesworth et al. 1993; Kaiser and Charlesworth 2009; O’Fallon et al. 2010; 85 

Charlesworth 2013; Nicolaisen and Desai 2013; Ewing and Jensen 2016; Johri et al. 2020).  86 

 However, commonly-used approaches for performing demographic inference that assume 87 

complete neutrality, including fastsimcoal2 (Excoffier et al. 2013) and MSMC/PSMC (Li and 88 

Durbin 2011; Schiffels and Durbin 2014), have yet to be thoroughly evaluated in the light of this 89 

assumption, which is likely to be violated in practice. There are, however, some exceptions. 90 

Rather than investigating existing software, Ewing and Jensen (2016) implemented an 91 

approximate Bayesian (ABC) approach to quantify the impact of BGS effects, demonstrating 92 

that weak purifying selection can generate a skew towards rare alleles that would be mis-93 
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interpreted as population growth. Under certain scenarios, this resulted in a many-fold mis-94 

inference of population size change. However, the effects of the density of directly selected sites 95 

and the shape of the distribution of fitness effects (DFE), which are probably of great 96 

importance, have yet to be considered. Spanning the range of these potential parameter values is 97 

important for understanding the implications for empirical application. For example, the 98 

proportion of the genome experiencing direct purifying selection can vary greatly between 99 

species, with estimates ranging from ~3-8% in humans, to ~12% in rice, to 37-53% in D. 100 

melanogaster, to 47-68% in S. cerevisiae (Siepel et al. 2005; Liang et al. 2018). Further, many 101 

organisms have highly compact genomes, with ~88% of the E. coli genome (Blattner et al. 1997) 102 

and effectively all of many virus genomes,  being functional (e.g., >95% of the SARS-CoV-2 103 

genome, Wu et al. 2020).  104 

 While such estimates allow us to approximate the effects of BGS in some model 105 

organisms, in which recombination and mutation rates are well known, it is difficult to predict 106 

these effects in the vast majority of study systems. Moreover, while the genome-wide mean of B, 107 

a widely-used measure of BGS effects that measures the level of variability relative to neutral 108 

expectation, can range from ~0.45 in D. melanogaster to ~0.94 in humans (Charlesworth 2013; 109 

but see Pouyet et al. 2018), existing demographic inference approaches are usually applied 110 

across organisms without considering this important source of differences in levels of bias. Here, 111 

we examine the effects of the DFE shape and functional density on two common demographic 112 

inference approaches - the multiple sequentially Markovian coalescent (MSMC) and 113 

fastsimcoal2.  Finally, we propose an extension within the approximate Bayesian computation 114 

(ABC) framework to address this issue, treating the DFE as a nuisance parameter and 115 

demonstrating greatly improved demographic inference even when using directly selected sites 116 

alone. 117 

 118 

 119 

RESULTS and DISCUSSION 120 

 121 

Effects of SNP numbers and genome size on inference under neutral equilibrium 122 

The accuracy and performance of demographic inference was evaluated using two popular 123 

methods, MSMC (Schiffels and Durbin 2014) and fastsimcoal2 (Excoffier et al. 2013). In order 124 
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to assess performance, it was first necessary to determine how much genomic information is 125 

required to make accurate inference when the assumptions of neutrality are met. Chromosomal 126 

segments of varying sizes (10 Mb, 50 Mb, 200 Mb, and 1 Gb) were simulated under neutrality 127 

and demographic equilibrium (i.e., constant population size of 5000 diploid individuals) with 128 

100 independent replicates each. For each replicate this amounted to the mean [SD] number of 129 

segregating sites for each diploid individual being 1,944 [283], 9,996 [418], 40,046 [957] and 130 

200,245 [1887]; for 50 diploid individuals, these values were 10,354 [225], 51,863 [567], 131 

207,118 [1139] and 1,035,393 [2476] for 10 Mb, 50 Mb, 200 Mb and 1 Gb, respectively. Use of 132 

MSMC resulted in incorrect inferences for all segments smaller than 1 Gb (Supp Figure 1). 133 

Specifically, very strong recent growth was inferred instead of demographic equilibrium, 134 

although ancestral population sizes were correctly estimated. In addition, when 2 or 4 diploid 135 

genomes were used for inference, MSMC again inferred a recent many-fold growth for all 136 

segment sizes even when the true model was equilibrium, but performed well when using 1 137 

diploid genome for large segments (Supp Figure 1).  138 

 When using fastsimcoal2 to perform demographic inference, parameters were accurately 139 

estimated for all chromosomal segment sizes when the correct model (i.e., equilibrium) was 140 

specified (left panel of Supp Figure 2. However, when model selection was performed using a 141 

choice of three models (equilibrium, instantaneous size change, and exponential size change), a 142 

minority of replicates of the 10 Mb chromosomal segment incorrectly inferred a size change, 143 

although the current population sizes were estimated accurately (middle panel of Supp Figure 2). 144 

When the instantaneous bottleneck model was added to the set of competing models, a similarly 145 

incorrect model choice was observed at segment sizes less than or equal to 50 Mb (right panel of 146 

Supp Figure 2). These results suggest caution when performing inference on smaller regions or 147 

genomes, specifically when the number of SNPs are less than ~200,000 per single diploid 148 

individual, or less than 1 million per 50 diploid individuals. Extra caution should be used when 149 

interpreting population size changes inferred by MSMC when using more than 1 diploid 150 

individual.  151 

 Given this performance, all further analyses were restricted to characterizing 152 

demographic inference on data that roughly matched the structure and size of the human genome 153 

- for every diploid individual, 22 chromosomes of size 150 Mb each were simulated, which 154 

amounted to roughly 3 Gb of total sequence. Ten independent replicates of each parameter 155 
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combination were performed throughout, and inference utilized 1 and 50 diploid individuals for 156 

MSMC and fastsimcoal2, respectively.  157 

 158 

Effect of the strength of purifying selection on demographic inference 159 

In order to test demographic inference in the presence of BGS, all 22 chromosomes were 160 

simulated with exons of size 350 bp each, with varying sizes of introns and intergenic regions 161 

(see Methods) being used in order to vary the fraction (5%, 10% and 20%) of the genome under 162 

selection. Because the strength of selection acting on deleterious mutations affects how far the 163 

effects of BGS extend, demographic inference was evaluated for various DFEs (Table 1). The 164 

DFE was modelled as a discrete distribution with four fixed classes: 0 ≤ |2Nes| < 1, 1 ≤ |2Nes| ≤ 165 

10, 10 < |2Nes| ≤ 100 and 100 < |2Nes| ≤ 2Ne. The fitness effects of mutations were uniformly 166 

distributed within each bin and the DFE shape was altered by varying the proportion of 167 

mutations belonging to each fixed class, given by f0, f1, f2, and f3, respectively (see Methods). 168 

Three DFEs highly skewed towards a particular class were initially used to assess the impact of 169 

the strength of selection on demographic inference (with the remaining mutations equally 170 

distributed amongst the other three classes):  171 

DFE1: a DFE in which 70% of mutations have weakly deleterious fitness effects (i.e., f1 = 0.7),  172 

DFE2: a DFE in which 70% of mutations have moderately deleterious fitness effects (i.e., f2 = 173 

0.7), and  174 

DFE3: a DFE in which 70% of mutations have strongly deleterious fitness effects (i.e., f3 = 0.7).  175 

In order to understand the effects of BGS, exonic sites were masked, and only linked 176 

neutral intergenic sites were used for demographic inference. The three demographic models 177 

examined were (1) demographic equilibrium, (2) a 30-fold exponential growth, mimicking the 178 

recent growth experienced by European human populations, and (3) ~6-fold instantaneous 179 

decline, mimicking the out-of-Africa bottleneck in human populations (Figure 1a). Although 180 

these models were parameterized using previous estimates of human demographic history (Supp 181 

Table 1; Gutenkunst et al. 2009), these basic demographic scenarios are applicable to many 182 

organisms, although the magnitudes of population size changes in this case may represent an 183 

extreme. 184 

 Under demographic equilibrium, when 20% of the genome experiences direct selection 185 

(with masking of the directly selected sites), we found the true population size to be 186 
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underestimated, as well recent population growth mis-inferred (Figure 1), with a larger bias in 187 

MSMC than fastsimcoal2. Stronger growth is inferred with larger fitness effects of mutations. 188 

Conversely, when the true demographic model is characterized by recent 30-fold growth, 189 

demographic inference is accurate and performs equally well for both MSMC and fastsimcoal2, 190 

with the exception of a slight underestimation of the ancestral population size for all DFE types. 191 

When the true model is population decline, weakly deleterious mutations alone did not affect 192 

inference drastically and it was possible to recover the true model. However, moderately and 193 

strongly deleterious mutations resulted in an underestimation of population size and an inference 194 

of strong growth, to the extent that population decline would be misinterpreted as growth. We 195 

further tested the effect of BGS on demographic inference when changes in population size were 196 

less severe, namely, when population growth and decline was only 2-fold, with qualitatively 197 

similar results (Supp Figure 3).  198 

 Finally, given the strong evidence that most organisms have a bi-modal DFE with a 199 

significant proportion of strongly deleterious or lethal mutations (Sanjuán 2010; Jacquier et al. 200 

2013; Kousathanas and Keightley 2013; Bank et al. 2014; Charlesworth 2015), we investigated 201 

the effect of this strongly deleterious class further. Thus, for comparison with the above, we 202 

simulated a rather extreme case in which 30% or 50% of exonic mutations are strongly 203 

deleterious with fitness effects uniformly sampled between 100 ≤ 2Nancs ≤ 2Nanc, with the 204 

remaining mutations being neutral (i.e., DFE5 and DFE6; see Table 1). As with the above 205 

results, both equilibrium and decline models were falsely inferred as growth, with an order of 206 

magnitude underestimation of the true population size (Figure 2). 207 

 In sum, neglecting BGS frequently results in the inference of population growth, almost 208 

regardless of the true underlying demographic model. 209 

 210 

Effects of density and inclusion/exclusion of directly selected sites on inference 211 

Although we have shown that the presence of purifying selection biases demographic inference, 212 

the extent of mis-inference necessarily depends on the fraction of the genome experiencing direct 213 

selection. We therefore compared models in which 5%, 10% or 20% of the genome was 214 

functional. For this comparison, equal proportions of mutations in each DFE bin were assumed 215 

(i.e., f0 = f1 = f2 = f3 = 0.25) corresponding to DFE4 (Table 1). As before, when the true model 216 

was exponential growth, inference was unbiased, with a slight underestimation of ancestral 217 
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population size when 20% of the genome experiences selection (Figure 3). Population decline 218 

was inferred reasonably well if less than 10% of the genome experiences direct selection, but 219 

could be mis-inferred as growth with greater functional density, as shown in Figure 3. Similarly, 220 

the extent to which population size is under-estimated at demographic equilibrium increases with 221 

the fraction of the genome under selection. Finally, it is noteworthy that many changes in 222 

population size that were falsely inferred were greater than 2-fold in size, suggesting the need for 223 

great caution when inferring such changes from real data.  224 

 Importantly, the results presented do not significantly differ between inference performed 225 

while including directly selected sites (i.e., no masking of functional regions; Supp Figure 4) 226 

versus inference performed using linked neutral sites (i.e., masking functional regions; Figures 1-227 

3). These results suggest that the exclusion of exonic sites, which is often assumed to provide a 228 

sufficiently neutral dataset to enable accurate demographic inference, is not necessarily a 229 

satisfactory solution unless gene density is low.  230 

  231 

Effect of heterogeneity in recombination rates, mutation rates, and repeat masking 232 

Variation in recombination and mutation rates, as well as the masking of repeat regions, may 233 

also affect demographic inference procedures. We evaluated this issue by simulating 234 

heterogeneity in both mutation and recombination rates (based on estimated human genome 235 

maps, as described in the Methods section), and masking 10% of each simulated segment 236 

drawing from the empirical distribution of repeat lengths in the human genome (Supp Figure 5). 237 

In general, inferences under neutrality (Supp Figures 6-8) as well as under BGS (Supp Figures 9-238 

11) were unaffected under all demographic models. These investigations suggest that such 239 

demographic inference is robust to genome-wide variation in rates of recombination and 240 

mutation, as well as the presence of repeat elements. Thus, serious mis-inference is more likely 241 

to be caused by selection. These observations also suggest that simulations performed with mean 242 

rates of recombination and mutation, as performed in this study, are sufficient to evaluate biases 243 

caused by BGS.  244 

  245 

 246 

 247 
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Effects of BGS on diversity and the SFS under various demographic models: theoretical 248 

expectations versus simulation results 249 

To better understand how BGS can lead to different biases in the inference of population history, 250 

we investigated the extent of BGS effects under all three demographic models, with respect to 251 

both the reduced diversity relative to neutrality, as well as the shape of the SFS at linked neutral 252 

sites. First, we found that B, the diversity relative to the neutral expectation, differed among 253 

demographic scenarios, disproportionately amplifying mis-inference under equilibrium and 254 

decline (Figure 4). After a population decline, B was lower than that before the size change; 255 

while after population expansion, B increased relative to that in the ancestral population, 256 

sometimes approaching 1 (Figure 4). This may seem paradoxical, given that the magnitude of the 257 

scaled selection coefficient (2Nes) decreases with decreasing Ne (i.e., the efficacy of purifying 258 

selection decreases, and could thus be expected to result in larger values of B under population 259 

decline). Conversely, with increasing Ne, B may be reduced.   260 

 However, these expectations apply only once a population has maintained a given Ne for 261 

sufficient time such that equilibrium has been approached. During the initial stages of population 262 

size change, and shortly afterwards, the dynamics of B tend to show a trend opposite to this long-263 

term expectation (see also Figure 5 of Torres et al. 2020). This is because differences in Ne 264 

caused by different initial levels of BGS cause differences in the rates of response to changes in 265 

population size –  a small value of Ne  (corresponding to low B) results in a faster response 266 

compared with a high value (Fay and Wu 1999; Hey and Harris 1999; Pool and Nielsen 2007; 267 

Pool and Nielsen 2009; Campos et al. 2014; Torres et al. 2020). The relative diversity values 268 

observed with different initial equilibrium B values after a short period of population size change 269 

may thus be very different from both the initial and final equilibrium values, so that the apparent 270 

B values estimated by comparing diversities with and without BGS differ from the equilibrium 271 

values. The overall effect is that there is an apparent increase in B immediately following a 272 

population decline, and a decrease immediately following an expansion. Analytical models 273 

describing these effects are presented in the Appendix. These models used the simulated values 274 

of B at equilibrium before the population size changes to predict the apparent B values at the 275 

ends of the periods of size change (see the Methods and Appendix). It can be seen from Figure 4 276 

that there is good agreement between these predictions and the simulation results.  277 
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Because several demographic estimation methods are based on fitting a demographic 278 

model to the SFS, it is also of interest to understand whether BGS can skew the SFS to different 279 

extents under different demographic models. Although it is well known that BGS causes a skew 280 

of the SFS towards rare variants under equilibrium models (Charlesworth et al. 1995; Nicolaisen 281 

and Desai 2013), the effect of BGS on the SFS with population size change has not been much 282 

explored (but see Johri et al. 2020 and Torres et al. 2020). As shown in Figure 5, with a 283 

population size decline, the SFS of derived alleles is more skewed towards rare variants when 284 

BGS is operating, especially when B is initially small, since the effects of BGS work in 285 

opposition to the effects of the population size reduction. This difference in the left skew of the 286 

SFS with and without BGS is much less noticeable in the case of population expansion, since 287 

here the effects of BGS and the expansion act in a similar direction.  288 

As with the estimates of the apparent B values discussed above, analytical predictions of 289 

expected SFS after an instantaneous/ exponential change in population size can be made, using 290 

the values of B at equilibrium before the population size change (see the Methods), using the 291 

formulae of Polanski and Kimmel (2003) and Polanski et al. (2003) for the purely neutral case, 292 

as described in the Methods section. Although the shape of the SFS is affected by both 293 

demography and BGS, the impact of BGS is often comparatively small. Figure 5 shows that the 294 

overall shape of the SFS is predicted reasonably well by the analytical results, although 295 

deviations are to be expected for the rare allele classes, which are the most sensitive to 296 

demographic change and selection. Overall, the results imply that BGS is more likely to bias 297 

demographic inference post-decline compared with post-increase, consistent with the 298 

performance of the methods described above. However, it should be noted that the exact patterns 299 

observed will depend on the timing of population size changes relative to the time of sampling, 300 

as well as the value of B before the size change. For example, with a past step increase in 301 

population size, a genomic region with a sufficiently low B may not show signs of an expansion, 302 

because all coalescent events will have been completed before the time of expansion. The 303 

patterns described here thus represent only a small subset of the possibilities. In addition, all else 304 

being equal, in populations with large long-term population sizes (and thus low values of B), 305 

BGS would be expected to result in even larger biases than those observed here.  306 

 307 

 308 
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A potential solution: averaging across all possible DFEs 309 

As shown above, demographic inference can be strongly affected by currently unaccounted for 310 

BGS effects, as well as by direct purifying selection. A potential solution is thus to correct for 311 

these effects when performing inference of population history. A widely-used approach to 312 

estimating direct selection effects, DFE-alpha, takes a stepwise approach to inferring 313 

demography, by using a presumed neutral class (synonymous sites); conditional on that 314 

demography, it then estimates the parameters of the DFE (Keightley and Eyre-Walker 2007; 315 

Eyre-Walker and Keightley 2009; Schneider et al. 2011; Keightley and Jackson 2018). However, 316 

this approach does not include the possibility of effects of selection at linked sites, which can 317 

result an over-estimate of population growth, as well as general mis-inference of the DFE (Johri 318 

et al. 2020).  319 

 Building on this idea, Johri et al. (2020) recently proposed an approach that includes both 320 

direct and background effects of purifying selection, simultaneously inferring the deleterious 321 

DFE and demography. By utilizing the decay of BGS effects around functional regions, they 322 

demonstrated high accuracy under the simple demographic models examined. Moreover, the 323 

method makes no assumptions about the neutrality of synonymous sites, and can thus be used to 324 

estimate selection acting on these sites, as well as in non-coding functional elements. However, 325 

this computationally-intensive approach is specifically concerned with jointly inferring the DFE 326 

and demographic parameters. As such, if an unbiased characterization of the population history 327 

is the sole aim, this procedure may be needlessly involved. We thus here examine the possibility 328 

of rather treating the DFE as an unknown nuisance parameter, averaging across all possible DFE 329 

shapes, in order to assess whether demographic inference may be improved simply by correcting 330 

for these selection effects without inferring their underlying parameter values. This approach 331 

utilizes functional (i.e., directly selected) regions, a potential advantage in populations for which 332 

only coding data may be available (e.g., exome-capture data; see Jones and Good 2016), or more 333 

generally in organisms with high gene densities. 334 

In order to illustrate this approach, a functional genomic element was simulated under 335 

demographic equilibrium, 2-fold exponential population growth and 2-fold exponential 336 

population decline with four different DFE shapes (as described previously, and shown in Figure 337 

6).  A number of summary statistics were calculated (see Methods) for the entire functional 338 

region. Inference was first performed assuming strict neutrality, and inferring a one-epoch size 339 
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change (thus estimating the ancestral (Nanc) and current population sizes (Ncur)). As was found 340 

with the other inference approaches examined, population sizes were underestimated and a false 341 

inference of population growth was observed in almost all cases when selective effects are 342 

ignored (Figure 6).  343 

Next, the assumption of neutrality was relaxed, and mutations were simulated with fitness 344 

effects characterized by a discrete DFE, with the same fitness classes given above (f0, f1, f2, f3). 345 

Values for fi were drawn from a uniform prior between 0 and 1, such that ∑fi = 1. Note that no 346 

assumptions were made about which sites in the genomic region were functionally important, or 347 

regarding the presence/absence of a neutral class. These directly selected sites were then used to 348 

infer demographic parameters. We found that, by varying the shape of the DFE, averaging across 349 

all realizations, and estimating only parameters related to population history, highly accurate 350 

inference of modern and ancestral population sizes is possible (Figure 6). These results 351 

demonstrate that, even if the true DFE of a population is unknown (as will always be the case in 352 

reality), it is possible to infer demographic history with reasonable accuracy by approximately 353 

correcting for these selective effects.  354 

 355 

 356 

CONCLUSION 357 

While commonly used approaches for inferring demography assume neutrality and independence 358 

among segregating sites, it is very difficult to verify those assumptions empirically.  In addition, 359 

there is considerable evidence for wide-spread effects of selection on linked sites in many 360 

commonly studied organisms (Hernandez et al. 2011; Cutter and Payseur 2013; Williamson et al. 361 

2014; Elyashiv et al. 2016; Campos et al. 2017; Booker and Keightley 2018; Pouyet et al. 2018; 362 

Torres et al. 2018; Castellano et al. 2020). As such, we explored how violations of the 363 

assumption of neutrality may affect demographic inference, particularly with regard to the 364 

underlying strength of purifying selection and the genomic density of directly selected sites.  365 

Generally speaking, the neglect of these effects (i.e., background selection) results in an 366 

inference of population growth, with the severity of the growth model roughly scaling with 367 

selection strength and density. Thus, when the true underlying model is in fact growth, 368 

demographic mis-inference is not particularly severe; when the true underlying model is constant 369 
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size or decline, the mis-inference can be extreme, with a many-fold underestimation of 370 

population size.  371 

It is important to note that BGS effects extend to genomic distances in a way that is 372 

positively related to the strength of purifying selection. For instance, strongly and moderately 373 

deleterious mutations affect patterns of diversity at large genomic distances, whereas mildly 374 

deleterious mutations primarily skew allele frequencies at adjacent sites. Thus, if intergenic 375 

regions further away from exons are used to perform demographic inference, it is predominantly 376 

strongly deleterious mutations that are likely to bias inferences. In contrast, if synonymous sites 377 

are used to infer demographic history, mildly deleterious mutations will be most important. Thus, 378 

as we here focused on relatively sparsely-coding genomes (resembling human-like gene 379 

densities) and used intergenic sites for inference, moderately and strongly deleterious mutations 380 

resulted in more severe mis-inference. In addition, the effect of decay of BGS due to mildly 381 

deleterious mutations depends on multiple parameters. For instance, with an exon of length 500 382 

bp and Drosophila-like parameters (Ne = 106; recombination rate = mutation rate = 10-8 / site / 383 

generation), B will increase from 0.53 (at 10 bases from the end of the exon) to 0.94 at a distance 384 

of 1000 bases. On the other hand, with human-like parameters (Ne = 104; recombination rate = 385 

mutation rate = 10-8 / site / generation),) the corresponding change in B is only 0.981 to 0.982 386 

(Supp Table 2). Thus, mildly deleterious mutations will have drastically different effects in this 387 

regard depending on the underlying population parameters. Hence, a large impact of selection is 388 

expected when such approaches are applied to synonymous sites in smaller and more compact 389 

genomes with higher gene densities and a larger input of deleterious mutations at closely linked 390 

sites.  391 

Comparing the two inferences methods investigated here, it appears that fastsimcoal2 is 392 

less prone to inferring false fluctuations in population size caused by BGS.  However, both 393 

methods falsely infer growth when it is absent, with increasing severity as the density of coding 394 

regions increases. The times of population growth inferred by both methods appear to be affected 395 

in unpredictable ways. Further, we observed little difference in performance when using all 396 

SNPs relative to when SNPs are thinned to be separated by 5kb (Supp Figure 12), presumably 397 

because the models investigated do not generate strong LD. Overall, the degree of mis-inference 398 

caused by a neglect of BGS is largely similar between the two methods.  399 
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However, it is noteworthy that even when all sites are strictly neutral, or only 5% of the 400 

genome experiences direct selection, demographic equilibrium is mis-estimated by MSMC as a 401 

series of size changes. The pattern of these erroneous size changes lend a characteristic shape to 402 

the MSMC curve (i.e., ancient decline and recent growth) which appears to resemble the 403 

demographic history previously inferred for the Yoruban population (Schiffels and Durbin 404 

2014), including the time at which changes in population size occurred (Supp Figure 13). 405 

Previous work has demonstrated that the resulting demographic model does not in fact fit the 406 

observed SFS in the Yoruban population (Beichman et al. 2017; Lapierre et al. 2017). A similar 407 

shape has also been inferred in the vervet subspecies (Warren et al. 2015; Figure 4), in passenger 408 

pigeons (Hung et al. 2014; Figure 2), in elephants (Palkopoulou et al. 2018; Figure 4), in 409 

Arabidopsis (Fulgione et al. 2018; Figure 3), and in grapevines (Zhou et al. 2017; Figure 2A). 410 

Although the inferred population size fluctuations under simulated neutrality are only 411 

~1.2-fold, in most empirical applications the fluctuations are of a somewhat larger magnitude (~ 412 

2-fold in pigeons, Arabidopsis, and grapevines).  Nonetheless, this neutral performance of 413 

MSMC under demographic equilibrium is concerning, and adds to the other previously published 414 

cautions concerning the interpretation of MSMC results. For example, Mazet et al. (2016) and 415 

Chikhi et al. (2018) demonstrated that under constant population size with hidden structure, 416 

inference may suggest false size change (see also Orozco-terWengel 2016). In addition, MSMC 417 

has been reported to falsely infer growth prior to instantaneous bottlenecks (Bunnefeld et al. 418 

2015). In addition, we observed that if insufficient genomic data is utilized, or more than one 419 

diploid genome is used to perform inference, MSMC falsely infers recent growth of varying 420 

magnitudes (as previously observed by Beichman et al. 2017).  421 

In sum, we find that the effects of purifying and background selection result in similar 422 

demographic mis-inference across approaches, and that masking functional sites does not yield 423 

accurate parameter estimates. In order to side-step many of these difficulties, our proposed 424 

approach of inferring demography by averaging selection effects across all possible DFE shapes 425 

within an ABC framework appears to be promising. Utilizing only functional regions, we found 426 

a great improvement in accuracy, without making any assumptions regarding the true underlying 427 

shape of the DFE or the neutrality of particular classes of sites. As such, this approach represents 428 

a more computationally efficient avenue if only demographic parameters are of interest, and 429 

.CC-BY-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 6, 2020. . https://doi.org/10.1101/2020.04.28.066365doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066365
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

ought to be particularly useful in the great majority of organisms in which unlinked neutral sites 430 

either do not exist, or are difficult to identify and verify. 431 

 432 

 433 

METHODS 434 

Simulations: Simulations were performed using SLiM 3.1 (Haller and Messer 2019) with 10 435 

replicates per evolutionary scenario. For every replicate, 22 chromosomes of 150Mb each were 436 

simulated, totaling ~3 Gb of information per individual genome (similar to the amount of 437 

information in a human genome). Within each chromosome, 3 different types of regions were 438 

simulated, representing non-coding intergenic, intronic, and exonic regions. Based on the NCBI 439 

RefSeq human genome annotation, downloaded from the UCSC genome browser for hg19 440 

(http://genome.ucsc.edu/; Kent et al. 2002), mean values of exon sizes and intron numbers per 441 

gene were calculated. To represent mean values for the human genome (Lander et al. 2001), each 442 

gene was comprised of 8 exons and 7 introns, and exon lengths were fixed at 350 bp. By varying 443 

the lengths of the intergenic and intronic regions, three different genomic configurations with 444 

varying densities of functional elements were simulated and compared - with 5%, 10% and 20% 445 

of the genome being under direct selection - hereafter referred to as genome5, genome10, and 446 

genome20, respectively. Genome5 was comprised of introns of 3000 bp and intergenic sequence 447 

of 31000 bp, genome10 of introns of 1500 bp and intergenic sequence of 15750 bp, while 448 

genome20 was comprised of introns of 600 bp and intergenic sequence of 6300 bp. The total 449 

chromosome sizes of these genomes were approximately 150 Mb (150,018,599 bp, 150,029,949 450 

bp, 150,003,699 bp in genome5, 10, and 20, respectively) with 2737, 5164, and 11278 genes per 451 

chromosome in genome5, 10 and 20, respectively. In order to be conservative with respect to the 452 

performance of existing demographic estimators, intronic and intergenic regions were assumed 453 

to be neutral. 454 

 Recombination and mutation rates were assumed to be equal at 1 x 10-8 /site / generation. 455 

Neither crossover interference (see the discussion in Campos and Charlesworth 2019) nor gene 456 

conversion were modeled. Exonic regions in the genomes experienced direct purifying selection 457 

given by a discrete DFE comprised of 4 fixed classes (Johri et al. 2020), whose frequencies are 458 

denoted by fi: f0, with 0 ≤ 2Nes < 1 (i.e., effectively neutral mutations), f1, with 1 ≤ 2Nes < 10 459 

(i.e., weakly deleterious mutations), f2, with 10 ≤ 2Nes < 100 (i.e., moderately deleterious 460 
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mutations), and f3, with 100 ≤ 2Nes < 2Ne (i.e., strongly deleterious mutations), where Ne is the 461 

effective population size and s is the reduction in fitness of the mutant homozygote relative to 462 

wild-type. Within each bin, the distribution of s was assumed to be uniform. All mutations were 463 

assumed to be semi-dominant. In all cases, the Ne corresponding to the DFE refers to the 464 

ancestral effective population size. Six different types of DFE were simulated: DFE1: a DFE 465 

skewed largely towards mildly deleterious mutations, given by f0=0.1, f1=0.7, f2=0.1, f3=0.1; 466 

DFE2: a DFE skewed towards moderately deleterious mutations, f0=0.1, f1=0.1, f2=0.7, f3=0.1; 467 

DFE3: a DFE skewed towards strongly deleterious mutations, f0=0.1, f1=0.1, f2=0.1, f3=0.7; 468 

DFE4: a DFE with equal proportions of all mutations, f0=0.25, f1=0.25, f2=0.25, f3=0.25; 469 

DFE5: a DFE with equal proportions of neutral and strongly deleterious mutations, f0=0.5, 470 

f1=0.0, f2=0.0, f3=0.5' and DFE6: a DFE with a majority of neutral mutations and a minority of 471 

strongly deleterious mutations, f0=0.7, f1=0.0, f2=0.0, f3=0.3.  472 

 Three different demographic models were tested for each of these DFEs (Supp Table 1): 473 

1) demographic equilibrium, 2) recent exponential 30-fold growth, resembling that estimated for 474 

the human CEU population (Gutenkunst et al. 2009), and 3) ~6-fold instantaneous decline, 475 

resembling the out-of-Africa bottleneck in humans (Gutenkunst et al. 2009).  476 

 477 

Running MSMC: In order to quantify the effect of purifying selection on demographic 478 

inference, we used entire chromosomes generated by SLiM to generate input files for MSMC. 479 

For comparison, and to quantify the effect of BGS alone on demographic inference, we masked 480 

the exonic regions to generate input files. For all parameters, MSMC was performed on a single 481 

diploid genome, as the results for this case were the most accurate (Supp Figure 1). Input files 482 

were made using the script ms2multihetsep.py provided in the msmc-tools-Repository 483 

downloaded from https://github.com/stschiff/msmc-tools. MSMC1 and 2 were run as follows: 484 

msmc_1.1.0_linux64bit -t 5 -r 1.0 -o output_genomeID input_chr1.tab input_chr2.tab … 485 

input_chr22.tab. Population sizes obtained from MSMC were plotted up to the maximum 486 

number of generations obtained from MSMC, and the final value of the ancestral population size 487 

was extended indefinitely as a dashed line. 488 

 489 

Running Fastsimcoal2: In order to minimize the effects of linkage disequilibrium (LD), only 490 

SNPs separated by 5 kb were used for inference, following Excoffier et al. (2013). Inference was 491 
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also performed by including all SNPs in order to assess the impact of violating the assumption of 492 

no LD on inference. Site frequency spectra (SFS) were obtained for both sets of SNPs for all 10 493 

replicates of every combination of demographic history and DFE. SNPs from all 22 494 

chromosomes were pooled together to calculate the SFS.  Fastsimcoal2 was used to fit each SFS 495 

to 4 distinct models: (a) equilibrium, which estimates only a single population size parameter 496 

(N); (b) instantaneous size change (decline/growth), which fits 3 parameters - ancestral 497 

population size (Nanc), current population size (Ncur), and time of change (T); (c) exponential size 498 

change (decline/growth), which also estimates 3 parameters - Nanc, Ncur and T; and (d) an 499 

instantaneous bottleneck model with 3 parameters – Nanc, intensity, and time of bottleneck. The 500 

parameter search ranges for both ancestral and current population sizes in all cases were 501 

specified to be uniformly distributed between 100-500000 individuals, while the parameter range 502 

for time of change was specified to be uniform between 100-10000 generations in all models. 503 

The intensity of the bottleneck, as specified by the population size during the reduction, was also 504 

sampled uniformly from the range 100-500000 individuals. The following command line was 505 

used to run fastsimcoal2: 506 

fsc26 -t demographic_model.tpl -n 150000 -d -e demographic_model.est -M -L 50 -q, 507 

Model selection was performed as recommended by Excoffier et al. (2013). For each 508 

demographic model, the maximum of maximum likelihoods from all replicates was used to 509 

calculate the Akaike Information Criterion (AIC) = 2 × number of parameters – 2 × 510 

ln(likelihood). The relative likelihoods (Akaike’s weight of evidence) in favor of the ith model 511 

was then calculated by:  512 

𝑤𝑤(𝑖𝑖) =
𝑒𝑒−0.5∆𝑖𝑖

∑ 𝑒𝑒−0.5∆𝑗𝑗4
𝑗𝑗=1

  513 

 where ∆𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖 − 𝐴𝐴𝐴𝐴𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚. The model with the highest relative likelihood was selected as the 514 

best model, and the parameters estimated using that model were used to plot the final inferred 515 

demography.  516 

 517 

Simulations of variable recombination and mutation rates, and repeat masking: In order to 518 

simulate variation in recombination and mutation rates, all 22 chromosomes were simulated by 519 

mimicking chromosome 6 (~171Mb) of the human genome. Recombination rates obtained from 520 

Yoruban populations were obtained from the UCSC genome browser, while the mutation rate 521 
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map (https://molgenis26.target.rug.nl/downloads/gonl_public/mutation_rate_map/release2/) was 522 

assumed to correspond to estimates obtained from de novo mutations (Francioli et al. 2015), as in 523 

Castellano et al. (2020). Absolute values of mutation rates were normalized in order to maintain 524 

the mean mutation rate across the genome at ~ 1.0 × 10-8 per site per generation. Recombination 525 

and mutation rate estimates were taken from positions of approximately 10 Mb to 160 Mb, with 526 

the recombination map starting at 10010063 bp and the mutation map starting at 10010001 bp. 527 

Regions with missing data for either of the two estimates were simulated with rates 528 

corresponding to the previous window, except for the case of centromeres in which no 529 

recombination was assumed. In order to understand the effect of excluding centromeric regions 530 

in empirical studies, the 4Mb region corresponding to the centromere was masked, 531 

corresponding to 48.5 to 52.5 Mb of the simulated 150Mb chromosomes. In order to evaluate the 532 

effect of masking repeat regions, random segments comprising 10% of each chromosome were 533 

masked. The lengths of these segments were drawn from the lengths of repeat regions found in 534 

the human genome (Supp Figure 5), as obtained from the repeat regions in the hg19 assembly of 535 

the human genome from the UCSC genome browser. 536 

 537 

Performing inference by approximate Bayesian computation (ABC): ABC was performed 538 

using the R package “abc” (Csilléry et al. 2010), and non-linear regression aided by a neural net 539 

(used with default parameters as provided by the package) was used to correct for the 540 

relationship between parameters and statistics (Johri et al. 2020). To infer posterior estimates, a 541 

tolerance of 0.1 was applied (i.e., 10% of the total number of simulations were accepted by ABC 542 

in order to estimate the posterior probability of each parameter). The weighted medians of the 543 

posterior estimates for each parameter were used as point estimates. ABC inference was 544 

performed under two conditions: (1) complete neutrality, or (2) the presence of direct purifying 545 

selection. In both cases only 2 parameters were inferred - ancestral (Nanc) and current (Ncur) 546 

population sizes. However, in scenario 2, the shape of the DFE was also varied. Specifically, the 547 

parameters f0, f1, f2, and f3 were treated as nuisance parameters and were sampled such that 0 ≤ fi 548 

≤ 1, and Σi fi = 1, for i = 0 to 3. In addition, in order to limit the computational complexity 549 

involved in the ABC framework, values of fi were restricted to multiples of 0.05 (i.e., fi ϵ {0.0, 550 

0.05, 0.10, …, 0.95, 1.0} ∀ i), which allowed us to sample 1,771 different DFE realizations. 551 

Simulations were performed with functional genomic regions, and the demographic model was 552 
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characterized by 1-epoch changes in which the population either grows or declines exponentially 553 

from ancestral to current size, beginning at a fixed time in the past.  554 

 For the purpose of illustration, and for a contrast with the human-like parameter set 555 

above, parameters for ABC testing were selected to resemble those of D. melanogaster African 556 

populations. Priors on ancestral and current population sizes were drawn from a uniform 557 

distribution between 105-107 diploid individuals, while the time of change was fixed at 106 558 

(~Ne) generations. In order to simulate functional regions, 94 single-exon genes, as described in 559 

Johri et al. (2020) and provided in 560 

https://github.com/paruljohri/BGS_Demography_DFE/blob/master/DPGP3_data.zip, were 561 

simulated with recombination rates specific to those exons (https://petrov.stanford.edu/cgi-562 

bin/recombination-rates_updateR5.pl) (Fiston-Lavier et al. 2010; Comeron et al. 2012). Mutation 563 

rates were assumed to be fixed at 3 × 10-9 per site per generation (Keightley et al. 2009; 564 

Keightley et al. 2014).  565 

 All parameters were scaled by the factor 320 in order to decrease computational time, 566 

using the principle first described by Hill and Robertson (1966), and subsequently by others 567 

(Comeron and Kreitman 2002; Hoggart et al. 2007; Kaiser and Charlesworth 2009; Kim and 568 

Wiehe 2009; Uricchio and Hernandez 2014; Campos and Charlesworth 2019). The scaled 569 

population sizes thus ranged between ~300–30000 and were reported as scaled values in the 570 

main text. One thousand replicate simulations were performed for every parameter combination 571 

(Nanc, Ncur, f0, f1, f2, f3); for performing ABC inference, 50 diploid genomes were randomly 572 

sampled without replacement, and summary statistics were calculated using pylibseq 0.2.3 573 

(Thornton 2003). Means and variances (between replicates) of the following summary statistics 574 

were calculated across the entire exonic region: nucleotide site diversity (π), Watterson’s θ, 575 

Tajima’s D, Fay and Wu’s H (both absolute and normalized), number of singletons, haplotype 576 

diversity, LD-based statistics (r2, D, D´), and divergence (i.e., number of fixed mutations per site 577 

per generation after the burn-in period). As opposed to the above examples, in this inference 578 

scheme only exonic data (i.e., directly selected sites) were utilized. Test datasets were generated 579 

in exactly the same fashion as described above. 580 

 581 

Analytical expectations for the relative site frequencies: To compute the expected relative 582 

frequencies of site frequency classes, the approach of Polanski and Kimmel (2003) was 583 
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followed. They describe a method for computing the “probability that a SNP has b mutant 584 

bases”, which is equivalent to the site frequency spectrum (SFS) of derived variants. This 585 

method (their equations 3-10) allows for the specification of arbitrary population size histories 586 

and sample sizes. For reasons of computational precision, a sample size of 10 diploid genomes 587 

was chosen. The demographic scenarios detailed in Supplementary Table 1 were implemented as 588 

piecewise functions of the effective population size (counting haploid genomes), and the effect 589 

of BGS was included by scaling these functions by values of B before population size change as 590 

obtained from the forwards-in-time simulations described above. A Mathematica notebook 591 

detailing these results, will be made available upon publication (see data availability statement). 592 

In addition, analytical expressions can be obtained for pairwise diversity values when there are 593 

step changes or exponential growth in population size, as described in the Appendix and in an 594 

example program that calculates diversity values after exponential growth. 595 

 596 

Data availability: The following data will be made publicly available upon acceptance of the 597 

manuscript: (1) Scripts used to perform simulations; (2) Input files used to run fastsimcoal2; (3) 598 

Scripts used for plotting; (4) Plotted results of MSMC and fastsimcoal2 for all models and 599 

scenarios tested in this work; (5) A Mathematica (version 12.1) notebook detailing calculations 600 

of analytical expectations for the relative SFS; (6) An example program (Fortran script) 601 

demonstrating how to obtain analytical expressions for values of B after exponential growth. All 602 

supplemental files will be made publicly available at 603 

https://github.com/paruljohri/demographic_inference_with_selection.  604 

 605 
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APPENDIX 614 

There are two simple scenarios for population size change for which simple explicit expressions for the 615 

expected pairwise coalescent time or diversity can be obtained, without using the methodology of 616 

Polanski and Kimmel (2003) and Polanski et al. (2003) – a step change in N or an exponential growth 617 

in N. First consider the coalescent process for a step change, where the current and initial effective 618 

population sizes are denoted by Ne1 and Ne0, respectively. Let B be the background selection parameter 619 

at the start of the process of change, corresponding to effective size Ne0. For convenience, time is 620 

scaled in units of 2Ne1 generations, and the time of the change in population size on this scale is 621 

denoted byT0, counting back from the present time, T = 0. T0 is assumed to be sufficiently small that B 622 

remains approximately constant during the period since the change in size. Denote the ratio Ne0/Ne1 by 623 

R. The derivation for the case of a step change in population size is similar to that given by Pool and 624 

Nielsen (2009) for the purpose of comparing X chromosomes and autosomes. 625 

 Between times T andT0, coalescence occurs at a rate B–1 on the chosen timescale, so that the 626 

contribution from this period to the net coalescent time for a pair of alleles sampled at T = 0 is: 627 

 628 

  𝐵𝐵−1 � 𝑇𝑇exp(−𝐵𝐵−1𝑇𝑇) d𝑇𝑇 = 𝐵𝐵 − 𝐵𝐵exp(−𝐵𝐵−1𝑇𝑇0) − 𝑇𝑇0exp(−𝐵𝐵−1𝑇𝑇0)
𝑇𝑇0

0
     629 

 630 

 There is a probability of exp(–B–1T0) that there is no coalescence when T lies between 0 and T0, 631 

after which coalescence occurs at a rate 1/BR, giving a net contribution to the coalescence time of:  632 

 633 

                                    (𝐵𝐵𝐵𝐵 + 𝑇𝑇0)exp (−𝐵𝐵−1𝑇𝑇0) 634 

   635 

The net coalescence time for the stepwise change with BGS is given by the sum of these 636 

two expressions: 637 

 638 

                           B[1 + (𝐵𝐵 − 1) exp(−𝐵𝐵−1𝑇𝑇0)]                          (1a) 639 

 640 

If this expression is compared to the corresponding equation with B = 1, the apparent value of B 641 

at the time of sampling of the pair of alleles is given by: 642 
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 643 

                            𝐵𝐵𝑠𝑠 =  𝐵𝐵[1+(𝑅𝑅−1)exp�−𝐵𝐵−1𝑇𝑇0�]
[1+(𝑅𝑅−1)exp(–𝑇𝑇0)]

                  (1b) 644 

 645 

 Next, consider a process of exponential change in population size, starting at an initial effective 646 

size of Ne0 at t0 generations in the past and ending at size Ne1, such that the instantaneous growth rate r 647 

per generation is r =equal to ln(Ne1/Ne0)/t0. The effective population size at time t in the past is Ne(t) = 648 

Ne1exp(–rt); with BGS, the rate of coalescence at time t is 1/BNe(t). As before, the BGS parameter is 649 

assumed to remain constant over the period of population size change. It follows that the probability of 650 

no coalescence by generation t in the past is: 651 

 652 

         𝑃𝑃𝑚𝑚𝑛𝑛(𝑡𝑡) = exp [−∫ (2𝐵𝐵𝑁𝑁𝑒𝑒1)−1 exp(𝑟𝑟𝑡𝑡) d𝑡𝑡𝑡𝑡
0 ] = exp[𝑐𝑐−1(1 − 𝑒𝑒𝑟𝑟𝑡𝑡)]           (2) 653 

  654 

where c = 2BNe1r. 655 

 The pre-growth period with t  > t0 contributes an expected coalescent time of 656 

(2𝐵𝐵𝑁𝑁𝑒𝑒0+ 𝑡𝑡0)𝑃𝑃𝑚𝑚𝑛𝑛(𝑡𝑡0), on the scale of generations.  657 

 Following Slatkin and Hudson (1991), to obtain the contribution from the period with t  > 658 

t0, it is convenient to measure time as τ = rt. The probability of coalescence between τ and τ + 659 

dτ is then given by: 660 

 661 

                                      𝑃𝑃𝑛𝑛(𝜏𝜏) = 𝑐𝑐−1𝑒𝑒𝜏𝜏 exp[𝑐𝑐−1(1 − 𝑒𝑒𝜏𝜏)] d𝜏𝜏                      (3) 662 

   663 

 The contribution from this period to the expected coalescent time is given by the integral 664 

of τ Pc(τ) between 0 and τ 0. Following Slatkin and Hudson (1991), by transforming to u = 665 

exp(τ), this contribution can be expressed as the following integral: 666 

 667 

         𝜏𝜏1̅ = 𝑐𝑐−1𝑒𝑒𝑛𝑛−1  ∫ ln (𝑢𝑢)𝑒𝑒−𝑢𝑢𝑛𝑛−1𝑑𝑑u𝑢𝑢0
1                              (4)        668 

 669 

 This integral can easily be evaluated numerically. The corresponding mean coalescent 670 

time on the scale of generations is obtained by division by r, and the result can be added to 671 

(2𝐵𝐵𝑁𝑁𝑒𝑒0+ 𝑡𝑡0)𝑃𝑃𝑚𝑚𝑛𝑛(𝑡𝑡0), yielding the net expected coalescent time. By dividing the resulting 672 
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expression by the corresponding expression with B = 1, the apparent BGS effect at the time of 673 

sampling can be obtained, in the same way as for the step change model. 674 

 675 

 676 

FIGURES AND TABLES 677 

 678 

 679 

Table 1: Proportion (𝑓𝑓𝑖𝑖) of mutations in each class of the discrete distribution of fitness effects 680 

(DFE) simulated in this study. 681 

 𝒇𝒇𝟎𝟎 𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑 

DFE1 0.1 0.7 0.1 0.1 

DFE2 0.1 0.1 0.7 0.1 

DFE3 0.1 0.1 0.1 0.7 

DFE4 0.25 0.25 0.25 0.25 

DFE5 0.5 0.0 0.0 0.5 

DFE6 0.7 0.0 0.0 0.3 

 682 
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 683 
Figure 1: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 (blue 684 
lines; 10 replicates) with and without BGS, under demographic equilibrium (left column), 30-685 
fold exponential growth (middle column), and ~6-fold instantaneous decline (right column). The 686 
true demographic models are depicted as black lines, with the x-axis origin representing the 687 
present day. (a) All genomic sites are strictly neutral. (b) Exonic sites experience purifying 688 
selection specified by a DFE comprised largely of weakly deleterious mutations (DFE1: f0 = 0.1, 689 
f1 = 0.7, f2 = 0.1, f3 = 0.1). (c) Exonic sites experience purifying selection specified by a DFE 690 
comprised largely of moderately deleterious mutations (DFE2: f0 = 0.1, f1 = 0.1, f2 = 0.7, f3 = 691 
0.1). (d) Exonic sites experience purifying selection specified by a DFE comprised largely of 692 
strongly deleterious mutations (DFE3: f0 = 0.1, f1 = 0.1, f2 = 0.1, f3 = 0.7). Exons represent 20% 693 
of the genome, and exonic sites were masked/excluded when performing demographic inference, 694 
quantifying the effects of BGS alone. The dashed lines represent indefinite extensions of the 695 
ancestral population sizes. 696 
 697 
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 698 
Figure 2: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 (blue 699 
lines; 10 replicates) in the presence of BGS generated by strongly deleterious mutations. Directly 700 
selected sites comprised 20% of the genome and were masked when performing demographic 701 
inference. (a) Exons experience purifying selection, with 30% of new mutations being strongly 702 
deleterious, and the remaining being neutral (specified by DFE6). (b) Exons experience purifying 703 
selection, with 50% of new mutations being strongly deleterious, and the remainder being neutral 704 
(specified by DFE5). The true demographic models are given as black lines, with the x-axis 705 
origin representing the present day. The dashed lines represent indefinite extensions of the 706 
ancestral population sizes. 707 
 708 

 709 
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 710 
Figure 3: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 (blue 711 
lines; 10 replicates) in the presence of BGS with varying proportions of the genome under 712 
selection, for demographic equilibrium (left column), exponential growth (middle column), and 713 
instantaneous decline (right column). Exonic sites were simulated with purifying selection with 714 
all fi values equal to 0.25 (DFE4), and were masked when performing inference. Directly 715 
selected sites comprise (a) 20% of the simulated genome, (b) 10% of the simulated genome, and 716 
(c) 5% of the simulated genome. The true demographic models are given by the black lines, with 717 
the x-axis origin representing the present day. The dashed lines represent indefinite extensions of 718 
the ancestral population sizes. 719 
 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 
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 728 
Figure 4: B is the nucleotide site diversity (π) with BGS relative to its purely neutral expectation 729 
(π 0). The results are shown for (a) demographic equilibrium, (b) population growth, and (c) 730 
population decline. For all cases, the ancestral B (i.e., B pre-change in population size) is shown 731 
in white bars, B post-change in population size is shown in solid gray bars, and the analytical 732 
expectations for the post-size change B is shown as red bars. Various DFEs were used: DFE1: f0 733 
= 0.1, f1 = 0.7, f2 = 0.1, f3 = 0.1. DFE2: f0 = 0.1, f1 = 0.1, f2 = 0.7, f3 = 0.1.  DFE3: f0 = 0.1, f1 734 
= 0.1, f2 = 0.1, f3 = 0.7. DFE4: f0 = f1 = f2 = f3 = 0.25. DFE5: f0 = 0.5, f1 = 0.0, f2 = 0.0, f3 = 735 
0.5. DFE6: f0 = 0.7, f1 = 0.0, f2 = 0.0, f3 = 0.3. Exonic sites comprised ~10% of the genome, 736 
roughly mimicking the density of the human genome.  737 
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 738 
Figure 5: The site frequency spectrum (SFS) of derived allele frequencies at neutral sites from 739 
10 diploid genomes under (a) demographic equilibrium, (b) population growth, and (c) 740 
population decline, under the same DFEs as shown in Figure 4. The x-axis indicates the number 741 
of sample alleles (out of 20) carrying the derived variant. Exonic sites comprised ~10% of the 742 
genome, roughly mimicking the density of the human genome. The red solid circles give the 743 
values predicted analytically with a purely neutral model, but taking the simulation values of B 744 
into account in order to quantify the effective population size.  745 

 746 

 747 
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 748 
Figure 6: Comparison of estimates of ancestral (Nanc) and current (Ncur) population sizes when 749 
assuming neutrality vs when varying the DFE shape as a nuisance parameter, using an ABC 750 
framework. Inference is shown for demographic equilibrium (left column), 2-fold exponential 751 
growth (middle column), and 2-fold population decline (right column), for five separate DFE 752 
shapes that define the extent of direct purifying selection acting on the genomic segment for 753 
which demographic inference is performed: (a) neutrality (f0 = 1, f1 = 0, f2 = 0, f3 = 0), (b) weak 754 
purifying selection (DFE1: f0 = 0.1, f1 = 0.7, f2 = 0.1, f3 = 0.1), (c) moderately strong purifying 755 
selection (DFE2: f0 = 0.1, f1 = 0.1, f2 = 0.7, f3 = 0.1), (d) strong purifying selection (DFE3: f0 = 756 
0.1, f1 = 0.1, f2 = 0.1, f3 = 0.7), and (e) a DFE in which all classes of mutations are equally 757 
frequent (DFE4: f0 = f1 = f2 = f3 = 0.25). In each, the horizontal lines give the true values (black 758 
for Nanc; and gray for Ncur) and the box-plots give the estimated values. Black and gray boxes 759 
represent estimates when assuming neutrality, while red boxes represent estimates when the DFE 760 
is treated as a nuisance parameter.  761 
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SUPPLEMENTARY 
 

 
Supp Figure 1: Performance of MSMC under neutrality and demographic equilibrium when 
using 1, 2 and 4 diploid individuals for inference and with varying chromosome sizes: (a) 10 Mb, 
(b) 50 Mb, (c) 200 Mb, (d) 1 Gb. The numbers of replicates for each panel varied slightly around 
100. MSMC runs with 4 diploid individuals could not be obtained due to the long computational 
times required.  As shown, MSMC has a tendency to take a common shape, often falsely 
indicating recent population growth. 
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Supp Figure 2: Performance of fastsimcoal2 under neutrality and demographic equilibrium with 
varying chromosome sizes: (a) 10 Mb, (b) 50 Mb, (c) 200 Mb, (d) 1 Gb and when different 
model choices are provided: Left panel: the correct model of constant population size is 
specified; Middle panel: model selection was performed between 3 models – equilibrium, 
instantaneous size change, and exponential size change; Right panel: model selection was 
performed between 4 models – equilibrium, instantaneous size change, exponential size change, 
and instantaneous bottleneck. Inference was performed using 50 diploid individuals and the 
inferred population size estimates of the best model are plotted (blue lines). The numbers of 
replicates for each panel varied slightly around 100. The true model is shown in black.  
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Supp Figure 3: Inferred demography from MSMC (red lines) and fastsimcoal2 (blue lines) in 
the presence of background selection, with the true DFE shown to the left of the panel, for 2-fold 
instantaneous decline (right column) and 2-fold exponential growth (left column). In this case, 
20% of the genome experiences direct selection. The true demographic models are shown as 
black lines. 
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Supp Figure 4: Inference of demography by MSMC (red lines; 10 replicates) and fastsimcoal2 
(blue lines; 10 replicates) under demographic equilibrium (left column), 30-fold exponential 
growth (middle column), and ~6-fold instantaneous decline (right column) in the presence of 
direct purifying selection (i.e., directly selected sites are not masked). The true demographic 
model is depicted in black lines. Exonic sites experience purifying selection specified by the 
following DFEs: (a) DFE1: f0 = 0.1, f1 = 0.7, f2 = 0.1, f3 = 0.1, (b) DFE2: f0 = 0.1, f1 = 0.1, f2 = 
0.7, f3 = 0.1, (c) DFE3: f0 = 0.1, f1 = 0.1, f2 = 0.1, f3 = 0.7, (d) DFE4: f0 = 0.25, f1 = 0.25, f2 = 
0.25, f3 = 0.25, (e) DFE5: f0 = 0.7, f1 = 0.0, f2 = 0.0, f3 = 0.3, (f) DFE6: f0 = 0.5, f1 = 0.0, f2 = 
0.0, f3 = 0.5. In this case, 20% of the genome is under selection.  
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Supp Figure 5: Distribution of lengths of repeat regions in the human genomes (hg19). Shown 
above is the distribution of lengths up to 1000 bp, although lengths of repeat regions range 
between 6 to 160602 bp. 
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Supplementary Figure 6: Performance of demographic inference by MSMC (red lines) and 
fastsimcoal2 (blue lines) under different scenarios of neutrality when the true model is 
equilibrium: (a) there is variation in recombination and mutation rates, (b) there is variation in 
recombination and mutation rates and the centromeric region is masked, (c) there is variation in 
recombination and mutation rates, and short regions resembling repeats (comprising 10% of each 
chromosome) are randomly masked across the genome, and (d) there is variation in 
recombination and mutation rates, and the centromere as well as small-sized repeats are 
randomly masked across the genome. The maximum and minimum fold change detected in every 
scenario is indicated on the upper right corner.  
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Supplementary Figure 7 : Performance of demographic inference by MSMC (red lines) and 
fastsimcoal2 (blue lines) under different scenarios of neutrality when the true model is 30-fold 
exponential growth: (a) there is variation in recombination and mutation rates across the genome, 
(b) there is variation in recombination and mutation rates, and the centromeric region is masked, 
(c) there is variation in recombination and mutation rates, and short regions resembling repeats 
are randomly masked across the genome (comprising of 10% of each chromosome), and (d) 
there is variation in recombination and mutation rates, and the centromere as well as small-sized 
repeats are randomly masked across the genome.  
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Supplementary Figure 8: Performance of demographic inference by MSMC under different 
scenarios of neutrality when the true model is 6-fold instantaneous decline: (a) there is variation 
in recombination and mutation rates across the genome, (b) there is variation in recombination 
and mutation rates, and the centromeric region is masked, (c) there is variation in recombination 
sand mutation rates, and short regions resembling repeats are randomly masked across the 
genome (comprising of 10% of each chromosome), and (d) there is variation in recombination 
and mutation rates, and the centromere as well as small-sized repeats are randomly masked 
across the genome.  
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Supplementary Figure 9: Performance of demographic inference by MSMC (red lines) and 
fastsimcoal2 (blue lines) in the presence of background selection, under different scenarios when 
the true model is equilibrium: (a) there is variation in recombination and mutation rates, (b) there 
is variation in recombination and mutation rates and the centromeric region is masked, (c) there 
is variation in recombination and mutation rates, and short regions resembling repeats 
(comprising 10% of each chromosome) are randomly masked across the genome, and (d) there is 
variation in recombination and mutation rates, and the centromere as well as small-sized repeats 
are randomly masked across the genome. Exons comprise of 20% of the genome, experience 
purifying selection given by DFE4 (f0 = f1 = f2 = f3 = 0.25) and are masked when performing 
inference. 
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Supplementary Figure 10: Performance of demographic inference by MSMC (red lines) and 
fastsimcoal2 (blue lines) in the presence of background selection, under different scenarios when 
the true model is 30-fold exponential growth: (a) there is variation in recombination and 
mutation rates, (b) there is variation in recombination and mutation rates and the centromeric 
region is masked, (c) there is variation in recombination and mutation rates, and short regions 
resembling repeats (comprising 10% of each chromosome) are randomly masked across the 
genome, and (d) there is variation in recombination and mutation rates, and the centromere as 
well as small-sized repeats are randomly masked across the genome. Exons comprise of 20% of 
the genome, experience purifying selection given by DFE4 (f0 = f1 = f2 = f3 = 0.25), and are 
masked when performing inference. 
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Supplementary Figure 11: Performance of demographic inference by MSMC (red lines) and 
fastsimcoal2 (blue lines) in the presence of background selection, under different scenarios when 
the true model is a 6-fold instantaneous decline: (a) there is variation in recombination and 
mutation rates, (b) there is variation in recombination and mutation rates and the centromeric 
region is masked, (c) there is variation in recombination and mutation rates, and short regions 
resembling repeats (comprising 10% of each chromosome) are randomly masked across the 
genome, and (d) there is variation in recombination and mutation rates, and the centromere as 
well as small-sized repeats are randomly masked across the genome. Exons comprise of 20% of 
the genome, experience purifying selection given by DFE4 (f0 = f1 = f2 = f3 = 0.25), and are 
masked when performing inference. 
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Supp Figure 12: Scenarios where demographic inference by fastsimcoal2 resulted in different 
best models when performed using all SNPs (right column) and when SNPs were thinned to be 
separated by 5 kb (left column). The best model was defined as the model corresponding to the 
lowest AIC over all ten replicates. The DFEs are indicated on the left. (a) Direct purifying 
selection under DFE4 (exonic sites are not masked) in 5% of the genome;  (b) Direct purifying 
selection under DFE5 (exonic sites are not masked) in 5% of the genome;  (c) Direct purifying 
selection under DFE1 (exonic sites are not masked) in 10% of the genome;  (d) Direct purifying 
selection under DFE6 (exonic sites are not masked) in 10% of the genome;  (e) Background 
selection under DFE5 (i.e., exonic sites are masked) in which 5% of the genome is exonic;  (f) 
Background selection under DFE1 (i.e., exonic sites are masked) in which 20% of the genome is 
exonic; (g) Background selection under DFE2 (i.e., exonic sites are masked) in which 20% of the 
genome is exonic;  (h) Background selection under DFE4 (i.e., exonic sites are masked) in which 
20% of the genome is exonic.   
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Supp Figure 13: Inference of demographic history by MSMC. Top panel / red line: simulations 
in which the true model is constant population size, and 50% of new mutations in exons are 
strongly deleterious with the remainder being neutral, where exons comprise 5% of the genome. 
Bottom panel / green line: the empirical estimate of population history of the YRI population 
inferred with MSMC by Schiffels and Durbin (2014). The x-axis is in years (assuming a 
generation time of 30 years). Note that the y-axes are on different scales, and the magnitude of 
change observed in the empirical data is considerably larger in the simulated data. Thus, this 
comparison is only meant to illustrate this common shape taken in MSMC plots (and see similar 
shapes in, for example, vervets (Warren et al. 2015; Figure 4) and passenger pigeons (Hung et al. 
2014; Figure 2)). 
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Supp Table 1: Parameters underlying the human-like demographic models considered. 
 
 Demographic 

models 
Ancestral 
population size 

Current 
population size 

Time of change 
in generations 

1 Equilibrium 10,000 10,000 NA 
2 Exponential 

growth 
1000 30,000 850 

3 Instantaneous 
decline 

12,300 2,100 4,750 

 
 
 
 
Supp Table 2: Nucleotide diversity in the presence of BGS relative to that under neutrality (B) 
calculated for a neutral site distance y bases from the end of a gene/exon of length 500 bp. The 
exon experiences purifying selection with strength 2Nes=10, where Ne is the effective population 
size and s is the reduction in fitness. Shown below is t=hs where h is the dominance coefficient 
(assumed to be 0.5 here), r is the recombination rate per site per generation and u is the mutation 
rate per site per generation. B was calculated by using Equation 2 of Johri et al. (2020). 
 

Ne 
t (2Nes 
=10) r u B (y=1) B (y=10) B (y=1000) 

104 0.00025 1.00 × 10-8 1.00 × 10-8 0.9805 0.9806 0.9820 
  1.00 × 10-6 1.00 × 10-6 0.5152 0.5312 0.9444 
106 2.5 × 10-6 1.00 × 10-8 1.00 × 10-8 0.5152 0.5312 0.9445 
  1.00 × 10-6 1.00 × 10-6 0.4920 0.8227 0.9992 
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