
Heredity (2018) 121:422–437
https://doi.org/10.1038/s41437-018-0125-7

ARTICLE

The fitness landscape of the codon space across environments

Inês Fragata 1
● Sebastian Matuszewski 2,3

● Mark A. Schmitz1 ● Thomas Bataillon 4
● Jeffrey D. Jensen 2,3,5

●

Claudia Bank 1

Received: 22 January 2018 / Revised: 16 June 2018 / Accepted: 18 June 2018 / Published online: 20 August 2018
© The Genetics Society 2018

Abstract
Fitness landscapes map the relationship between genotypes and fitness. However, most fitness landscape studies ignore the
genetic architecture imposed by the codon table and thereby neglect the potential role of synonymous mutations. To quantify
the fitness effects of synonymous mutations and their potential impact on adaptation on a fitness landscape, we use a new
software based on Bayesian Monte Carlo Markov Chain methods and re-estimate selection coefficients of all possible codon
mutations across 9 amino acid positions in Saccharomyces cerevisiae Hsp90 across 6 environments. We quantify the
distribution of fitness effects of synonymous mutations and show that it is dominated by many mutations of small or no
effect and few mutations of larger effect. We then compare the shape of the codon fitness landscape across amino acid
positions and environments, and quantify how the consideration of synonymous fitness effects changes the evolutionary
dynamics on these fitness landscapes. Together these results highlight a possible role of synonymous mutations in adaptation
and indicate the potential mis-inference when they are neglected in fitness landscape studies.

Introduction

By considering the relationship between genotype and fit-
ness as a topographic map, Wright (1931) created the
concept of a fitness landscape. During the last century, this
concept has been adopted across various subfields of the

sciences, and it has been used extensively to study how
populations may adapt to novel environments (De Visser
and Krug 2014; Gorter et al. 2018; Perfeito et al. 2011).
Only recently have technological and experimental advan-
ces enabled the assessment of large empirical fitness land-
scapes at high resolution (Bank et al. 2014; 2016; Hietpas
et al. 2013; Weinreich et al. 2006; Wu et al. 2016). Wright
(1931) noted early on that a complete fitness landscape with
L loci, each of which has k alleles, results in a hypercube of
kL genotypes. This enormous dimensionality can never be
fully sampled and therefore enforces a careful and limited
choice of the mutations that may be assayed in any given
experiment. Thus, most fitness landscape studies to date
have only considered amino acid changing mutations (e.g.,
Bank et al. 2016; Wu et al. 2016). Only considering the
genotype–fitness relationship at the amino acid level entails
the risk of misrepresenting the true underlying fitness
landscape and, thus, the potential routes along which
adaptive walks may proceed.

Firstly, mutations in an amino acid based fitness land-
scape are, by definition, non-synonymous. This neglects the
accumulating evidence from both comparative and experi-
mental studies that synonymous mutations (i.e., mutations
that change the codon but not the encoded amino acid) can
display non-negligible fitness effects (Agashe et al. 2013;
2016; Bailey et al. 2014; Bali and Bebok 2015; Choi and
Aquadro 2016; Drummond and Wilke 2008; Firnberg et al.

These authors contributed equally and have shared authorship: Inês
Fragata, Sebastian Matuszewski.

* Inês Fragata
irfragata@gmail.com

* Sebastian Matuszewski
sebastian.matuszewski@hotmail.com

1 Instituto Gulbenkian de Ciência, Oeiras, Portugal
2 School of Life Sciences, Ecole Polytechnique Federale de

Lausanne (EPFL), Lausanne, Switzerland
3 Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
4 Bioinformatics Research Centre, Aarhus University, 8000

Aarhus, Denmark
5 School of Life Sciences, Arizona State University, Tempe, AZ,

USA

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41437-018-0125-7) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0125-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0125-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0125-7&domain=pdf
http://orcid.org/0000-0001-6865-1510
http://orcid.org/0000-0001-6865-1510
http://orcid.org/0000-0001-6865-1510
http://orcid.org/0000-0001-6865-1510
http://orcid.org/0000-0001-6865-1510
http://orcid.org/0000-0002-4393-9283
http://orcid.org/0000-0002-4393-9283
http://orcid.org/0000-0002-4393-9283
http://orcid.org/0000-0002-4393-9283
http://orcid.org/0000-0002-4393-9283
http://orcid.org/0000-0002-4730-2538
http://orcid.org/0000-0002-4730-2538
http://orcid.org/0000-0002-4730-2538
http://orcid.org/0000-0002-4730-2538
http://orcid.org/0000-0002-4730-2538
http://orcid.org/0000-0002-4786-8064
http://orcid.org/0000-0002-4786-8064
http://orcid.org/0000-0002-4786-8064
http://orcid.org/0000-0002-4786-8064
http://orcid.org/0000-0002-4786-8064
http://orcid.org/0000-0003-4730-758X
http://orcid.org/0000-0003-4730-758X
http://orcid.org/0000-0003-4730-758X
http://orcid.org/0000-0003-4730-758X
http://orcid.org/0000-0003-4730-758X
mailto:irfragata@gmail.com
mailto:sebastian.matuszewski@hotmail.com
https://doi.org/10.1038/s41437-018-0125-7


2014; Hunt et al. 2014; Knöppel et al. 2016; Kudla et al.
2009; Lind et al. 2010; Plotkin and Kudla 2011; Presnyak
et al. 2015; Sauna and Kimchi-Sarfaty 2011; Singh et al.
2007; Zhou et al. 2009). For example, recent studies have

shown that synonymous mutations can affect the speed and
accuracy of translation (Bali and Bebok 2015; Drummond
and Wilke 2008; Plotkin and Kudla 2011; Saunders and
Deane 2010) mRNA structure (O’Brien et al. 2014;
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Presnyak et al. 2015; Shabalina et al. 2013) expression in
response to environmental changes (Shabalina et al. 2013)
and that they are associated with several organismal mal-
functions (Hunt et al. 2014; Parmley and Hurst 2007).
Although synonymous effects undoubtedly exist, effect
sizes are often small, which has made a systematic char-
acterization difficult. In particular, to our knowledge there
exists no study to date that has characterized whether fitness
effects of synonymous mutations vary across environments;
a finding that could be in concordance with the costs of
adaptation that are frequently reported for amino acid
changing mutations (e.g., Bataillon et al. 2011; Hietpas
et al. 2013; Rodriguez-Verdugo et al. 2014; Wenger et al.
2011).

Secondly, the consideration of a fitness landscape at the
codon level introduces a lower connectivity of the geno-
types, i.e., a different topology of the fitness landscape.
Whereas from the amino acid view of the landscape, any
amino acid transition is possible in a single mutational step,
a codon-based landscape requires up to three mutational
steps to transition from one amino acid to another (c.f.
Figure 1a). Hence, even a single amino acid position in the
genome contains a fitness landscape that consists of the (4
nucleotides)3loci= 64 codons at that position.

We illustrate two aspects of the differences between the
amino acid and codon levels in Fig. 1a. Considering the
codon level results in a different topology of the fitness
landscape (A1 to A2), and considering effects of synon-
ymous mutations results in a potentially different topo-
graphy of this codon fitness landscape (A2 to A3). As
highlighted by Zagorski et al. (2016), a change in the
topology of a fitness landscapes can result in markedly
different accessibility of fitness peaks, and the topography

further amplifies this effect. For example, a single-
nucleotide mutation in a codon-based landscape can result
in only 5 to 7 amino acid changes rather than the 20 total
possible amino acid changes. Thus, at a single amino acid
position, a codon-based fitness landscape (with 64 geno-
types) can have multiple local fitness peaks, whereas the
corresponding amino acid landscape (with 21 genotypes) is
by definition single-peaked.

Here we quantify the effects of synonymous mutations
(Fig. 1c) and study how including synonymous effects
modifies the evolutionary dynamics on codon fitness land-
scapes (Fig. 1d). To this end, we use published data (Bank
et al. 2014) from deep mutational scanning (Fowler and
Fields 2014; Hietpas et al. 2012), which consist of codon
fitness landscapes of the same 9-amino acid positions across
6 environments. Our results indicate that the distribution of
synonymous effect sizes is heavy-tailed, with many muta-
tions of little effect and a few larger-effect mutations. Fur-
thermore, we compare the shape of the codon fitness
landscapes with and without consideration of effects of
synonymous mutations. We find that the evolutionary
dynamics on these landscapes differ greatly between the
two types of landscapes, as local optima created by
synonymous effects can stall the progression towards the
global optimum of the fitness landscape. Thus, our work
calls for a more careful consideration of synonymous effects
in future studies of fitness landscapes and adaptive walks.

Material and methods

MCMC method

We implemented a software to infer selection coefficients
from deep mutational scanning experiments. The empiri-
cIST software is based on a previously developed Bayesian
Markov chain Monte Carlo (MCMC) approach (Bank et al.
2014) and is a user-friendly and accurate software for
improved growth rate estimation from time-sampled deep-
sequencing data. We took advantage of the high accuracy
provided by this method to estimate selection coefficients of
synonymous mutations. empiricIST is a software package
for (1) processing sequencing count data from deep muta-
tional scanning experiments, (2) estimating growth rates
using a Bayesian MCMC approach described in detail in
Bank et al. (2014) and (3) post-processing of growth rate
estimates to estimate the shape of the beneficial tail of the
distribution of fitness effects (DFE). A detailed description
of the software, its usage, and options can be found in the
accompanying manual (https://github.com/Matu2083/
empiricIST). In the following, we give a brief description
of the assumed experimental setup and the model under-
lying the MCMC and estimation procedure, and by means

Fig. 1 Graphical summary of the study. a The consideration of the
codon structure and the fitness effects of synonymous mutations
results in fitness landscapes with different topologies and topo-
graphies. The graphs illustrate fitness landscapes at a single amino acid
position. Gray lines indicate single-step mutations and colors indicate
potential fitness differences. (1) Many studies implicitly assume that
all amino acids are connected by a single mutational step. (2) The
codon table restricts the number of possible substitutions at the amino
acid level and thus results in a different topology. We denote the
fitness landscape that accounts for the codon table but neglects the
potential effects of synonymous mutations as the averaged landscape
(codons that code for the same amino acid are presented in similar
colors). (3) We denote the fitness landscape that considers the indi-
vidual effect of each codon as the single-effect landscape (each codon
has a specific color). b For this study, we obtained deep mutational
scanning data of 54 codon fitness landscapes from Bank et al. (2014).
We infer individual selection coefficients using a newly developed
analysis software, empiricIST. c We quantify the distribution of
synonymous fitness effects and perform regression methods to relate
these effects to biological mechanisms. d We quantify the shape of the
codon fitness landscapes across environments. We illustrate the con-
sequences of ignoring synonymous effects on the evolutionary
dynamics on the landscapes
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of simulations compare the accuracy of the results to that
obtained from conventional linear regression (Matuszewski
et al. 2016).

Assumptions of the model and input data

We consider an experiment assessing the fitness of Kmutants,
labeled i 2 f1; � � � ;Kg. Each mutant i is assumed to be pre-
sent at initial population size ci and to grow exponentially at
constant rate ri, such that its true abundance at time t, Ni(t) is
given by NiðtÞ ¼ ci exprit. At each sampling time point t∈
{1,…,T}, sequencing reads ni;t are drawn from a multinomial

distribution with parameters nt ¼
PK

i¼1 ni;t (i.e., the total
number of sequencing reads) and pt= (p1,t, …,pK,t), where

pi;t ¼ ci expri tPK

i¼1
ci expri t

is the relative frequency of mutant i in the

population at time t. Here, time is measured in hours to make
results comparable across different environmental conditions
(Bank et al. 2014; Chevin 2011). The software allows for
input of either generation or standard time. We furthermore
assume that sampling points are independent such that the
overall likelihood can be written as the product of the indi-
vidual likelihoods of each sampling point.

LðnÞ ¼ Q
t 2T

L c; rj n1;t; ¼ ; nK;t
� �� �

:

All initial population sizes ci and growth rates ri are
estimated relative to those of a chosen reference mutant
with its initial population size and growth rate arbitrarily set
to 10,000 and 1, respectively. Here, the wild-type sequence
in laboratory conditions of 30 °C was used as the reference.

MCMC model

We implemented a Metropolis–Hastings algorithm in C++
using flat priors allowing all attainable values ri∈ R+ and
ci∈ |N to be realized with equal probability. During the
burn-in period, the variance of both proposal distributions
was adjusted such that the targeted acceptance ratio is
around 25%, which optimizes the performance of the
MCMC chain (Gelman et al. 1996).

The updated variance of the proposal distribution was
calculated using

σnew ¼ σoldf ðk; y; kÞ
with

f ðx; y; kÞ ¼ 1þ cosh x� yð Þ � 1ð ÞÞ k � 1ð Þ
cosh y� x� yj jð Þ � 1

� �
sgnðx� yÞ;

where x denotes the targeted acceptance ratio, y is the current
acceptance ratio, and k is a (fixed) scale parameter that
restricts the maximal change in the variance of the proposal
distribution (Roberts et al. 2001). After discarding the first

100,000 accepted samples (i.e., after the burn-in period), the
MCMC was run for an additional 10,000,000 accepted
samples. Only every 1000th sample was retained for further
analyses, such that the posterior distribution of each
parameter was characterized by 10,000 samples overall.

Convergence and mixing were checked by visual
inspection of the resulting trace files for all estimated para-
meters, and by calculating the effective sample sizes (i.e., the
number of independent samples) and the Hellinger distance
(Boone et al. 2014) between sets of 1000 batched recorded
samples. Effective sample sizes were generally larger than
1000 for all parameters, and Hellinger distances below 0.1
indicated convergence and good mixing. To facilitate esti-
mation, we took advantage of the fact that the multinomial
distribution is preserved when a subset of the counting
variables are observed. This enabled us to split the data set
into subsets with 10 mutants each (implicitly treating the
other mutants’ sequencing reads as observed). More options
such as outlier detection, data imputation, DFE tail-shape
estimation are detailed in the Supporting Information.

Assessing accuracy of the MCMC

To assess the accuracy of the Bayesian MCMC approach,
we compared its parameter estimates to those obtained using
ordinary least squares (OLS) linear regression of the log
ratios against the number of sequencing reads ni,t over the
different sampling time points (Matuszewski et al. 2016).
For that we simulated time-sampled deep-sequencing data
(implemented in C++; available from https://github.com/
Matu2083/empiricIST), assuming that individual mutant
growth rates and initial population sizes for each of the K
mutants are drawn independently from a normal distribution
(i.e., ri � Nð1; 0:01Þ) and a log-normal distribution (i.e.,
ci � 10Nð4;0:25Þ), respectively. Without loss of generality, we
denote the wild-type reference (or any other reference gen-
otype) by i= 1 and set its growth rate to 1.

Sequencing reads were then drawn independently for
each of the T equally spaced time points from a multinomial
distribution with parameters nt (i.e., the number of total
sequencing reads per time point) and pt ¼ ðp1;t; ¼ ; pK;tÞ.
To check the robustness of these results when applied to the
real experimental data, we furthermore drew growth rates
from a mixture distribution

jNð1; σ̂Þj if z ¼ 0;

expðλ̂Þ þ 1 if z ¼ 1;

�

where Z � BðxÞ is a Bernoulli-distributed random variable
that indicates whether growth rates are drawn from the
deleterious part of the DFE (i.e., if z= 0) or from the
exponential beneficial tail (i.e., if z= 1). The parameters σ̂,

The fitness landscape of the codon space across environments 425

https://github.com/Matu2083/empiricIST
https://github.com/Matu2083/empiricIST


λ̂, and x̂ are estimated from the underlying experimental
data, and based on growth rate estimates obtained from OLS
linear regression.

Finally, the accuracy of the parameter estimates was
assessed by computing the mean square error (MSE)

MSE ¼ 1
K � 1

XK

i¼2
ðr̂i � riÞ2;

the length of the credibility interval (CI, calculated from the
MCMC posterior distribution), and the frequency of the true
growth rate lying in the 95% confidence interval obtained
via OLS calculated over 100 simulated data sets.

Bayesian MCMC outperforms linear regression

Validating the method with various types of simulated data
mimicking the experimental data (as detailed in the Sup-
plementary Material) shows that our MCMC generally
outperforms ordinary least square regression (OLS). Figure
2 and S1 show the simulation results. Although the mean
square error (MSE) of the MCMC is comparable to that of
the OLS when analyzing few time points (i.e., 3 to 5 time
points), the MSE of the MCMC decreases faster as the
number of time points increases (Fig. 2a).

Furthermore, when analyzing few time points, the length
of the credibility interval (CI) is significantly smaller for the
MCMC than the corresponding confidence interval of the
OLS regression (Fig. 2b). While the difference between the
length of the confidence intervals decreases as the number
of time samples T increases, the size of the CI from the
MCMC always remains smaller, which implies that it yields
more precise and accurate results than the conventional
OLS regression. Most importantly, and unlike the OLS
regression, the CI of the MCMC remains well calibrated
along the entire range of parameters that were tested (cf.
Figure 2c for illustration across a range of time points),
despite being generally narrower than its OLS counterpart.

Apart from its main program—the Bayesian MCMC
program—empiricIST provides Python and shell scripts for
data pre-processing and post-processing. Details about their
usage and options are given in the accompanying manual.
Here we outline the two different options that are available
for dealing with outliers in the sequencing data—i.e., outlier
detection and data imputation—and explain the DFE tail-
shape estimation.

Outlier detection in empiricIST

As an alternative to treating outliers as unobserved (i.e., as
missing data), we also implemented an approach in which
data points identified as outliers were imputed (see SI). For
that we again used the linear regression of the log ratios of
the mutant’s read number to the total number of reads at
each individual time point (i.e., the ‘total’ normalization,
sensu Bank et al. 2014), and classified as outliers data points
that exceed the DFBETA cutoff of 2 and that had an
absolute studentized residual bigger than 3. In comparison
to other reasonable and established outlier criteria, this
approach proved to be more cautious as exemplified by the
higher specificity and lower sensitivity (Fig. 2, Fig. S1). By
combining two independent outlier criteria (i.e., the
DFBETA statistic and the studentized residuals), this
approach ensures that data points identified as outliers have
leverage effects (i.e., change the slope considerably) and are
in conflict (meaning that are very different in comparison)
with the remaining data points. Thus, to minimize changes
in the original experimental data we took an extremely
conservative approach, such that only those data points that
stand out as extreme outliers will be imputed.

When comparing the MSE over 100 simulated data sets
across different outlier detection methods, we find that the
MSE increases with the proportion of outliers in the data set,
independent of the method used. Imputing data points gen-
erally improves the accuracy of the parameter estimates
compared to treating outliers as missing data (Bank et al. 2014,
Fig. S2, S3). Expectedly, when there are no outliers in the data,

Fig. 2 Comparison between performance of empiricIST and ordinary
least square regression with varying number of time points sampled.
We display a mean square error (MSE), b size of the credibility
interval (CI), and c the proportion the true growth rate contained in the
CI. As shown, empiricIST yields an equal or lower MSE than OLS

regression, particularly as the number of sampled time points increa-
ses. Furthermore, empiricIST outperforms the OLS regression
regarding the size of the CI and at capturing the true growth rate, even
when sampling a small number of time points
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normalization to the wild type displays the lowest error (c.f.
Bank et al. 2016; Matuszewski et al. 2016). However, with
only 1% outliers in the data, the error of the normalization to
the wild type is comparable to that of the normalization to the
total number of reads and performs increasingly worse as the
proportion of outliers in the data increases (Fig. 2). Note that in
the presence of outliers, using any outlier method improves
growth rate estimates considerably.

Estimating the shape for the beneficial tail with empiricIST

Finally, empiricIST contains a Python script for estimating
the shape of the beneficial tail of the DFE. It is often
believed that these effects typically follow an exponential
distribution (Gillespie 1983; 1984) characterized by many
small, nearly-neutral mutations and a few strongly bene-
ficial mutations. Using extreme value theory, it is possible
to test whether experimental data complies with that
assumption (and falls into the Gumbel domain), or whether
the data are better represented by distributions from the
Weibull domain (i.e., bounded distributions that decay more
rapidly than an exponential distribution, implying more
small effect mutations) or from the Fréchet domain (i.e.,
distributions decaying less rapidly than an exponential
distribution implying an excess of large effect mutations;
see also Beisel et al. 2007). Additional information about
the different types of distributions and likelihood estimation
are available in the section on DFE estimation in the SI (SI-
Additional Material and Methods, section DFE tail-shape
estimation, Fig S4).

We analyzed the power of the maximum-likelihood
method to make this distinction by simulating 1000 Gen-
eralized Pareto Distribution (GPD) data sets for different
underlying shape parameter (κ) values (spanning across all
three GDP domains) and varying sample sizes. We find that
for small sample sizes (Fig. S4A, B) κ̂ displays a large
variance and a slight negative bias, in particular, if the
underlying shape parameter is from the Weibull domain
(i.e., κ < 0). This bias is caused by a (numerical) dis-
continuity in the log-likelihood function around κ=−1
(Eq. S3 in SI), causing κ to consistently deviate (Rokyta
et al. 2008). As sample size increases, however, the var-
iance of the maximum-likelihood estimate decreases and its
bias vanishes (Fig. S4C, D). Furthermore, while κ typically
falls into the correct domain (even for low sample sizes), the
statistical power for detecting deviations from the null
hypothesis (i.e., whether H0: κ= 0) is low (unless sample
sizes are large).

Experimental data

The data used in this study were originally obtained in Bank
et al. 2014 using the EMPIRIC approach (Hietpas et al.

2011; 2012). Briefly, single-codon-substitution libraries
were generated using a plasmid constitutively expressing
Hsp90. These were then transformed into the Sacchar-
omyces cerevisiae DBY288 shutoff strain (Bank et al. 2014;
Hietpas et al. 2011) using the lithium acetate method.
Amplification occurred initially for 12 h at 30 °C in non-
selective galactose medium with ampicillin (100 μg/ml,
please see details of medium composition in Bank et al.
2014). These were then transferred to selective dextrose
medium, also at 30 °C, to initiate shutoff of the wild type
copy of Hsp90. Bulk competition started after 8 h in this
selective medium, under six different environmental con-
ditions (25 °C, 30 °C, 36 °C, 25 °C + S, 30 °C + S, and
36 °C + S, where S represents the addition of 0.5 M sodium
chloride). For simplicity, we will refer to these conditions as
normal medium or high-salt medium, and abbreviate these
by 25N and 25S, for example, when additionally referring
to the 25 °C environment. Samples were taken at several
time points during the experiment (Table S1) and stored at
−80 °C for posterior DNA isolation and sequencing.
Sequencing was performed by the University of Massa-
chusetts deep-sequencing facility, which generated
approximately 30 million reads (see also Table S1, Bank
et al. 2014). For further details regarding the experimental
method please see (Bank et al. 2014; Hietpas et al. 2011;
2012; 2013).

The data set analyzed here contains all 576 possible
single-codon mutations in a 9-amino acid region of the C
terminal part of Hsp90 (amino acid positions 582 to 590) in
Saccharomyces cerevisiae. Whereas from most environ-
ments only a single replicate was available, we had access
to three technical replicates at 30N and two biological
replicates at 30S. Populations were originally adapted to the
30N environment. Growth rates for all mutants were esti-
mated using empiricIST. Furthermore, to obtain growth rate
estimates per amino acid (residue) position, we pooled
nucleotide sequences and jointly estimated growth rates for
those nucleotide sequences that resulted in the same amino
acid sequence (see above and SI). All downstream analyses
are based on 1000 subsamples of the posterior distribution
obtained from empiricIST, if not otherwise indicated.
Selection coefficients were obtained by normalizing to the
median growth rate of all mutations synonymous to the
reference sequence as detailed in Bank et al. (2014).

Distribution of synonymous mutations

We obtained the distribution of synonymous fitness effects
across all amino acid mutations as the difference between
the selection coefficient of each individual codon and its
corresponding pooled amino acid estimate. These data were
used to perform the analyses in section The distribution of
synonymous fitness effects.
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Quantifying the impact of GC bias

To check whether Illumina sequencing created a GC bias in
our data, we estimated the impact of GC content throughout
the several steps of data acquisition and selection coefficient
estimation. Firstly, because the library composition was not
assessed directly for the data sets used in this study, we used
the web plot digitizer (https://automeris.io/
WebPlotDigitizer/) to obtain the abundance of each of the
64 codons during library construction in the data from
Hietpas et al. (2011), Supplementary Figure 7C in Hietpas
et al. (2011). We estimated the fraction of each of the 4
nucleotides present and calculated the deviation from the
expected 25%. This was done for all three codon positions.
We found a positive bias towards AT codons (Fig. S5) in
the library construction. To estimate GC bias in the
sequencing data obtained after the experiment we calculated
how many G or Cs (guanine or cytosine nucleotides) were
present in each barcoded codon (minimum 10, maximum
17). A glm (generalized linear model) using the negative
binomial family with Environment indicated a small posi-
tive bias of GC content in the sequence abundance (GC:
0.098, P < 0.0001). This bias was also observed when we
tested the correlation between CG abundance and selection
coefficient for each amino acid substitution using an
ANOVA model including GC content and Environment
(GC: 0.00456, P < 0.0001). However, when repeating this
analysis using the selection coefficient of synonymous
mutations (i.e., after subtracting the amino acid effect) this
bias was no longer significant (GC: 0.00003, P = 0.7244),
indicating that the observed GC bias may indeed reflect
selection rather than being an artifact of sequencing.
Nevertheless, to account for any potential contribution of
GC content or its interaction with other mechanisms, we
included the GC abundance in the models that were used to
identify possible mechanisms causing synonymous fitness
effects.

Detecting the effect of synonymous mutations

Experimental error and reproducibility of measurements

To assess the reproducibility of measurements, we com-
pared the correlation between selection coefficient estimates
across the three 30N and two 30S replicates, and computed
the overlap in their growth rate posteriors. For each replicate
pair, we calculated the correlation between mutation-
specific fitness effects from both the median estimates and
1000 randomly selected posterior samples. The median
correlation of fitness effects across pairs of replicates for
high salt medium (biological replicates) was 0.84 (lower
and upper credibility intervals from 1000 posterior samples:
[0.78, 0.88]) and for standard medium (technical replicates)

it was 0.98 (lower and upper credibility intervals from 1000
posterior samples: [0.97, 0.99]), confirming that the
experimental protocol has an excellent resolution for mea-
suring selection coefficients. An ANOVA test indicated that
experimental error was negligible in comparison to the
effect of changing medium (Table S2) and confirmed the
previously observed strong costs of adaptation (Hietpas
et al. 2013).

To quantify whether the empiricIST credibility intervals
cover the experimental error appropriately, we estimated the
overlap between the 95% credibility intervals of the pos-
terior distribution for all pairs of replicates. We observed a
large overlap between pairs of replicates (Fig. S6, normal
environment—(a) Rep1-2: 98%; (b) Rep1-3: 91%; (c)
Rep2-3: 90%; high salt environment—(d) Rep1-2: 90%),
indicating that the variance between replicates is indeed
mostly covered by variance in the posterior distribution, and
that we can use empiricIST credibility intervals as con-
fidence levels in our analysis.

We used linear models to quantify the contribution of
various factors to the estimated effects of synonymous
mutations. Model variable names are highlighted through-
out the paper using Italics. The respective analyses were
performed on the distribution of synonymous effects data,
i.e., the data in which the median amino acid effect was
removed.

We estimated the relative contributions of the experi-
mental error and the effect of synonymous mutations in the
data by comparing the impact of replicate, codon, and
medium (i.e., whether salt was added or not) using the
following ANOVA model with data between replicates 2
and 3 of both the standard and the high-salinity environment
for 30C:

Y ¼ codonþ replicate þmediumþ replicate�codon
þcodon�mediumþ replicate�medium

þcodon�medium�replicate þ ε

where Y corresponds to the normalized selection coefficient,
codon to a fixed factor corresponding to the 64 codons
present in the data, replicate to a fixed factor pertaining to
the arbitrary replicate number 2 or 3 for each environment,
medium is a fixed factor corresponding to the presence or
absence of high salt concentration in the medium and ε
corresponds to the residual error. Additionally, we esti-
mated effect size by calculating η2 (i.e., the ratio of the
variance explained by a predictor to the total variance
explained by the entire model Levine and Hullett 2002) for
each of the model terms, using the etasq function of the R
package sjstats (Lüdecke 2017). To assess the variability of
our estimates, we performed the analysis for 1000 posterior
samples. We find that the fitness effects of codon changes
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contribute more to the total variance of the model than
variation in replicates, indicating that we can detect overall
effects of codon changes, despite the presence of experi-
mental error (Fig. S7).

Quantifying the effect size of synonymous mutations

To quantify the effect size of synonymous codon changes,
we performed a linear regression for each amino acid
(including all amino acids with 3 or more codons) and
calculated η2 for the codon term as proxy for effect size
(Levine and Hullett 2002). The regression per amino acid
was performed within each environment and took into
account residue solvent accessibility (i.e., whether the
position was buried or exposed). Pooling of positions was
performed to allow for the testing of codon effect within an
amino acid. To minimize potential differences arising from
pooling positions, we separated the data into buried and
exposed positions according to solvent accessibility of the
residue. Additionally, using an ANOVA model we tested
how the estimated effect size per amino acid (using η2 as
dependent variable) varied across environment and amino
acid.

We performed three different but related types of ana-
lyses to quantify the average fitness effects of synonymous
mutations. Firstly, we focused solely on the 15 mutations
that are synonymous to the reference sequence (similar to
Bank et al. 2014). Here, we computed the medians of the
maximum and minimum effect size, and the standard
deviation from 1000 samples of the posterior. Secondly,
across the whole data set, we computed the descriptive
statistics of the differences between each codon and the
average amino acid effect of this codon. Finally, we com-
pared the distributions of the absolute pairwise differences
between amino acid effects, synonymous-codon effects, and
samples from the posterior of the same codon. For the
environments 30N and 30S (30 °C with normal and high
salinity) we performed all analyses across the available 3
and 2 replicates, respectively, and confirmed that our con-
clusions remain qualitatively similar (results not shown).

Potential mechanisms underlying the effect of
synonymous mutations on fitness

There are several mechanisms through which synonymous
mutations can affect protein translation (reviewed in Plotkin
et al. 2011). In this study, we focused on whether codon
usage frequency or predicted mRNA stability (using RNA
melting temperature as a proxy) can predict effects of
synonymous mutations (Presnyak et al. 2015).

Firstly, to enable the inclusion of codon frequency pat-
terns in yeast into our regression models, we obtained the
relative abundance of each codon in the yeast genome from

the Codon Usage Database (http://www.kazusa.or.jp/codon/
cgi-bin/showcodon.cgi?species=4932).

Secondly, synonymous mutations may affect translation
through different stability of the mRNA generated by dif-
ferent codons. To obtain predictions of how mRNA stability
is affected by synonymous mutations, we used the predic-
tion software mfold (Markham and Zuker 2008; Zuker et al.
1999) for 25, 30, and 36 °C and with high salt concentra-
tions (0.5 M Na+), with physiological concentrations of salt
(0.015 M Na+), and 0.001 M Mg2+, respectively. As input,
we used sequences spanning 135 nucleotides of the Hsp90
protein in yeast. To obtain these sequences, we added 54
nucleotides flanking both 5′ and 3′ sides of the region of
interest (complete sequences were obtained from
https://www.addgene.org/41188/sequences/). From each of
these data sets, we selected the conformation with the
highest melting temperature (Tm), as highest-stability
reference point.

Since Hsp90 is a chaperone involved in the response to
thermal stress as well as in the regulation of osmotic stress
(Boucher et al. 2014; Yang et al. 2006), we tested which
factors can explain variation in codon fitness effects. For
that we performed model selection using the leaps package
(Lumley 2017). We started with the full model with all
factors (Temperature, Medium, Codon frequency, Melting
temperature, Residue position, and GC content) and their
interactions and proceeded by backward selection. We
selected the best models under three different criteria—BIC
(Bayesian Information Criteria), adjusted R2 and Mallow’s
Cp. To select the best model, we calculated the credibility
interval, based on 1000 posterior samples, for AIC, BIC, R2

and adjusted R2, and performed model comparison with an
ANOVA analysis.

Effect of synonymous mutations on the topography
and the dynamics of adaptive walks in codon fitness
landscapes

To quantify the impact of effects of synonymous mutations
coding for the same amino acid on the topography of the
fitness landscape, we compared the single-effect landscape
with the averaged landscape. For the single-effect land-
scapes (Fig. 1a3), the effect of each codon was directly
obtained from the experimental data. For the averaged
landscape (Fig. 1a2), we assigned to every codon that coded
for the same amino acid, the same pooled amino acid esti-
mate obtained from empiricIST.

Each amino acid position in our data set corresponds to a
complete multiallelic fitness landscape with 43= 64 geno-
types. We characterized the prevalence of epistasis in the
resulting 9 × 6= 54 fitness landscapes using several fitness
landscape statistics. We estimated (1) the roughness-to-
slope ratio (Aita et al. 2001; Bank et al. 2016; Szendro et al.
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2013) to quantify the relative deviations from an additive
model; (2) the multi-allelic gamma statistics (Bank et al.
2016; Ferretti et al. 2016) to characterize the prevalence and
type of epistasis in the landscape. Additionally, to test the
impact of synonymous mutations on the evolutionary
dynamics on the landscape we estimated: (1) the number of
local peaks (Szendro et al. 2013) and (2) the length and
variance in the length of potential adaptive walks in the
landscapes (Neidhart and Krug 2011; Szendro et al. 2013).
Probabilities of adaptive walks were computed analytically
under the strong-selection weak-mutation approximation,
following Bank et al. (2016). Credibility of the estimates
was assessed by computing the fitness landscape statistics
for 100 posterior samples.

Differences between averaged and single-effect land-
scapes were assessed by comparing the lower and upper
2.5% boundary of the credibility estimates. Differences
were considered significant if the lower credibility interval
from the averaged landscape and the upper credibility
interval of the single-effect landscape (and vice-versa) did
not overlap for each of the statistics. We did not perform
multiple testing adjustment for this analysis.

All analyses were performed with R (R version 3.3.3
Core Team 2017) or Mathematica 11 (version 11.2 Wol-
fram Research Inc. 2017).

Results and discussion

The distribution of fitness effects of synonymous
mutations

Previous studies have shown that synonymous mutations
can directly affect fitness (e.g., Firnberg et al. 2014; Hunt
et al. 2014; Lind et al. 2010) and impact the ability of
populations to adapt to new environments (Agashe et al.
2016; Bailey et al. 2014). For example, Bailey et al. (2014)
found that two synonymous mutations were responsible for
adaptation of Pseudomonas fluorescens to a new medium
by increasing the expression of a gene involved in glucose
metabolism. In a more recent study in Methylobacterium
extorquens, Agashe et al. (2016) found that the deleterious
effect of synonymous mutations in a medium with methy-
lamine as the sole carbon source could be rescued by dif-
ferent mutations, including four synonymous mutations that
increased transcription and protein production levels. The
impact of synonymous mutations at the genome-wide level
was also found in patterns of codon usage bias (syno-ny-
mous codons are used at different frequencies) across
genomes. Evidence from studies within and between spe-
cies support the role of direct selection on synonymous sites
in various genes (Choi and Aquadro 2016; DuMont et al.
2004; Hershberg and Petrov 2009; Ran and Higgs 2010;

Shah and Gilchrist 2011; Singh et al. 2007; Sun et al. 2016).
A first piece of evidence for synonymous effects in the
studied region of Hsp90 came from Bank et al. (2014) who
reported that one of the 15 mutations synonymous to the
parental sequence had a significantly deleterious effect in 4
out of 6 environments (Fig. 9 in Bank et al. 2014). In order
to quantify the distribution of synonymous fitness across
different amino acid backgrounds, we applied empiricIST to
the data set from Bank et al. (2014), which provided us with
the growth rate of all 576 possible codon mutations across a
9 amino acid region of Hsp90 in Saccharomyces cerevisiae
in 6 different experimental conditions, estimated from bulk
competitions. We extracted the synonymous fitness con-
tribution of each mutation by subtracting the mean amino
acid effect.

The effect size of synonymous mutations

Although most of the 15 mutations that are synonymous to
the wild type are of similar effect, some individual syno-ny-
mous mutations present as much as 1% of fitness change
(Codon AAC, Fig S8). Since the data set includes all 64
codon mutations for each residue position, we obtained a
larger set of synonymous mutations by extracting the effect
of synonymous mutations across all amino acids. By
default, these mutations include the effect of amino acid
changes in relation to the wild type plus possible effects of
synonymous mutations. To eliminate the amino acid effect,
for all mutations we subtracted the estimated average effect
of the corresponding amino acid (see Methods). As a result
of this, the DFE of the synonymous mutations is con-
centrated around 0. Its shape is clearly different from the
DFE of the non-synonymous mutations (Fig. S9), with
much lower effect sizes. As observed for the synonymous
mutations to the wild type, the average effect size of
synonymous mutations varies across environments, from
0.001 in 30S to 0.004 in 36N (Table S3B). However, effect
sizes are also highly variable (Fig S9) and can reach up to
0.019 in 25N, 0.010 in 25S, 0.022 in 30N, 0.014 in 30S,
0.045 in 36N and 0.023 in 36S (Table S3B).

To quantify the effect of synonymous mutations in
comparison with the effect of non-synonymous mutations
and experimental error, we calculated the absolute pairwise
differences between 1000 random pairs of amino acids,
codons, posterior samples and replicates (Table S4). This
allowed us to estimate the average effect of: (1) an amino
acid change (non-synonymous mutations), (2) a codon
change within the same amino acid (synonymous muta-
tions), (3) variation between posterior samples (estimation
error). Expectedly, absolute pairwise differences between
mutants that changed the amino acid have a much stronger
effect than synonymous mutations (Table S4, see Material
& Methods). Overall differences between synonymous
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mutations are higher than two random draws of the pos-
terior. On average, the effects of synonymous mutations are
larger in the 36N environment (Table S4, Fig. S10), where
Hsp90 is expected to be more important for organism sur-
vival (Boucher et al. 2014; Mishra et al. 2016; Yang et al.
2006).

Overall, our assessment shows that the size of synon-
ymous fitness effects is non-negligible but only slightly
above the experimental detection limit. Therefore, we
restrict ourselves to statistical arguments about the dis-
tribution of synonymous effects in this study rather than
identifying specific mutations which would likely result in a
high false discovery rate.

The beneficial tail of the distribution of synonymous
fitness effects

The distribution of fitness effects contains information
about the availability of beneficial mutations (Orr 2005;
2010). It is of particular interest to study the shape of the
beneficial tail of this distribution as it determines various
aspects regarding the nature of adaptive walks (Eyre-
Walker 2006; Orr 2010). Using the same data as in the
present study, Bank et al. (2014) previously found that for
all environments except 25S, the beneficial tail of the full
distribution of fitness effects most likely belonged to the
Weibull domain. This suggested that populations were close
to a well-defined optimum, and the available beneficial
mutations would be of similar and small size (Bank et al.
2014; Joyce et al. 2008; Orr 2010).

We used the tail shape estimator from empiricIST to
estimate the tail shape of the distribution of beneficial
synonymous mutations (i.e., the distribution of the bene-
ficial contributions to the amino acid effects). We find that
the shape parameter of the fitted Generalized Pareto Dis-
tribution is most likely positive in all environments, which
indicates that the resulting shape of the beneficial tail
belongs to the Fréchet domain (Fig. 3) (Joyce et al. 2008;
Orr 2010). Distributions from this domain are characterized
by many mutations of small effect, along with few muta-
tions of large and unpredictable effect (Jain and Seethara-
man 2011; Joyce et al. 2008; Neidhart and Krug 2011).
Such a shape of the distribution of synonymous effects
makes sense both intuitively and with respect to the
reported examples of large-effect synonymous mutations
(Agashe et al. 2016; Bailey et al. 2014): a majority of
synonymous mutations may not affect fitness at all, whereas
specific ones could indeed significantly affect fitness. This
would also explain why synonymous effects are seldomly
detected, as the rarity of large effects implies that a large
number of mutations has to be screened to obtain a positive
result.

Relationship between observed synonymous effects
and potential underlying biological mechanisms

Synonymous mutations can affect fitness by altering speed
and accuracy of translation, and mRNA folding and stability
(Brule and Grayhack 2017; Drummond and Wilke 2008;
Knöppel et al. 2016; Kudla et al. 2009; Plotkin and Kudla
2011; Presnyak et al. 2015; Shabalina et al. 2013; Sharp
et al. 2010; Yu et al. 2015; Zhou et al. 2009). It has been
proposed that protein folding may be affected more sig-
nificantly by changes in translation accuracy for buried
(structural) positions, as they are often involved in the
formation of crucial secondary and tertiary structures of the
protein (Drummond and Wilke 2008; Saunders and Deane
2010; Zhou et al. 2009). The usage of different synonymous
codons could therefore allow cells to slow down or arrest
protein production in response to sudden environmental
changes and to optimize resource production (Fredrick and
Ibba 2010; Tuller et al. 2010; Zhang et al. 2009). We
evaluated whether the effects of synonymous mutations that
we observe can be explained by variation in codon pre-
ference or mRNA stability. To this end, we analyzed a full
linear model incorporating temperature, medium composi-
tion, residue position, melting temperature of mRNAs, GC
content, and codon usage frequency, as well as all possible
interactions of those factors.

No clear predictors of codon fitness emerged from this
analysis. The best model indicated that fitness effects of
synonymous mutations are affected by interactions between
residue positions and temperature, medium composition,

Fig. 3 Shape parameter estimates of the beneficial tail of the dis-
tribution of synonymous effects. In all environments, the estimated
shape parameter of the tail is positive, which indicates that the dis-
tribution of synonymous effects belongs to the Fréchet domain (i.e.,
that it can be characterized by a heavy-tailed distribution). This implies
the presence of many nearly-neutral and few larger-effect mutations.
The shape parameter was estimated using the tail shape estimator from
empiricIST using the information of 1000 samples from the posterior
distribution. Environmental conditions are indicated as the combina-
tion of temperature (25 °C, 30 °C, and 36 °C) or (25, 30, and 36 °C)
and salinity (N= normal and S= high salinity)
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mRNA melting temperature, GC content, and codon usage
frequency (Table S5); however, only 1.4% of the variance
in fitness effects could be attributed to this combination of
factors. There are various reasons that could explain this
inconclusive result. Firstly, the synonymous effect sizes
could be too small compared with the experimental uncer-
tainty to yield a clear result. This problem should be
amplified by the observed shape of the distribution of
synonymous effects; if only few mutations have an effect,
the statistical power to detect this effect in the full data set
will be very low. Secondly, we considered diverse amino
acid positions and environments. Intuitively, it seems
plausible that at each of the positions, different biological
mechanisms could contribute to synonymous fitness effects.
Thirdly, our analysis is based on a distribution of synon-
ymous fitness effects that was observed on top of an amino
acid effect in a conserved region of the protein, which could
blur the true distribution of synonymous effects. Thus,
larger data sets based on synonymous mutations to a
common reference will be necessary for a better statistical
assessment of the factors underlying the distribution of
synonymous fitness effects.

The shape of the codon fitness landscape with and
without synonymous effects

Having established that there is a non-negligible distribution
of synonymous fitness effects, it is natural to ask how
considering such effects changes a given fitness landscape.
In the following section, we analyze the 54 64-genotype
fitness landscapes of single amino acid positions that are
contained in our data set. In contrast to the section above,
we now also consider the amino acid effects of mutations
and compare the shape of the fitness landscape when (1) all
codons for the same amino acid are assigned the same effect
(averaged landscape) and when (2) all codons have indivi-
dually estimated effects (single-effect landscape).

Epistasis in the codon fitness landscape

We investigated the effect of synonymous mutations on the
topography of the fitness landscape by comparing the pre-
valence and type of epistasis for averaged and single-effect
landscapes (see Fig. 1 a2, a3, Material & Methods) for each
of the 9 amino acid positions across 6 environments. For all
54 landscapes, we computed two statistics: the roughness-
to-slope ratio r/s (Szendro et al. 2013) and the locus-specific
gamma statistic (Ferretti et al. 2016). The roughness-to-
slope ratio quantifies the prevalence of epistasis by com-
paring the deviation of the landscape from an additive
model with the magnitude of the fitness effects (Carneiro
and Hartl 2010; Schenk et al. 2013). The γi→j statistic
measures the correlation of fitness effects of the same

mutations in a single-step distance across all genetic back-
grounds. Whereas the roughness-to-slope ratio describes the
landscape by means of only a single value, γi→j results in a
representation of the landscape by means of 2L values,
where L is the number of loci. This epistatic footprint makes
heterogeneity of epistasis in the landscape visible, and can
thus indicate epistatic signals at the level of single loci (e.g.
Bank et al. 2016).

The roughness-to-slope-ratio indicates that all but one of
the codon landscapes are highly epistatic (r/s >1), with the
magnitude of the roughness-to-slope ratio varying across
amino acid positions and environments (Fig. S11). Single-
effect landscapes tend to be more epistatic (larger
roughness-to-slope ratio) than averaged landscapes,
although this difference is in general small. Interestingly, in
few cases the single-effect landscape has a smaller
roughness-to-slope ratio than its corresponding averaged
landscape. This is noteworthy because in this case the
consideration of synonymous fitness effects makes the
landscape less rugged/more linear, which is opposite to the
intuitive expectation that adding variation in synonymous
effects should increase the number of peaks and thus the
prevalence of epistasis in the landscape. At high salinity, the
roughness-to-slope ratio tends to be larger than in normal
environments, and also the difference in the roughness-to-
slope ratios between amino acid positions and between
averaged and single-effect landscapes is larger (Fig. S11).
The stronger epistatic signal observed in the high-salinity
environments could be caused by the combination of low
absolute growth rates observed in high salinity conditions
that result in larger relative fitness differences of the
mutations (c.f. Table S1 in Bank et al. 2014), and larger
experimental uncertainty (Fig. S6) in this environment. This
indicates that one needs to be cautious when interpreting
roughness-to-slope ratios across data sets, because the
measure may be confounded by experimental differences
rather than genuine changes in the epistatic component of
the landscape.

Computing the γi→j statistic per codon position confirms
that averaged and single-effect landscapes tend to display a
similar strength of epistasis within amino acid position and
environment on a global scale (Fig. 4, Fig. S12). Only when
γi→j is computed for individual pairs of nucleotide sub-
stitutions, larger differences in epistasis appear across the
resulting epistatic profiles (see Fig. S13). The γi→j statistic
per codon position shows smaller differences between
environments than the roughness-to-slope ratio. As the
gamma statistic is based on the correlation and not the effect
size of fitness effects across genetic backgrounds, it is less
sensitive to differences in mutational effect sizes and
experimental error. The largest systematic differences in the
codon position-wise strength of epistasis are found when
comparing the order in which mutations occur. Gamma
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measures obtained from the epistatic effect of non-
synonymous mutations (γ1→2, γ2→1) in general display
strong epistasis (Fig. 4), compared to gamma measures
obtained from (mostly) synonymous mutations (γ1→3, γ2→3,
γ3→1, γ3→2). Thus, the structure of the codon table (i.e., the
existence of synonymous and non-synonymous mutations)
leaves a distinctive signal in all fitness landscapes, but the
signal looks similar for averaged and single-effect land-
scapes. Splitting this signal into its components caused by
individual pairs of nucleotides illustrates extensive local
heterogeneity of epistasis across codon fitness landscapes
and between single-effect and averaged landscapes (see Fig.
S13) and indicates the potential for different dynamics of
adaptive walks, which is discussed in the next Section.

However, this measure describes each codon fitness land-
scape by a set of 216 values, which makes it difficult to
obtain quantitative comparisons. Nevertheless, Fig. S13
shows qualitatively that every codon fitness landscape has
indeed a different epistatic profile. This local heterogeneity
of the fitness landscapes is not well captured by averaging
summary statistics such as the roughness-to-slope ratio and
the codon position-based gamma statistic.

Impact of synonymous mutations on adaptive walks

Including synonymous mutations changes the topography
of the landscape, which may affect the accessibility of
different mutational paths by creating additional peaks and

Fig. 4 Gamma statistics of pairs of codon positions for single-effect
landscapes across amino acid positions (y axis) and environments (x
axis). In general, interactions of non-synonymous mutations (γ1→2,
γ2→1) are more epistatic, than non-synonymous mutations in the
background of synonymous mutations. There is no systematic varia-
tion across environments (x axis), but there seems to be a systematic

impact of amino acid position on the strength of epistasis (y axis).
Specifically, position 582 shows qualitatively stronger epistasis for
both γ1→3 and γ2→3 across all environments. This indicates that
synonymous mutations may have a relatively larger role at con-
straining evolutionary paths at this position
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sinks in the fitness landscape. To quantify the impact of
synonymous effects on adaptive walks, we calculated the
number of optima, the mean expected length of adaptive
walks, and the variance in the number of steps for the
single-effect and averaged landscapes. We based our cal-
culation on the assumption of the strong-selection weak-
mutation limit (Gillespie 1984) in which evolution happens
by means of sequential beneficial substitutions that result in
an adaptive walk that ends in a fitness peak (e.g., Frank
2014; Orr 2005; Schoustra 2009; Zagorski et al. 2016). We

define a fitness peak as any genotype with fitness higher
than all single-step mutational neighbors. For averaged
landscapes, in which all synonymous mutations are
assigned equal fitness, we consider a fitness plateau spanned
by synonymous codons as a single local optimum if all non-
synonymous codons in a distance of a single nucleotide step
have lower fitness (as in Fig. 1a3).

By definition, the number of fitness peaks in the averaged
landscape has to be lower or equal to that of the single-effect
landscape. Indeed, we find that there is a large difference in the

Fig. 5 Number of optima observed from 100 posterior samples of
single-effect (dark blue) and averaged (light yellow) landscapes for
positions 582, 584, 586, and 590 (from left to right) across environ-
ments. (See Fig. S14 for the complete set of loci.) The number of
optima is always larger in single-effect than in averaged landscapes.
The number of optima is smaller at high temperatures, which may
indicate increased constraints to adaptation. The large difference

between the number of peaks in averaged and single landscapes sug-
gests that synonymous mutations can affect adaptation to a new
environment by trapping the population at a local optimum. The mean
and median of the distributions are significantly different according to
Welch two sample t-test and Wilcoxon test, p < 0.00001 after Bon-
ferroni correction for 54 comparisons
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number of fitness peaks between single-effect and averaged
landscapes (Fig. 5, Fig. S14). This difference is environment-
dependent and also varies across amino acid positions (Fig. 5,
Fig. S14), and it is accompanied by a larger between-
environment variation in the number of peaks in the single-
effect landscapes. For most environments and positions,
averaged landscapes have only 1 or 2 fitness peaks (Fig. 5, Fig.
S14). Conversely, among the single-effect landscapes, 25 °C
stands out with a consistently large number of peaks across all
amino acid positions (mean across positions for single-effect:
5.568, mean across positions for averaged landscape: 2.593).
The much larger number of fitness peaks in the single-effect
landscape suggests that evolution on the ‘true’ fitness land-
scape that includes effects of synonymous mutations is less
predictable (De Visser and Krug 2014; Lobkovsky et al.
2011).

As synonymous mutations are expected to have a
stronger effect in buried amino acid positions (Drummond
and Wilke 2008) differences between adaptive walks on
single-effect and averaged landscapes should be larger in
buried positions. However, we do not see consistent varia-
tion between the two landscape types between buried or
exposed positions (see Material & Methods), which sug-
gests that the impact of synonymous mutations is not solely
due to effects on protein folding, i.e., not strongly correlated
with the solvent accessibility of the residues.

Biologically, a larger difference in predicted adaptive
walks between averaged and single-effect landscapes points
to a greater importance of synonymous fitness effects. The
pronounced differences that we observed at cold tempera-
ture could stem both from the smaller absolute growth rate
of the wild type in this environment, which results in larger
relative effects of mutations (i.e., small-effect mutations
could become more visible), and from a reduced need for
functional Hsp90 at cold temperature (i.e., Hsp90 is not so
necessary), which could result in a larger number of
(synonymous) adaptive solutions that are connected to the
fine-tuning of the protein. In support of this hypothesis, we
observe fewer optima and longer and more variable adap-
tive walks in the single-effect landscapes at 36N (Tables S6,
S7), which is in agreement with the importance of Hsp90 at
high temperatures (Bank et al. 2014; Boucher et al. 2014;
Hietpas et al. 2013; Mishra et al. 2016) which may leave
only few options for improvement. This is consistent with
the small proportion of beneficial mutations across the
whole DFE observed by Bank et al. (2014) in this condition.

Our results allow for an interesting thought experiment
regarding the impact of synonymous mutations on evolution
across populations of different sizes. Our results add to the
notion that synonymous fitness effects exist but are small on
average. According to the nearly-neutral theory, such small
fitness effects will only be visible to selection if the popula-
tion size is large (Ohta 1992) When they become visible in

large populations, synonymous fitness effects create addi-
tional peaks in the organism’s fitness landscape, in which
adaptation can become stalled. In such a situation, bottlenecks
(i.e., sudden drops in the population size), which can occur
under natural scenarios and are also frequently imposed in
experiments, may render synonymous mutations effectively
neutral. This erases the previous fitness peak and allows the
population to continue their adaptive walk on an averaged-
type fitness landscape. Thus, by opening mutational paths and
erasing synonymous fitness peaks, a (temporally) smaller
population size could speed up adaptation and increase its
predictability (Jain et al. 2011; Wright 1931). Caused by the
different effect size and distribution of non-synonymous
versus synonymous mutations, this effect is in contrast to the
slowdown of adaptation and decrease of predictability of
evolution in small populations proposed in standard
population-genetic theory (Lanfear et al. 2014; Orr 2000).

Conclusion

The impact of the codon table on the evolutionary dynamics
on fitness landscapes has received little attention. This is a
consequence of the vast size of the nucleotide space and the
resulting dimensionality of the fitness landscape, which has
led to most studies restricting themselves to the amino acid
level. Using selection coefficient estimates obtained with
empiricIST, a new software for the estimation of growth
rates from deep mutational scanning data, we characterized
the distribution of synonymous fitness effects and investi-
gated the consequences of including synonymous mutations
when characterizing the fitness landscape of single amino
acid positions across environments. Interestingly, we found
support for a heavy-tailed distribution of beneficial syno-ny-
mous effects across all environments, suggestive of a dis-
tribution of fitness effects with many small-or-no effect
mutations and few mutations of potentially large effects.
This is in line with the current population-genetics litera-
ture, in which the importance of accounting for syno-ny-
mous fitness effects is discussed controversially. We
demonstrate that synonymous mutations can impact the
topography of the fitness landscape and affect adaptation in
an environment-dependent fashion. Importantly, we show
that synonymous fitness effects can directly impact both the
path and endpoint of an adaptive walk by creating addi-
tional fitness peaks. This highlights the importance of their
consideration in the study of fitness landscapes.

Data archiving

The complete documentation of all analyses, which allows
for the reiteration of all steps, is available from the Dryad
Digital Repository https://doi.org/10.5061/dryad.k7jm5hp.
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