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The within-host evolutionary dynamics of tuberculosis (TB) remain unclear, and underlying biological characteristics render stan-

dard population genetic approaches based upon the Wright-Fisher model largely inappropriate. In addition, the compact genome

combined with an absence of recombination is expected to result in strong purifying selection effects. Thus, it is imperative to

establish a biologically relevant evolutionary framework incorporating these factors in order to enable an accurate study of this

important human pathogen. Further, such a model is critical for inferring fundamental evolutionary parameters related to patient

treatment, including mutation rates and the severity of infection bottlenecks. We here implement such a model and infer the un-

derlying evolutionary parameters governing within-patient evolutionary dynamics. Results demonstrate that the progeny skew

associated with the clonal nature of TB severely reduces genetic diversity and that the neglect of this parameter in previous studies

has led to significant mis-inference of mutation rates. As such, our results suggest an underlying de novo mutation rate that is

considerably faster than previously inferred, and a progeny distribution differing significantly from Wright-Fisher assumptions.

This inference represents a more appropriate evolutionary null model, against which the periodic effects of positive selection,

associated with drug-resistance for example, may be better assessed.
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Tuberculosis (TB) is a public health threat worldwide (WHO

2018). Despite clear motivation for study, the observed within-

and between-host evolutionary dynamics of Mycobacterium

tuberculosis (M.TB) are not well understood, and results to date

represent something of a paradox. On the one hand, drug resis-

tance evolves rapidly (Fonseca et al. 2015; Eldholm et al. 2015);

on the other, the genomic characteristics of M.TB do not appear

conducive for such rapid adaptation, with inferred mutation rates

being among the slowest of any human pathogen (Rocha et al.

2006; Ford et al. 2011; Ford et al. 2013; Colangeli et al. 2014;

Payne et al. 2019; Menardo et al. 2019) and remarkably little

genetic variation observed within or between hosts. Furthermore,

purifying selection has been argued to play both a dominant as

well as a weak role in shaping patterns of variation (Hershberg

et al. 2008; Pepperell et al. 2013), and demographic estimates

suggest a population history of TB that either matches or is

uncorrelated with that of its human host (Comas et al. 2013; Bos

et al. 2014; Brites and Gagneux 2015; Eldholm et al. 2016).

To obtain a more robust understanding of TB evolutionary

dynamics, it is essential to first appreciate that between-

population observations are simply an aggregation of within-

population processes. As such, studying the population genetics

of within-patient data is critical to understanding the genetic

differences observed between patients as well as their treatment
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outcomes. Fortunately, recent advances in sequencing tech-

nologies have allowed for more abundant and higher quality

within-patient data. These published datasets have revealed a few

common features of M.TB, including low-levels of genome-wide

variation. For instance, Trauner et al. (2017) deep-sequenced 12

patients across four-time points and observed fewer than 50 poly-

morphic sites per patient genome-wide. In addition, the observed

site frequency spectrum (SFS) is generally characterized by an

abundance of rare variants (i.e., it is strongly left-skewed). These

patterns have partly led to the suggestion that purifying selection

effects may be wide-spread in the M.TB genome (Brown et al.

2016; Phelan et al. 2016; Mortimer et al. 2018).

Additional evolutionary factors likely contribute to these

genomic patterns as well. For example, population bottlenecks

may reduce genetic variation and alter the shape of the SFS (see

review Thornton et al. 2007). Previous M.TB studies have inves-

tigated these effects separately in both the deep-time view of the

population bottleneck and subsequent growth experienced by the

host human population (Hershberg et al. 2008; Liu et al. 2018),

as well as the shallow-time view of the population bottleneck and

subsequent growth characterizing each novel transmission event

and treatment (e.g., Trauner et al. 2017). Additionally, in fitting

the left-skewed SFS, Pepperell et al. (2013) found that such a

demographic history combined with a mix of both deleterious

and neutrally evolving sites produced the nearest fit to the

observed SFS. Finally, given the lack of recombination in M.TB,

related linkage effects (i.e., background selection; Charlesworth

et al. 1993)) have similarly been discussed within these contexts

(Pepperell et al. 2010; Copin et al. 2016).

While these studies have provided many important insights,

there remains a relatively unexplored, although potentially highly

significant, effect: clonality. Indeed, clonality and the related

progeny distribution represents an important violation of com-

monly used evolutionary inference approaches based upon the

Wright–Fisher (WF) model and the related Kingman coalescent

(Eldon and Wakeley 2006; Dos Vultos et al. 2008; Huillet and

Möhle 2011; Lapierre et al. 2016). Specifically, progeny distri-

butions under the WF model are Poisson distributed with a small

mean and variance. Therefore, when an individual produces many

offspring, far in excess of simple replacement in the next gener-

ation, the assumption that only two lineages coalesce at a time is

violated, resulting in multiple-merger coalescent (MMC) events

(see reviews of Tellier and Lemaire 2014; Irwin et al. 2016).

While perhaps abstract at first blush, this violation has very

important implications for the study of sequence variation and

diversity. Namely, as M.TB has been found to exhibit strong

progeny skew owing to obligate clonal reproduction (Baker et al.

2004; Dos Vultos et al. 2008), the null model against which the

above studies are comparing becomes incorrect. For example,

under a multiple-merger model, the effective population size (Ne)

no longer scales linearly with census size (N) as it does under

the Kingman coalescent (Huillet and Möhle 2011). As a result,

genetic diversity is a nonlinear function of the underlying pop-

ulation size—a result of interest given the strongly constrained

and similar levels of variation observed across TB patients,

regardless of infection time or resistance status. Similarly, under

these progeny-skew models, the SFS is skewed toward an excess

of low-frequency variants, generating a negative Tajima’s D even

under equilibrium neutrality (Eldon and Wakeley 2006; Birkner

et al. 2013; Blath et al. 2016)—which appears of relevance

to M.TB populations given the pervasively left-skewed SFS

observed both within and between TB patients. Finally, the

fixation probability of beneficial mutations under progeny skew

may become much larger than under the WF model, owing to

the increased probability of rapidly escaping stochastic loss (Der

et al. 2011). This is fundamental to understanding the rapidly

and independently evolving drug-resistance mutations in global

TB populations—a result seemingly at odds with the previously

inferred mutation rates (Sherman and Gagneux 2011; Colangeli

et al. 2014; Duchêne et al. 2016). In sum, the general theoretical

expectations owing to progeny skew alone appear to qualitatively

match empirical observations from M.TB; observations that, to

date, have been attributed to alternate processes.

Recent progress has been made in utilizing these models

to disentangle and even co-estimate patterns of demography,

progeny skew, and selection. While there exist a variety of po-

tential MMC models (see review of Tellier and Lemaire 2014),

the so-called �-coalescent has been a major focus of this litera-

ture given the straight-forward biological interpretation. Namely,

the parameter � represents the proportion of the next generation

arising from a single parent (e.g., � = 0.05 implies that one indi-

vidual contributes offspring that comprise 5% of the next genera-

tion). In addition to which, recent experimental measures are be-

ginning to offer real-time insights into such progeny distributions

(Vahey and Fletcher 2019). Three results are of particular impor-

tance here. First, Eldon et al. (2015) demonstrated that population

growth may be distinguished from multiple-merger coalescent

events owing to progeny-skew, given differing expectations in the

SFS. Second, Matuszewski et al. (2018) derived analytical expec-

tations for the SFS under a multiple merger coalescent model

with changing population size and further demonstrated that

these parameters can indeed be accurately inferred jointly within

a likelihood framework. Finally, building upon the two above re-

sults as well as the approximate Bayesian statistical framework

developed by Foll et al. (2014, 2015), Sackman et al. (2019) re-

cently extended these results and demonstrated an ability to co-

estimate progeny skew, effective population size, as well as per-

site selection coefficients from time-sampled polymorphism data.

Thus, a tremendous opportunity now exists to understand

better the impact of mutation, genetic drift, and selection in
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dictating patterns of M.TB evolution and genomic variation

under this more realistic coalescent model accounting for the

underlying progeny distributions inherent to clonal reproduction.

While the approximate Bayesian approach of Sackman et al.

(2019) would appear ideal for this purpose, it is a time-sampled

estimator reliant upon considerable levels of segregating varia-

tion in order to track changing allele frequencies (as is commonly

observed in viral populations, for example). Thus, this approach

is under-powered given the minimal levels of variation observed

in M.TB. Further, as the underlying mutation rate itself is a

question of great interest and importance in M.TB (Payne et al.

2019), it is desirable to additionally co-estimate this parameter

rather than assume it to be known.

With this motivation, we developed a novel statistical

approach utilizing the insights described above pertaining to

infection dynamics and widespread purifying selection, while

overlaying inference of underlying mutation rates and progeny

distributions. Using this appropriate null model that accounts for

these commonly occurring processes, we further assessed the

ability to distinguish periodic processes, such as the infection-

related bottleneck or selective sweeps associated with drug

resistance. Owing to the major contributions of purifying selec-

tion and progeny skew in dictating patterns of diversity, and the

resulting paucity of genomic variation, results suggest that these

additional processes may be difficult to accurately quantify.

Materials and Methods
SIMULATIONS

We conducted forward-in-time simulations using the SLIM

version 3 software package (Haller and Messer 2019). M.TB

populations were modeled using a genome size of 441,153

kb, equivalent to a 10th portion of the true genome size, for

computational efficiency. As M.TB is a compact, highly coding

genome (Cole et al. 1998; Fleischmann et al. 2002), we assumed

a distribution of fitness effects (DFE) characterized equally

by deleterious (s = −0.01) and nearly neutral (s = −0.001)

mutations. While a bi-modal DFE shape has been recurrently

supported in directed mutagenesis studies in a variety of organ-

isms (e.g., Bank et al. 2014), the relative density of the different

DFE classes is unknown. Thus, we also assessed the impact of

alternative DFE densities on the resulting inference—comparing

a 60%/40% and 40%/60% split of deleterious and effectively

neutral variants with the 50%/50% described above. More

generally however, this consideration of both effectively neutral

and deleterious mutations is essential, particularly given that the

genome-wide effects of background selection are expected to be

substantial given the lack of recombination in M.TB.

Mutation rate (μ) measured in vitro has been reported to be

as slow as 2 × 10−10 (Ford et al. 2011). In contrast, higher esti-

mates ranging from 1 × 10−9 to 9 × 10−6 (Ford et al. 2013) have

been proposed; therefore, our study considered the full extent

of this range. Furthermore, it is important to note that previous

experiments have measured only the neutral mutation rate, not

the total mutation rate. In other words, the large input of deleteri-

ous mutations—comprising a substantial component of the total

mutation rate—has not been included in earlier estimates as these

mutations are unlikely to be sampled as segregating variation or

as fixed differences. However, as these mutations are important

for shaping diversity via both purifying selection and background

selection effects, and as our interest is in understanding the total

rate at which all de novo mutations are input into the population,

we considered the total rather than the neutral mutation rate. In

order to infer this parameter within the context of an appropriate

progeny-skew model, μ was drawn from a prior uniform distri-

bution between 1 × 10−9 and 9 × 10−6 per site per generation.

Following an initial burn-in period of 10N generations, we

considered a three-stage demographic model characterizing a

single patient infection: moving forward in time, we describe (1)

a neutral equilibrium population of size N, (2) an initial infection

bottleneck leading to an instantaneous population reduction to

size N2, and (3) a subsequent population size recovery to size N.

In stage 1, we modeled a population of size N = 1000. In order

to quantify the effects of underlying assumptions pertaining

to population size, additional simulations and inference were

performed at N = 25,000. During stage 2, the severity of the

population bottleneck (β) was sampled from ∼U[0.001, 0.1],

where N2 = N∗β–as the distribution of infection size in humans

is unknown. However, it has been reported that in cattle TB (M.

bovis) infection can be established by a single cell forming unit

(Dean et al. 2005). During stage 2, the degree of progeny skew

(or �) was sampled from a prior distribution of ∼U[0, 0.2]. A

value of 0 corresponds to the standard WF model, whereas above

0.2 no sequence variation remains. Progeny skew was simulated

following the procedure of Sackman et al. 2019. In brief, one

individual is chosen from the primary population A and founds

a separate subpopulation B, the single generation unidirectional

migration rate from B to A is set to �, and the chosen individual

thus contributes NΨ offspring to the following generation of A. A

series of mate choice callbacks in SLiM force the migration rate

to be exact rather than stochastic (see supplementary materials

of Sackman et al. 2019). Subpopulation B is removed, the next

generation begins, and a new individual is randomly sampled for

the following generation. As such, each generation is a combi-

nation of N(1 − �) replacement events and a single sweepstakes

event of magnitude NΨ. To emulate patient sampling at the onset

of symptoms (approximately 3 months minimum; Behr et al.

2018), we allowed stage 2 to run for 90 generations, assuming a

generation time of 24 h (Cole et al. 1998), and stage 3 to run

for 910 generations before outputting genome alignments in ms

format. Thus, the total generation time of our model was 11N.
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Drawing from these prior distributions, 10,000 points (i.e.,

parameter combinations) were sampled. For each parameter com-

bination, we conducted 1000 replicates in order to characterize

both the mean and variance. Summary statistics were calculated

in the R package PopGenome version 2.6.1 (Pfeifer et al. 2014).

DATA ANALYSIS AND JOINT POSTERIOR ESTIMATES

For comparison to patient data, we examined the distribu-

tion and mean of segregating sites in samples published by

Trauner et al. (2017; see their ‘Additional file 2’; https://zenodo.

org/record/322377#.XO2CAy2ZNBw). These samples were

sequenced with an average depth of approximately 1247×
and full genomic coverage. We primarily utilized these data to

identify an upper- and lower-bound of observed within-patient

variation, and to observe the frequency spectrum associated with

these examples. Thus, we focused upon the first time-point (i.e.,

pretreatment) of patient 10, in whom was found the most segre-

gating genome-wide variation (50 segregating sites). This patient

sample had an average depth of ∼1420×. For comparison, we

also highlight the average number of observed polymorphic sites,

corresponding to 20 segregating sites. Furthermore, given these

low levels of variation, invariant genomes were also observed. In

such cases there are naturally no SFS-based summary statistics,

and so we utilized the expected fraction of invariant genomes

to compare simulated and observed data (e.g., with very slow

mutation rates and/or very high � values, the expected fraction

of invariant genomes far exceeds that observed in the empirical

data). Further, given that patient data are subject to stringent fil-

tering criteria (i.e., removing SNPs under a 2% frequency cutoff),

it was necessary to filter the simulated data to allow a fair compar-

ison. For the simulated replicates, variants with <2% frequency

were filtered out before the calculation of summary statistics

(Table S1)—although unfiltered values can also be found in

the Supporting Information. Relevant scripts have been de-

posited on GitHub (https://github.com/AYMoralesArce/Within-

host_Popgen_TB_project.git) and Dryad (https://doi.org/10.

5061/dryad.1ns1rn8qq).

Results and Discussion
CONSIDERING LEVELS OF VARIATION

We report the first joint consideration of mutation rate, purifying

selection, infection history, and progeny-skew in M.TB popula-

tions. A correlation of summary statistics (Fig. 1) demonstrates

that while mutation rate (μ) increases the number of segregating

sites as expected, progeny skew (�) acts to reduce variation.

Furthermore, as the �-parameter is of relevance every generation

(i.e., every reproduction event), the impact of this previously

unconsidered progeny skew on levels of variation is in fact

much stronger than the single bottleneck event associated with

infection. Considering the full distribution of sampled μ values

(Fig. S1), it is apparent that � drastically reduces the average

proportion of segregating sites genome-wide even for fast muta-

tion rates, and that the probability of producing genomes devoid

of any variation will naturally increase as μ decreases.

In order to consider a range of μ consistent with observed

data—once pervasive purifying selection and progeny skew have

been taken into account—two examples of patient data collected

by Trauner et al. (2017) representing mean (20 segregating sites

genome-wide) and high (50 segregating sites genome-wide) vari-

ation samples were plotted and compared to the simulated data.

In order to compare simulated data with patient data, the same

filtering steps must be applied. In this case, SNPs under 2% fre-

quency were filtered in the empirical data, and thus, the simulated

data were similarly filtered in order to be comparable (Fig. 2).

As shown, fast mutation rates (μ on the order of 1 × 10-6

and 1 × 10-7) routinely produce expected numbers of segre-

gating sites far above that observed in patients, regardless of

other parameter values, while slow mutation rates (μ on the

order of 1 × 10-9) generally result in too little variation to match

observation—particularly considering the resulting expected

fraction of invariant genomes. This result is of interest as M.TB

mutation rates are generally believed to be exceedingly slow

(Sherman and Gagneux 2011)—although importantly, this infer-

ence has largely neglected the important contribution of these

additional evolutionary processes. Thus, once accounting for

the diversity-reducing effects inherent to clonality, as well as

the extent of purifying selection effects inherent to a compact,

non-recombining genome, it is evident that the de novo mutation

rate is likely faster than previously believed, with mutation rates

on the order 1 × 10-8 well matching the range of observed data

(Fig. 2). In addition, in order to consider the impact of underly-

ing assumptions pertaining to population size, simulations were

re-performed with a 25× larger population size. As shown in

Fig. S2, owing to these diversity reducing effects, mutations rates

on the order of 1 × 10-8 remain the best fit to observed levels

of variation, with slower mutation rates still producing too little

variation and too many invariable genomes to be consistent with

patient data.

CONSIDERING DISTRIBUTIONS OF VARIATION

For the general range of μ identified above, the number of

genome-wide segregating sites in simulated population data

ranged from a minimum average of 2.1 to a maximum average

of 78.7 SNPs (Table S1), depending on the combination of μ and

� drawn from the priors. Specifically, higher values of μ may

be off-set by higher values of �, resulting in a similar number of

segregating sites for multiple parameter combinations. For

example, for the mean observed patient diversity of 10 SNPs,

simulation results demonstrate that μ = 8.13 × 10−08 and a
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Figure 1. Correlation heatmap of parameters and summary statistics. Correlations are given between the parameters of interest (muta-

tion rate (µ), progeny skew (�), and bottleneck severity (N2)), and summary statistics (the mean and variance of the level of variation as

measured by the number of segregating sites, and the mean and variance of the distribution of variation as measured by Tajima’s D). As

shown, N2 values do not correlate with any of the summary statistics, as the effect of the single generation bottleneck is swamped by

the per-generation reproductive skew. Further, as expected, µ positively correlates with the number of segregating sites, while � acts

to reduce variation and is thus negatively correlated. Finally, while µ would not be expected to strongly correlate with the shape of the

SFS (here summarized by Tajima’s D) for neutral mutations, it does so here given that we explicitly account for the input of deleterious

mutations (see Materials and Methods).

� = 0.06 would produce an average of 10.15 ± 4.64 SNPs,

potentially suggesting a good fit to the data. However, μ =
3.1 × 10−08 and a � = 0.02 can also generate similar results,

yielding 10.40 ± 4.45 SNPs. More generally, this ridge in the

posterior distributions (Fig. 3A) between these two parameters

suggests that they will be difficult to estimate independently if

only levels of variation are used.

Thus, while comparisons with general levels of variation are

useful for identifying a range as in the above section, more infor-

mation is needed to parse values further. Importantly, previous

theoretical results (Eldon and Wakeley 2016; Matuszewski et al.

2018) have well described the effect of � on the observed distri-

bution of genetic variation (i.e., SFS). To utilize this information,

a general summary of the SFS, Tajima’s D (1989), was calculated

on the filtered simulated data. As shown (Fig. S3), the shape of

the SFS, and thus the value of the D-statistic, is related to the

value of �. As the degree of progeny skew initially increases,

D becomes increasingly negative, as previously described. How-

ever, as progeny distributions become highly skewed, levels of

variation are sharply reduced, resulting in an apparent increase in
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Figure 2. Log scale distribution of segregating sites above 2% frequency, as a function of mutation rate (µ) and progeny skew (�). For

each parameter combination (1,000 in total) ofµ and� drawn from the prior distributions, 1,000 replicates were simulated, with themean

given by the black dot and the standard deviation given by the gray bars. Each panel corresponds to a different order of magnitude of

mutation rate range: (Α) 1 × 10−6 to 9 × 10−6, (B) 1 × 10−7 to 9 × 10−7, (C) 1 × 10−8 to 9 × 10−8, and (D) 1 × 10−9 to 9 × 10−9. The colored

lines correspond to two examples of the proportion of segregating sites observed genome-wide in empirical patient data: 20 segregating

sites as a mean (orange), and 50 segregating sites from patient_10 (blue) (Trauner et al. 2017). As shown, the range of segregating sites

for the fast mutation rates (panels A and B), result in expectations much larger than that observed in patient data, regardless of �.

Conversely, the slowest mutation rate (panel D), results in too little variation, except under WF conditions (i.e., � near 0) that are known

to be violated in this organism. Thus, rates on the order of 1 × 10−8 to 9 × 10−8 (panel C) appear to well explain the range of variation

observed in patient data, and further imply values of � ranging roughly from 0.05 to 0.1, consistent with values previously estimated for

within-host virus data (Sackman et al. 2019).

D values (Fig. S3). Increasing D values could also be a result of

the underlying filtering criteria, as after filtering simulations to

match real data with segregating sites >2%, D values increased

proportionally (Fig. S4). However, Tajima’s D is consistently

negative in all mutation ranges, even after filtering.

PARAMETER INFERENCE FROM PATIENT SAMPLES

Thus, we next considered these results in light of published

patient data. Recent publications have suggested that NGS tech-

nologies could facilitate personalized treatment in TB patients,

allowing for improved outcomes (Copin et al. 2016; Cancino-

Muñoz et al. 2019). To utilize such data, however, it is vital to

understand the evolutionary dynamics shaping within-host M.TB

diversity. As an illustrative example, we have re-examined the

number of segregating sites in patient samples and estimated

a mean ∼10 segregating sites per sample (Trauner et al. 2017;

Fig. S5). Using the results and expectations obtained above

regarding the level and distribution of variation, the patient data

appear best fit by simulated populations with μ values ranging

from 7.3 × 10−9 to 3.8 × 10−7, with the strongest posterior
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Figure 3. Posterior parameter estimates pertaining to patient data. (A) Joint posterior distribution for the parameters µ and �. Solid

contour lines specify the highest posterior density intervals. Owing to the diversity-increasing effect of µ and diversity-decreasing effect

of �, there exists a ridge in the joint posterior. Regardless, owing to differing expectations in the SFS along this ridge, inference suggests

µ values within the 1 × 10−8 range in combination with � < 0.10. (Β) Posterior density for the severity of the infection bottleneck (N2).

The X-axis gives the number of genomes at the time of infection reduced from 1000. While the posterior distribution is non-uniform, the

observation that all tested values remain consistent with patient data strongly suggests that there is not sufficient information in the

data to estimate this third parameter (i.e., size of the bottleneck, in addition to µ and �).

density at μ ≈ 6e-8 and � ≈ 0.06 (Fig. 3A). Furthermore, this

inference appears robust to variation in the density of the DFE

classes, an important consideration given that the precise nature

of this underlying distribution is unknown (Fig. S6). Notably,

even faster μ values could produce similar results, but only if �

proportions are in excess of 0.15 (Fig. 3A).

In addition, owing to the strong per-generation reductions

associated with progeny skew, there remains no signal in the data

to estimate the severity of the infection bottleneck accurately

(Fig. 3B). Specifically, while there is an increase in density

toward stronger bottleneck values, the posterior distribution is

not notably distinct from the prior distribution ∼U[0.001, 0.1]

(Fig. 3B). Apart from the population size reduction associated

with infection, these results have important implications for the

ability to detect other parameters of clinical interest—namely, the

presence of selective sweeps associated with beneficial mutations

(e.g., potentially owing to drug-resistance). First, while there

is strong statistical power to infer both μ and � from patient

data, there is little power to detect isolated events in the past

(Fig. 3B). This result, although unexpected under standard WF

assumptions, is intuitive given the non-WF progeny distributions

related to clonality. Namely, the diversity reduction associated

with a single bottleneck event multiple-generations in the past

is not discernible from the per-generation diversity reduction

related to clonal reproduction. Further, given that a selective

sweep is, in fact, a type of population bottleneck (Barton 1998),

this result also demonstrates that detecting selective sweeps

associated with resistance mutations in this non-recombining

organism, based on levels and patterns of genomic variation, will

be exceedingly difficult. However, this observation reconciles the

fact that levels of variation do not appear significantly different

between resistant and non-resistant M.TB patient populations

(Trauner et al. 2017)—that is, these additional evolutionary

processes are shaping variation so strongly that the presence or

absence of a resistance-associated selective sweep does not result

in strongly differentiable expectations.

Finally, this difficulty raises the question of utilizing

divergence-based inference determined from between-patient

samples. While this is a topic of interest for future investigation,

a number of major challenges exist for incorporating such data

into this statistical framework. With regards to the model itself,

the behavior of divergence-based statistics, such as Fst, can

differ quite substantially from WF expectations. For example,

the expectation of coalescent times within a subpopulation may

become less than that between subpopulations, regardless of the

timing or strength of gene flow (Eldon and Wakeley 2009). With

regards to the empirical data, an inability to rely on molecular

clock-based arguments in M.TB (Menardo et al. 2019), combined

with commonly absent information related to re-infection status,

renders a definition of the timescale of separation highly tenuous.

IMPLICATIONS FOR CHARACTERIZING THE HISTORY

OF TB IN HUMANS

A topic of wide-spread interest in the literature pertains to the

history of TB in the human host. This inference has primar-

ily been made within a phylogenetic context, relying on the
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construction of a single consensus sequence per patient. While

such a comparison of consensus sequences can be highly mis-

leading when making evolutionary inference (see Renzette et al.

2017), these age estimates also inherently rely on an accurate

knowledge of mutation rates in order to invoke the “clock-like”

accumulation of neutral mutations as a proxy for time, as noted

above (Menardo et al. 2019). As our results demonstrate that

previous mutation rate estimates have likely been downwardly

biased, it is of interest to consider what these revised mutation

rates would imply for this evolutionary history. However, there

are at least three difficulties in directly comparing population-

level estimates with previous consensus-based phylogenetic

inference. First, estimates are generally given per year, whereas

the preferred evolutionary rate is per generation (as given here).

There is support for one generation per day as a conversion (Cole

et al. 1998), although further study is necessary to quantify the

correct scaling factor. Second, when invoking a divergence-based

clock, previous studies are measuring the neutral mutation rate,

given that the rate of mutation is equivalent to the rate of diver-

gence for neutral mutations only (Kimura 1968). However, we

are here interested in the total mutation rate (that is, the rate at

which neutral and non-neutral mutations arise per generation);

therefore, our rate must be parsed into neutral and nonneutral

components to enable appropriate comparison. Similar to the first

point, additional research is necessary in order to better quantify

the distribution of fitness effects in M.TB, as understanding the

fraction of total mutations represented by neutral mutations is

necessary for the conversion. Finally, we here consider the alleles

segregating within a population for inference (i.e., within a pa-

tient), whereas previous studies often call a consensus sequence

per patient (i.e., per population) and make inferences based on

a collection of such consensus sequences. Such a summary of

population-level variation into a single sequence is difficult to

interpret, although what is evident is that a great majority of rare

alleles will be neglected, and thus only a small subset of total

variation (i.e., common alleles) will be considered (Renzette et al.

2017). As such, we propose that future evolutionary inference

pertaining to TB would benefit tremendously from a full con-

sideration of within-patient diversity, as we demonstrate here. In

sum, any direct comparison with consensus-based phylogenetic

age estimates would be overly speculative at this juncture.

Conclusions
TB patient infection dynamics have remained enigmatic. We here

argue that much of the difficulty in interpreting patterns of vari-

ation and evolution has owed to an inappropriate underlying null

model, relying on classical expectations developed for organisms

with very different underlying biological properties. Fortunately,

recent theoretical extensions in non-WF and alternative coales-

cent models, more appropriate for clonally reproducing organ-

isms, have created an opportunity to revisit existing M.TB patient

data. By accounting for the pervasive purifying selection effects

associated with this non-recombining, highly coding genome,

as well as the skewed progeny distributions inherent to clonal

reproduction, we have provided improved insights into the evolu-

tionary dynamics shaping within-host variation. Further, through

a consideration of these diversity-reducing effects, results sug-

gest an underlying de novo mutation rate that is considerably

faster than previously inferred. This may reconcile the seemingly

contradictory observations of both rapid resistance evolution, but

extremely low levels of population variation. Namely, the popu-

lation mutation rate may indeed be sufficiently fast to provide a

steady input of beneficial mutations, explaining the rapid resis-

tance evolution clinically observed. However, recurrent purifying

selection and progeny skew act together to rapidly eliminate seg-

regating variation from the population, reconciling the minimal

levels of variation observed as well as the general homogeneity

in levels and distributions of variation in both resistant and

non-resistant patient samples alike. Furthermore, the role of

these per-generation evolutionary forces in shaping patterns of

variation is sufficiently strong that periodic events, including the

infection-associated bottleneck and selective sweeps centered

on drug-resistance mutations, will be challenging to detect and

quantify on top of these more common processes. In general, this

framework represents an approach for constructing appropriate

evolutionary null models for the wide-array of organisms that are

not well fit by WF progeny distribution assumptions—including

a large variety of plants, viruses, and marine organisms.
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