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First inspired by the seminal work of Lewontin and Krakauer (1973. Distribution of gene frequency as a test of the theory of the

selective neutrality of polymorphisms. Genetics 74(1):175–195.) and Maynard Smith and Haigh (1974. The hitch-hiking effect of a

favourable gene. Genet Res. 23(1):23–35.), genomic scans for positive selection remain a widely utilized tool in modern population

genomic analysis. Yet, the relative frequency and genomic impact of selective sweeps have remained a contentious point in the field

fordecades, largelyowing toan inability toaccurately identify their presenceandquantify their effects—with currentmethodologies

generally being characterized by low true-positive rates and/or high false-positive rates under many realistic demographic models.

Most of these approaches are based on Wright–Fisher assumptions and the Kingman coalescent and generally rely on detecting

outlier regions which do not conform to these neutral expectations. However, previous theoretical results have demonstrated that

selective sweeps are well characterized by an alternative class of model known as the multiple-merger coalescent. Taken together,

this suggests the possibility of not simply identifying regions which reject the Kingman, but rather explicitly testing the relative fit of a

genomic window to the multiple-merger coalescent. We describe the advantages of such an approach, which owe to the branching

structure differentiating selective and neutral models, and demonstrate improved power under certain demographic scenarios

relative toacommonlyusedapproach.However, regionsof thedemographicparameter spacecontinue toexist inwhichneither this

approach nor existing methodologies have sufficient power to detect selective sweeps.
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Introduction

Genomic scans for positively selected loci, sometimes referred

to as hitchhiking mapping (Harr et al. 2002), remain as a

standard and widely utilized tool in population genomic anal-

yses, with applications and implications ranging from ecolog-

ical to clinical (Haasl and Payseur 2016; Jensen et al. 2016;

Stephan 2019). Although a wide variety of statistical

approaches have been proposed for such mapping, they com-

monly rely on distinctive genomic signatures impacting levels

of variation, the site frequency spectrum (SFS), and patterns of

linkage disequilibrium (LD) (Maynard Smith and Haigh 1974;

and see the reviews of Nielsen 2005; Crisci et al. 2012; Pavlidis

and Alachiotis 2017). Beginning with the well-founded as-

sumption that the majority of the genomes of commonly

studied organisms are primarily shaped by genetic drift and

direct and linked purifying selection effects (Comeron 2017;

Jensen et al. 2019), these methods search for outlier genomic

regions which may be consistent with positive selection—with

a typical genomic scan resulting in a range of localized

genomic windows which represent putative sweep candi-

dates based on this criterion.

The summary statistics upon which these scans are based

act as a proxy for the underlying genealogical history, with

neutral expectations generally being derived from the classic

Kingman coalescent framework (Kingman 1982), which in

turn is described in the limit of the Wright–Fisher (WF) model

(Wright 1931). This framework relies on the expectation that

only two lineages coalesce each generation, necessitating the

assumption that any individual may only contribute a small

number of progeny to the next generation. Yet, a strong se-

lective sweep inherently violates this assumption, as individu-

als may leave larger numbers of progeny owing to the gain in

fitness afforded by the beneficial mutation. In this way, the

transit time of a beneficial mutation becomes fast compared

with neutral expectations, and this rapid change in frequency

between generations generates the frequency spectrum- and

LD-based expectations associated with selective sweeps on

which existing methodologies are based.
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As opposed to simply detecting such outlier loci, however,

alternative coalescent models have been studied which are

appropriate for directly describing the progeny skew/multiple-

branch coalescent events associated with selective sweeps

(Durrett and Schweinsberg 2005; and see the reviews of

Tellier and Lemaire 2014; Irwin et al. 2016). In this study,

we take advantage of this rich but underutilized mathematical

population genetic literature from multiple-merger coalescent

(MMC) theory, and assess the potential improvement that

such models may lend to empirical population genomic scans

for positively selected loci. We implement a sliding window

MMC versus Kingman approximate Bayesian model choice

approach, which specifically assesses whether a given outlier

region is indeed well fit by the type of MMC progeny skew

associated with a selective sweep. In comparing true-positive

rates (TPRs) and false-positive rates (FPRs) of this approach

with a commonly used method, we demonstrate via simula-

tion that the inclusion of a consideration of fit to an MMC

model has important potential to improve our ability to dif-

ferentiate nonequilibrium demographic effects (e.g., popula-

tion size change) from selective effects—a notoriously difficult

task, and one that is related to the extreme FPRs often asso-

ciated with genomic scans (Teshima et al. 2006; Thornton and

Jensen 2007; Crisci et al. 2013; Harris et al. 2018). This im-

provement owes to the fact that although neutral demo-

graphic events may alter branch lengths, they do not alter

branching structure to create MMC events as with a selective

sweep. However, when the internal branches produced by

severe bottleneck events are sufficiently short (such that the

likelihood of observing a mutation residing on that branch is

small), the well-characterized difficulty in distinguishing these

models remains (see Barton 1998).

In sum, this work further demonstrates the great utility of

developing and incorporating alternative coalescent models in

empirical population genomic analyses (Wakeley 2013), as

there are a great many evolutionary scenarios for which the

Kingman coalescent may not be the optimal choice.

Materials and Methods

Simulations

Diploid populations of size N were simulated using the

forward-in-time simulator SLiM v3 (Haller and Messer

2019). All simulations began with a burn-in of 10 N genera-

tions of standard, neutral WF conditions.

The “observed” data that were classified consist of long

chromosomes (L¼ 5 Mb; resulting in regions both linked and

unlinked to the beneficial mutation under selection models).

At the end of the burn-in period, populations were assigned a

demographic scenario (equilibrium or population bottleneck;

see below section), after which a population either continued

under neutral conditions or experienced a deterministic selec-

tive sweep from a de novo beneficial mutation. Selective

sweeps were simulated with strength 2Ns ¼ 100, 250, and

500 (as well as 1,000 under the strongest bottleneck model).

These occurred from a de novo beneficial mutation at the

center of the 5-Mb region. These observed data were used

to assess performance, determining what fraction of neutral

scenarios were correctly identified as Kingman, and what

fraction of sweep scenarios were correctly identified as MMC.

Such classification was based on the “training data,”

which either evolved under: 1) neutral WF conditions (the

Kingman coalescent) or 2) short periods of sweepstakes re-

production, in which individuals may contribute a w propor-

tion of progeny to the next generation (resulting in an MMC

when w becomes large). Model selection was performed in a

sliding window (size¼ 100 kb, step¼ 50 kb), comparing each

window in the observed data to the training data. For each

demographic history, we simulated 30,000 instances of the

Kingman model and 30,000 instances of the MMC model.

Population parameters were chosen to reflect humans

(Ne ¼ 10eþ4, l ¼ 1.2e-8/site/generation, q ¼ 1e-8/site/

generation). To reduce computation time, parameters

were scaled by a fixed value of k ¼ 2 (Nscaled ¼
N/k, lscaled ¼ l�k, qscaled ¼ q�k).

Demographic Models

Data were simulated under a range of demographic models,

including equilibrium and bottleneck scenarios of varying in-

tensity. Bottlenecks were modeled in the following way: a

population of constant size N was reduced to size bN at

time tb (in units of 4 N generations) in the past and then re-

covered instantaneously to the same size at time tr. Population

bottlenecks were simulated for various severities (b ¼ 10%,

2%, 0.2%) for 0.005�4 N generations. We simulated the

beneficial mutation occurring at the time of population recov-

ery, and the population was sampled at the time of fixation.

Therefore, the time since the end of the bottleneck is a prod-

uct of the selective sweep (which is treated as an unknown),

as our simulations are dependent upon fixation. To enable an

appropriate neutral comparison, neutral (Kingman model)

bottleneck simulations were sampled from times ranging

from immediately after the bottleneck (s ¼ 0 generations)

to the maximum number of generations necessary for the

weakest beneficial mutation considered to reach fixation

(ranging from 5,000 to 10,000 generations, depending on

the underlying population history). In other words, this

allowed a fair comparison between bottleneck simulations

with and without selection, as they represent the same distri-

bution of post-bottleneck sampling times.

MMC Comparisons

We here utilized one particular type of MMC, the w-coa-

lescent described by Eldon and Wakeley (2006) (and see

Matuszewski et al. 2018). Under this model, the majority

of reproductive events in a population of size N are of the
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WF variety yielding, on an average, a single offspring;

whereas a single reproduction will result in a multiple-

merger event yielding wN offspring. Although there are a

variety of potentially relevant MMC models (see review of

Tellier and Lemaire 2014), a distinct advantage of the w-

coalescent is the ability to clearly assign a biological inter-

pretation to the model; namely, w represents the fraction

of individuals in the following generation contributed by a

single individual in the current generation. The value of w
was chosen from �U[0.004, 0.08]. The lower bound

reflects progeny skews more extreme than the normal var-

iance under Kingman assumptions for populations of the

size considered here. The upper bound was chosen based

on the distribution of population-wide segregating sites

(mean ¼ 14, SD ¼ 10) and the ability to reliably calculate

summary statistics for the subsequent ABC analysis; in

other words, the MMC model often results in an absence

of variation under larger values of w.

Following Sackman et al. (2019), we utilized a system of

subpopulations with migration to achieve the desired sweep-

stakes reproductive events. In the first generation, a new neu-

tral mutation (m2) arises in a randomly selected individual. All

other generations in the w-phase track individuals carrying

m2. Each generation consists of these steps:

1. One individual carrying m2 is chosen from the population

(A) and placed in a separate subpopulation (B) of size N¼
1. The unidirectional migration rate from B to A is set to w.

2. One WF generation occurs, with migration from B result-

ing in the chosen individual contributing Nw of the off-

spring populating the next generation of A. The

remaining N(1�w) offspring come from WF reproductive

events.

3. Subpopulation B is removed. The next generation begins.

The w phase ends when m2 reaches fixation and the whole

population returns to WF conditions. Summary statistics were

sampled at fixation and then at 20 randomly selected time-

points.

Statistical Analyses

Summary statistics (Tajima’s D, the number of segregating

sites, Fu and Li’s F, Fu and Li’s D, nucleotide diversity, haplo-

type diversity, Wall’s B and Q, Rozas’s ZA and ZZ, and Kelly’s

Zns) were calculated using the R package popGenome (Pfeifer

FIG. 1.—Probability of accepting the MMC model in a population characterized by equilibrium demography. We simulated 20 replicate deterministic

sweeps (a representative replicate is plotted here) occurring from a de novo beneficial mutation at the center of the chromosome (site¼ 2,500,000) with a

strength of (A) 2Ns¼ 100, (B) 2Ns¼ 250, and (C) 2Ns¼ 500. Probabilities were estimated along the 5-Mb chromosome in windows of 100 kb with a step

size of 50kb. The dashed red line indicates the 99% credible interval for accepting the MMC model under neutral conditions. Probability was estimated using

the ABC rejection method with a tolerance of 10%. The w model included�U[0.004, 0.8]. As shown, sweep detection is highly accurate under this constant

population size model, with the size of the impacted genomic region becoming characterized by underlying MMC trees growing with the strength of

selection, as expected.
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et al. 2014). Prior to analysis, correlation coefficients were

estimated and highly correlated parameters (>0.8) were re-

moved; the remaining parameters were then centered and

scaled. Consistent with earlier work demonstrating an excess

of low- and high-frequency derived variants (Eldon and

Wakeley 2006; Matuszewski et al. 2018) and elevated LD

(Eldon and Wakeley 2008; Birkner et al. 2013) under MMC

models, the statistics capturing these patterns were most

informative.

Model Selection

For a given demographic scenario, we first determined

whether it was possible to differentiate between simulations

conducted under the Kingman versus MMC, and their

corresponding misclassification rates. We did so by imple-

menting leave-one-out cross-validation (cv4postpr) in the R

package abc (Csillery et al. 2012; and see https://cran.r-proj-

ect.org/web/packages/abc/abc.pdf). Then, we performed a

sliding window analysis of the selective sweep simulations

to approximate the posterior probability (postpr) that each

window belonged to the Kingman versus MMC model. A

window was considered “sweep-like” if the probability of

the MMC model exceeded the 99% neutral credible interval.

Method Comparison

We compared the performance of our method to that of the

widely used SweeD approach (Pavlidis et al. 2013). This

method is a more computationally efficient version of the

FIG. 2.—Probability of accepting the MMC model in a population characterized by a bottlenecked (severity ¼ 10%, duration ¼ 100 generations)

demographic history. We simulated 20 replicate sweeps (a representative replicate is plotted here) occurring from a de novo beneficial mutation at the center

of the chromosome (site ¼ 2,500,000) with a strength of (A) 2Ns ¼ 100, (B) 2Ns ¼ 250, and (C) 2Ns ¼ 500. Probabilities were estimated along the 5-Mb

chromosome in windows of 100 kb with a step size of 50 kb. The dashed red line indicates the 99% credible interval for accepting the MMC model under

neutral conditions. Probability was estimated using the ABC rejection method with a tolerance of 10%. The w model included �U[0.004, 0.8]. As shown,

performance remains strong as in figure 1, though a proportion of outlier regions now exist in which neutral trees are generated under this bottleneck model

which become difficult to distinguish from the MMC trees generated by the selective sweep.
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popular SweepFinder analysis (Nielsen et al. 2005), which it-

self was an implementation (with several modifications) of the

CLRT of Kim and Stephan (2002) for use on genome-scale

data. Despite only relying on the SFS, SweeD was chosen as a

benchmark as previous studies (Crisci et al. 2013) have well

described the Type I and Type II error of SweeD in comparison

with SweepFinder, OmegaPlus, iHS, and other common ge-

nome scan statistics. For example, Crisci et al. found that

these SFS-based packages were generally characterized

both by lower TPR and FPR under population bottleneck mod-

els, whereas approaches additionally utilizing LD-based pre-

dictions had greater power at the expense of inflated false

positives.

We analyzed selective sweeps under both equilibrium and

bottlenecked population histories using 100 grid points (anal-

ogous to our sliding window sizes) using all observed poly-

morphic sites. To generate a null statistical threshold for

calling a region swept or not, we also analyzed neutral data

under the same demographic history. To determine the TPRs

of MMC model choice versus SweeD, we assessed whether

there was a significant test statistic within the region of the

selected site.

Results and Discussion

For each demographic history, two competing model selec-

tions were considered: the Kingman and the MMC. Based on

the initial theoretical results of Durrett and Schweinsberg

(2005), we anticipated that strictly neutral regions would be

well fit by the Kingman coalescent, whereas selected regions

would be better fit by the MMC. As a first step, leave-one-out

cross-validation demonstrated that, for each demographic

history here examined, the Kingman and MMC models are

indeed discernable (supplementary table 1, Supplementary

FIG. 3.—Probability of accepting the MMC model in a population characterized by a severely bottlenecked (severity ¼ 0.2%, duration ¼ 100

generations) demographic history. We simulated 20 replicate sweeps (a representative replicate is plotted here) occurring from a de novo beneficial mutation

at the center of the chromosome (site¼ 2,500,000) with a strength of (A) 2Ns¼ 100, (B) 2Ns¼ 250, (C) 2Ns¼ 500, and (D) 2Ns¼ 1,000. Probabilities were

estimated along the 5-Mb chromosome in windows of 100 kb with a step size of 50 kb. The dashed red line indicates the 99% credible interval for accepting

the MMC model under neutral conditions. Probability was estimated using the ABC rejection method with a tolerance of 10%. The w model included

�U[0.004, 0.8]. As shown, for this extreme bottleneck model, the underlying coalescent trees produced under neutrality relative to those produced by a

selective sweep are indistinguishable, consistent with previous work on the topic (Barton 1998; Poh et al. 2014). This performance is thus shared with other

existing approaches (table 1). Importantly however, although there is no power to detect selective sweeps under this model, the neutrality threshold for

differentiating the MMC versus Kingman models generated under this demographic history is such that false-positive detections are relatively unlikely.
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Material online)—though the MMC model is associated with

reduced TPRs and increased FPRs compared with the

Kingman.

As anticipated based on the bulk of earlier work describing

the relative difficulties of distinguishing selective sweeps from

bottlenecks of differing severity (Crisci et al. 2013), the thresh-

old for accurately identifying a recently swept region varied by

demographic history (supplementary table 2, Supplementary

Material online), with more extreme bottlenecks generally

resulting in higher thresholds. The performance of the ABC

model selection for different demographic histories and

strengths of selection may be found in figures 1–3. Under

equilibrium demography, positive selection is identifiable

even for relatively small selection coefficients (fig. 1). As the

bottleneck severity increases, weak positive selection becomes

increasingly difficult to detect (fig. 2), until it is eventually not

differentiable under extreme population contractions (fig. 3),

consistent with previous studies (Poh et al. 2014).

The above result is simply a feature of the underlying sim-

ilarity between extreme population bottlenecks and selective

sweeps (Barton 1998). As such, no polymorphism-based

methodsproposedtodatehavepower in thisparameter range

(Crisci et al. 2013), and existing methodologies claiming to

maintain power under such scenarios have been soundly dis-

puted (Harris et al. 2018). Thus, the question under consider-

ation is whether power and FPRs may be improved by the

inclusion of MMC model choice in the relatively wide range

of demographic parameter space for which it is possible, in

principle, to differentiate sweep and bottleneck effects.

Encouragingly, in comparison with the most widely used

SweeD/Sweepfinder framework, theapproachhereproposed

appears to possess a number of advantages (table 1). By di-

rectly assessing the fit of an MMC model, we observed im-

proved power to detect selective sweeps under a variety of

bottleneck scenarios. Thisowes to the fact that although these

neutral demographic histories may rescale branch lengths in a

manner similar to a selective sweep and reject neutrality using

common summary statistics, they do not create multiple-

merger events (as does a selective sweep), and thus are not

particularly well fit by an MMC model. Conversely, selective

sweeps are demonstrated to be poorly fit by the Kingman, but

well fit by the MMC. Moreover, as multiple evolutionary pro-

cesses which result in a localized deficit of variation have been

shown to be problematic for variation-based sweep scans—

includingbackgroundselectionandheterogeneity inmutation

rates (Huber et al. 2016)—it is additionally advantageous that

such models are not associated with MMC events.

In sum, our results suggest meaningfully improved power

by specifically considering whether a given candidate region is

well fit by a multiple-merger coalescent model. However,

particularly given elevated FPRs under the MMC relative to

Kingman, this model choice approach may be best utilized in

concert with standard statistics (such as SweeD), in order to

narrow the strongest candidate list. That is, conditional on

rejecting Kingman, a second-step model-fit to an MMC

appears to be a promising strategy to reduce traditionally

high FPRs associated with genome scans. However, as with

any sweep-detection methodology, it will be required to

quantify the power and FPR of this approach under demo-

graphic histories of relevance for any given population-level

application of interest.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Table 1

Power Performance of ABC Model Selection versus SweeD

Demography Selection Coefficient Coalescent-Model Selection SweeD

Equilibrium 0.01 0.65 0.1

0.025 0.89 0.35

0.05 1.0 0.60

Bottleneck 10%, 0.005�4N generations 0.01 0.53 0.09

0.025 0.87 0.14

0.05 0.92 0.36

Bottleneck 2%, 0.005�4N generations 0.01 0.35 0.025

0.025 0.85 0.03

0.05 0.875 0.14

Bottleneck 0.2%, 0.005�4N generations 0.01 0 0

0.025 0 0

0.05 0 0

0.1 0 0

NOTE.—The proportion of sweeps correctly detected within the target window is presented for each demographic history and selection coefficient. As shown, the inclusion of
a specific MMC model-fit considerably improves power, allowing for a higher proportion of correctly identified sweeps under multiple bottleneck scenarios. Nonetheless,
consistent with the large literature of earlier work on the topic, bottlenecks may become so severe so as to become indistinguishable from selection under either approach.
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