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With the rapid global spread of SARS-CoV-2, tremendous
efforts have been focused upon potential treatment strate-
gies (Li and De Clercq 2020). Evolutionary theory has an
important role to play in this search, and we here discuss
one potentially under-appreciated research avenue.

Within the field of population genetics, the phenomenon
of mutational meltdown—in which a population may
become extinct owing to the accumulation of deleterious
mutations—has been well studied both theoretically and
experimentally. The key to understanding this effect is a
consideration of the efficacy of natural selection. Because
there are many more ways to disrupt rather than to improve
genomic function, the vast majority of new fitness-
impacting mutations are deleterious rather than beneficial.
Thus, if mutation rates are increased, the result is a dis-
proportionate excess of variants that are detrimental to the
organism. Because natural selection will not be able to
purge this input of deleterious mutations if the mutational
pressure is sufficiently large, these variants may remain in
the population and even reach fixation. This deleterious load
further restricts the ability of natural selection to purge
additional variants, allowing more deleterious mutations to
accumulate and fix, and so on—a snowball effect that can
result in the eventual loss of the population (i.e., mutational
meltdown).

Lynch and Gabriel (1990) and Lynch et al. (1993)
described this model, which is dependent on the carrying
capacity of the population, the absolute population growth
rate, the deleterious effect of mutations, and the deleterious
mutation rate. Under this model, if the input of deleterious
mutations is sufficiently high, the number of reproducing
individuals will decline. Though the model of lethal

mutagenesis is also commonly noted in this regard (e.g.,
Bull et al. 2007), the mutational meltdown framework is in
fact more general, and critically incorporates the stochastic
effects inherent to natural populations (see Matuszewski
et al. 2017).

While meltdown has been discussed largely in the
negative context of a threat to small or endangered popu-
lations, it also has relevance in the positive context of
inducing the extinction of a viral population within a
patient. One drug in particular, favipiravir, has been
demonstrated to inhibit the RNA-dependent RNA poly-
merase (RdRp) of RNA viruses (Furuta et al. 2013; Bar-
anovich et al. 2013), and in vitro studies in influenza A
virus (IAV) have specifically examined the relevance of a
mutational-meltdown model in the presence of this inhi-
bitor. Bank et al. (2016), utilizing experimental passaging at
different drug concentrations, described potential viral
adaptation at low-concentrations. However, at higher con-
centrations, mutations accumulated at a nearly linear rate
until a transition point was reached, at which a sharp
increase in mutational accumulation was observed, fol-
lowed by population collapse. Significantly, as opposed to
targeting a specific genomic region, this input of deleterious
mutations is a genome-wide effect, raining deleterious
variants on all functionally essential genomic regions.

Also working in IAV, Ormond et al. (2017) examined
the combined effect of favipiravir with oseltamivir, a
widely-used treatment with well-studied resistance muta-
tions. A similar mutational meltdown outcome was
observed, with the selective sweeps of oseltamivir-resistant
mutations appearing to actually speed population decline,
owing to the resulting hitchhiking of linked deleterious
variants in the viral population (and see the related work of
Pénnison et al. 2017).

We believe that these results at least suggest the potential
therapeutic value of inducing mutational meltdown in
SARS-CoV-2 patient populations. While interest in favi-
piravir is currently motivating clinical trials, with initial
results as of March 2020 suggesting faster viral clearance
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compared to other tested drug treatments (Dong et al. 2020),
in vitro studies will also be of great value to understand the
interplay of mutational meltdown dynamics with the note-
worthy biological differences of CoV-2 relative to the better
studied IAV (Smith et al. 2013). Thus, while many key
questions remain in need of exploration, results to date
demonstrate the importance of this effort, and highlight the
great value of utilizing population genetic theory to address
such crucial public health concerns.
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