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ABSTRACT Nonequilibrium demography impacts coalescent genealogies leaving detectable, well-studied signatures of variation.
However, similar genomic footprints are also expected under models of large reproductive skew, posing a serious problem when trying
to make inference. Furthermore, current approaches consider only one of the two processes at a time, neglecting any genomic signal
that could arise from their simultaneous effects, preventing the possibility of jointly inferring parameters relating to both offspring
distribution and population history. Here, we develop an extended Moran model with exponential population growth, and
demonstrate that the underlying ancestral process converges to a time-inhomogeneous psi-coalescent. However, by applying a
nonlinear change of time scale—analogous to the Kingman coalescent—we find that the ancestral process can be rescaled to its time-
homogeneous analog, allowing the process to be simulated quickly and efficiently. Furthermore, we derive analytical expressions for
the expected site-frequency spectrum under the time-inhomogeneous psi-coalescent, and develop an approximate-likelihood frame-
work for the joint estimation of the coalescent and growth parameters. By means of extensive simulation, we demonstrate that both
can be estimated accurately from whole-genome data. In addition, not accounting for demography can lead to serious biases in the
inferred coalescent model, with broad implications for genomic studies ranging from ecology to conservation biology. Finally, we use
our method to analyze sequence data from Japanese sardine populations, and find evidence of high variation in individual reproductive
success, but few signs of a recent demographic expansion.
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HE origins of the coalescent in the early 1970s mark

a milestone for evolutionary theory (Kingman 2000).
More than 45 years after Kingman formally proved the ex-
istence of the “n-coalescent” (Kingman 1982a,b,c), the
so-called Kingman-n-coalescent has gradually become the
key theoretical tool to study the complex interplay of muta-
tion, genetic drift, gene flow, and selection. Closely linked to
its underlying forward-in-time population model, e.g., the
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Wright-Fisher (WF; Fisher 1930; Wright 1931) and the
Moran model (Moran 1958, 1962), the Kingman coalescent
has been used to derive expected levels of neutral variation,
including the number of segregating sites, the average num-
ber of pairwise differences, and the expectation of the allele
frequencies in a population sample (i.e., the site-frequency
spectrum; SFS). In fact, these predictions apply not only to
the WF and Moran model, but extend to a large class of
Cannings exchangeable population models (Cannings
1974) that all converge to the Kingman coalescent in the
ancestral limit (Mohle and Sagitov 2001). Furthermore, the
Kingman coalescent forms the basis for many population
genetic statistics—such as Tajima’s D (Tajima 1989), Fay
and Wu’s H (Fay and Wu 2000), or, more generally, any
SFS-based test statistic (Achaz 2009; Ferretti et al.
2010)—and subsequent inferences (Irwin et al. 2016) to
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detect deviations from the assumption of a neutrally evolving,
constant-sized, panmictic population (Wakeley 2009).

While the Kingman coalescent has been shown to be robust
to violations of its assumptions (Mohle 1998, 1999), such as
constant population size, random mating, and nonoverlap-
ping generations, and has been extended to accommodate
selection, migration, and population structure (Neuhauser
and Krone 1997; Nordborg 1997; Wilkinson-Herbots
1998), it breaks down in the presence of skewed offspring
distributions (Eldon and Wakeley 2006), strong positive se-
lection (Neher and Hallatschek 2013; Schweinsberg 2017),
recurrent selective sweeps (Durrett and Schweinsberg
2004, 2005), and large sample sizes (Wakeley and Takahashi
2003; Bhaskar et al. 2014). In particular, all of these effects
can cause more than two lineages to coalesce at a time,
resulting in so-called multiple mergers. Hence, the underly-
ing coalescent topology (i.e., the gene genealogy) is no
longer represented by a bifurcating tree as in the “standard”
Kingman case, but can take more complex tree shapes that
can also feature several simultaneous mergers. Taking
these points into account, a more general class of models,
so-called multiple-merger coalescent (MMC) models, have
been developed (e.g., Bolthausen and Sznitman 1998;
Pitman 1999; Sagitov 1999; Schweinsberg 2000; Mohle
and Sagitov 2001; reviewed in Tellier and Lemaire 2014),
aiming to generalize the Kingman coalescent model
(Wakeley 2013). As for the latter, these MMC models can
often be derived from Moran models, generalized to allow
multiple offspring per individual (Eldon and Wakeley 2006;
Huillet and Mohle 2013; see also review of Irwin et al.
2016).

Starting from such an extended Moran model, Eldon and
Wakeley (2006) proved that the underlying ancestral process
converges to a psi-coalescent (sometimes also called Dirac
coalescent; Eldon et al. 2015), and that population genetic
parameters inferred from genetic data from Pacific oysters
(Crassostrea gigas) under this model differ vastly from
those inferred assuming the Kingman coalescent. Their
study—being the first to link MMC models to actual biolog-
ical questions, molecular data and population genetic
inferences—highlighted that high variation in individual re-
productive success drastically affect both genealogical his-
tory and subsequent analyses; this has been observed in
many marine organisms such Atlantic cod (Gadus morhua)
and Japanese sardines (Sardinops melanostictus), but
should also occur more generally in any species with type
III survivorship curves that undergo so-called sweepstake-
reproductive events (Hedgecock 1994; Hedgecock and
Pudovkin 2011). Fundamentally, the problem is that an ex-
cess of low-frequency alleles (i.e., singletons), a ubiquitous
characteristic of many marine species (Niwa et al. 2016),
could be explained by either models of recent population
growth or skewed offspring distributions when analyzed
under the Kingman coalescent, assuming neutrality, which
can result in serious mis-inference (e.g., a vast overestima-
tion of population growth).
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In developing a SFS-based maximum likelihood frame-
work, Eldon et al. (2015) demonstrated that multiple merger
coalescents and population growth can be distinguished from
their genomic footprints in the higher-frequency classes of
the SFS with high statistical power (see also Spence et al.
2016). However, there is currently neither a modeling frame-
work that considers the genomic signal arising from the joint
action of both reproductive skew and population growth, nor
is there any a priori reason to believe that the two could not
act simultaneously.

Here, we develop an extension of the standard Moran
model that accounts for both reproductive skewness and
exponential population growth, and prove that its underlying
ancestral process converges to a time-inhomogeneous
psi-coalescent. By (nonlinearly) rescaling branch lengths
this process can—analogous to the Kingman coalescent
(Griffiths and Tavaré 1998)—be transformed into its
time-homogeneous analog, allowing efficient large-scale
simulations. Furthermore, we derive analytical formulae
for the expected site-frequency spectrum under the time-
inhomogeneous psi-coalescent and develop an approximate-
likelihood framework for the joint estimation of the coales-
cent and growth parameters. We then perform extensive
validation of our inference framework on simulated data,
and show that both the coalescent parameter and the
growth rate can be estimated accurately from whole-genome
data. In addition, we demonstrate that, when demography is
not accounted for, the inferred coalescent model can be seri-
ously biased, with broad implications for genomic stud-
ies ranging from ecology to conservation biology (e.g.,
due to its effects on effective population size or diversity
estimates). Finally, using our joint estimation method,
we reanalyze mtDNA from Japanese sardine (Sardinops
melanostictus) populations, and find evidence for consider-
able reproductive skew, but only limited support for a recent
demographic expansion.

Methods

Here, we will first present an extended, discrete-time Moran
model (Moran 1958, 1962; Eldon and Wakeley 2006) with
exponential population growth that will serve as the forward-
in-time population genetic model underlying the ancestral
limit process. We will then give a brief overview of coalescent
models, with special focus on the psi-coalescent (Eldon and
Wakeley 2006), before revisiting SFS-based maximum likeli-
hood methods to infer coalescent parameters and population
growth rates.

An extended Moran model with exponential growth

We consider the idealized, discrete-time model with variable
population size shown generally in Figure 1. Furthermore, let
N, € N be the deterministic and time-dependent population
sizen € N time steps in the past, where, by definition, N = Ny
denotes the present population size. In particular, defining
v(n) as the exchangeable vector of family sizes—with
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Figure 1 lllustration of the extend Moran model with exponential growth. Shown are the four different scenarios of population transition within a
single discrete time step. (A) The population size remains constant and a single individual produces exactly two offspring (“Moran-type” reproductive
event). (B) The populatlon size remains constant and a single individual produces YN, offspring (“sweepstake” reproductive event). (C )The population
size increases by AN individuals and a single |nd|V|dua| produces exactly max[A + 1, 2] offspring. (D) The population size increases by AN individuals
and a single individual produces exactly max[A + 1,¥N, | offspring. Note that n denotes the number of steps in the past, such that n = 0 denotes the

present. An overview of the notation used in this model is given in Table 1.

components v;(n) indicating the number of descendants of
the ith individual—the (variable) population size can be
expressed as

N

Nn-1=»_v(n) with (v1(n),va(n),...,vn

i=1

(n)) € NV,

(1)

Furthermore, we assume that the reproductive mechanism
follows that of an extended Moran model (Eldon and Wakeley
2006; Huillet and Mohle 2013). In particular, as in the orig-
inal Moran model, at any given point in time n € N, only
a single individual reproduces and leaves Uy(n) offspring
(including itself). Formally, the number of offspring can be
written as a sequence of random variables (Uy(n)),,; [Where
each Uy(n) is supported on {0, 1, ...,N,_1}], such that w(n) -

up to reordering — is given by
0 ifi< UN(Tl)
vi(n): UN(Tl) ifi= UN(TI) (2)
1 otherwise.

However, since population size varies over time, the sequence
(Un(n))pen is generally not identically distributed. On a tech-
nical note though, we require that the (U,,) are independently
distributed, which ensures that the corresponding backward
process satisfies the Markov property.

An illustration of our model, and the four different scenar-
ios for forming the next generation (i.e., within a single
discrete time step), is shown in Figure 1. Generally, we dif-
ferentiate between two possible reproductive events: a classic
“Moran-type” reproductive event (Figure 1, A and C), and a

“sweepstake” reproductive event (Figure 1, B and D) occur-
ring with probabilities 1 — N ¥ and N, 7, respectively. If the
population size remains constant between consecutive gen-
erations (Figure 1, A and B), we reobtain the extended Moran
model introduced by Eldon and Wakeley (2006), in which a
single randomly chosen individual either leaves exactly
two offspring and replaces one randomly chosen individual
(Moran-type), or replaces a fixed proportion ¢ € (0, 1] of the
population (of size N;,). Note that, throughout, without loss
of generality, we assume that N, is integer-valued. In both
reproductive scenarios, the remaining individuals persist.
However, if the population size increases between consecu-
tive generations (Figure 1, C and D), the reproductive mech-
anism needs to be adjusted accordingly. Let
Ay = Nooy = Ny ©)
denote the increment in population size between two con-
secutive time points. Then, the number of offspring at time n is
given by
Un(n) = max| Ay +1,0n(n)| @
where Uy(n) denotes number of offspring for the constant-
size population. Thus, independent of the type of reproduc-
tive event, i.e., Moran-type or sweepstake, and, in the spirit of
the original Moran model, additional individuals are always
assigned to be offspring of the single reproducing individual
of the previous generation.
Following Eldon and Wakeley (2006), the distribution of
the number of offspring P(Uy(n) = u) can be written as
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Table 1 Summary of notation and definitions

Notation Definition
Un Number of offspring of a reproductive event in an extended Moran model with population size N
v Vector of family sizes
A Probability measure on [0, 1]
Aix Coalescent rate for x out of / active lineages
Gix Probability of an x — merger among i active lineages
c,(\f) Coalescence probability
(A;’;_'f)nEN C Pk Ancestral process of the extended Moran model sweepstake parameter ¢ (¢ = 0 implying Kingman's coalescent),
and exponential population growth at rate p for a sample of size k defined on Py, i.e., the collection of partitions
of the set k] = {1,...,k}.
(Ht‘”‘f)t20 CPx i — coalescent (y = 0 implying Kingman'’s coalescent) with exponential growth at rate p and sample of size k defined on
Py, i.e., the collection of partitions of the set [k] = {1,...,k}.
G() Time-change function
T&QCA Time until the MRCA for a sample of size k
Ti Sum of the length of all branches with i descendants
Tiot Total branch length of the coalescent tree
n® =@, n(kkf)w) SFS for a sample of size k
o® = (V... <pk<f>1) Normalized expected SFS for a sample of size k
= (€22, k) Expected time to the first coalescence for a sample of size i € {2,...,k}
N if U = max [ AI(\?) L 1N, !l/} if Moran-type reproduct.ive events do¥ninat.e (ie., if y>2),
and the growth rate p is measured in units of the corre-
PON(M) =u) =3 1-N,” if u = max [AI(\;I) +1, 2} sponding coalescent time. A discussion and details about
0 otherwise, the derivation of the coalescent-time scaling are given
(5) below in the Derivation of the ancestral limit process

for some y>0 that—for a given fixed population size—
determines the probability of a sweepstake reproductive event.
Here, we will consider only the case where 1 <y <2, such
that sweepstake events happen frequently enough that the
ancestral process will be characterized by multiple mergers,
and that all coalescent events are due to sweepstake repro-
ductive events, but not so frequently that the population is
devoid of genetic variation (Eldon and Wakeley 2006). Note
that, while the numbers of offspring and replaced individuals
are no longer (necessarily) equal when the population size
increases, the general reproductive mechanism remains
unaltered.

Throughout the paper, and following Griffiths and Tavaré
(1994), we will assume that the population is growing expo-
nentially over time at rate g, and, in particular, that the pop-
ulation size, n steps in the past, is given by

N,=|N(1-0)" ], (6a)
with
2
e=pyy (6b)

if the ancestral process is dominated by sweepstake events
(ie,if 1<y<2),or

(60)
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section.
Multiple merger coalescents: the Psi-coalescent

The most general class of coalescent processes that allows for
multiple lineages to coalesce per coalescent event (but not for
multiple coalescent events at the same time) is the so-called
A-coalescent. These processes are partition-valued ex-
changeable stochastic processes defined by a finite measure
A on the [0, 1] interval (Donnelly and Kurtz 1999; Pitman
1999; Sagitov 1999). In particular, the rate at which x out
of i active lineages merge is given by

Aix = (;)/Olfz(l—y)”/\(dy)- 7

Special instances of the A-coalescent are Kingman’s coales-
cent (Kingman 1982a,b) with

A(dy) = 8o(dy) ®
and the psi-coalescent (Eldon and Wakeley 2006) with
A(dy) = dy(dy), 9

where the measure A is entirely concentrated at 0 and i,
respectively.

Under a (constant-size) extended Moran model, as pro-
posed by Eldon and Wakeley (2006) (corresponding to Fig-
ure 1, A and B), the scaled coalescence rates of the ancestral
process become



fo<y<2

(l>¢*2(1—¢0”
X

(D( 2¢2 = Hzf(wz(l_"’)ix) fy=2

()

where 1,_, denotes the indicator function, whichis 1 ifx = 2
and 0 otherwise. Accordingly, the corresponding rate matrix
of the ancestral process Q, € Rk >k with sample size k is given by

otherwise,

(10)

Aij if i>j

Quif) = 3~ (1= () —iw-)") i

0 otherwise,
1n

where j = i — x — 1. Note that the diagonal entries of Q,(i, )
(ie., when i =j) is given by the (negative) sum over all co-
alescent rates, i.e., _Zin:z/\im which evaluates to the
closed-form representation given in the second line of Equa-
tion 11.

In particular, in the boundary case y = 0, we recover the
rate matrix under the Kingman coalescent as

i e
(2) ifj=i-1
i e

—(2) ifi=j

0 otherwise.

Note that, in the infinite population size limit, y defines the
time scale of the ancestral process. In particular, if 0 <y < 2,
all coalescence events are due to sweepstake reproductive
events, whereas sweepstake events do not happen frequently
enough if y > 2, such that all (2-) mergers are due to Moran-
type reproductive events. Moreover, in the latter case, the
ancestral process of the Moran model can be described
accurately by the Kingman coalescent (when scaled appro-
priately). Note that, for the special case y = 2, both repro-
ductive events happen on the same time scale (Eldon and
Wakeley 2006).

SFS-based maximum likelihood inference

In order to infer the coalescent model and its associated
coalescent parameter, and to (separately) estimate the de-
mographic history of the population, Eldon et al. (2015) re-
cently derived an (approximate) maximum likelihood
framework based on the SFS [see also Birkner and Blath
(2008) and Koskela et al. (2015) for alternative inference
approaches based on a full likelihood framework and approx-
imate conditional sampling distributions, respectively].

In the following, we will give a concise overview of their
approach, which forms the basis for the joint inference of
coalescent parameters and population growth rates.

First, let k denote the number of sampled (haploid)
individuals (i.e., the number of leaves in the coalescent
tree). Furthermore, let n® = (n<k),...,nk ;) denote the
number of segregating sites with derived allele count of
i=1,...,k—1 of all sampled individuals (i.e., the SFS),
and let s = Zf-:llni be the total number of segregating
sites. Provided that s>0, we define the normalized
expected SFS o® = (o9 ... o) as

o _ E[nf“]

which, given a coalescent model (Hf;f)[ ~0,and, assuming the
infinite-sites model (Watterson 1975), can be interpreted as
the probability that a mutation appears i times in a sample
of size k (Eldon et al. 2015). Furthermore, note that (pl(k) isa
function of (Hf;f )i=o (ie., of the coalescent process and the
demographic population history), but, unlike E[n*)], is not a
function of the mutation rate, and should provide a good
first-order approximation of the expected SFS as long as
the sample size and the mutation rate are not too small
(Eldon et al. 2015).

Then, the likelihood function L((Hf’k )i=0, 1%, s) for the
observed frequency spectrum #'®) and given coalescent
model (I iX )e=o is given by

bp .
L((Hfif)tzo’ ,~,<k>,s) - p(chk)tzov{nl!k) =7 iek- 1])

_ 5 (K)
s k-1 < Tl(k) )771'
ﬁ(k)' . 7~’)<k 11 Tior

(14)

(Eldon et al. 2015). Note that, in the third line, we approxi-
mated E[(T"/Ti)] ~ E[TY] /E[Tiq)] = ¢*. In  fact,
Bhaskar et al. (2015) recently used a Poisson random field
approximation to derive an analogous, structurally identical
likelihood function for estimating demographic parameters
under the Kingman coalescent. Notably though, their approx-
imation assumes that the underlying coalescent tree is inde-
pendent at each site, under which condition Equation 14 is
exact.

As an alternative to the likelihood approach, we followed
Eldon et al. (2015) and also implemented a minimal-distance
statistic approach where
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where d, is some metric on RP~! calculated between the
observed and the expected SFS under the generating coales-
cent process.

Note, though, that both the likelihood and the distance-
based approach require expressions for the normalized
expected SFS ¢, Instead of performing Monte Carlo simu-
lations to obtain these quantities, we adapted an approach
recently proposed by Spence et al. (2016), who derived ana-
lytical formulas for the expected SFS under a given (general)
coalescent model (Hf;f );=o, and an intensity measure
&(t) : R=9o—R>y. In particular, the authors showed that

k 6

E[q®] = 5 BCLe, (16)
whereB € RF"1%k"1 andC € Rk~1**~1 areboth A — independent
(and thus easy to calculate) matrices, L € RK"1Xk71 js a
A — dependent lower triangular matrix that depends on the
rate matrix Q and its spectral decomposition, 6 is the popula-
tion-scaled mutation rate, and ¢; = (¢22, ..., ¢xx) denotes the
expected time to the first coalescence for a sample of size
i€ {2,...,k}. Importantly, the time-inhomogeneity of the un-
derlying coalescent process only enters through the first co-
alescence times ¢;. For example, the first coalescence times for
the Kingman coalescent with an exponentially growing popu-

lation are given by
< i )
2 .
E

1 - b
P P

17

Gii= — —€xp
’ p

where Ei(x) = — [ (exp[—t]/t)dt denotes the exponential
integral (Polanskl et al. 2003; Polanski and Kimmel 2003;
Bhaskar et al. 2015). Finally, plugging Equation 16 into
Equation 13 leads to

(pl(k) _ k(ECL(k)l 7 (18)
- (BCLay),

highlighting that 6 cancels, and that the likelihood function

(Equation 14) is independent of the mutation rate.

To obtain the coalescent parameter ¢ and population
growth rate p that maximize the likelihood function
(Equation 14) or, respectively, minimize the distance
function (Equation 15), we used a grid search procedure
over an equally spaced two-dimensional grid with
Pgria = {0,0.01,...,1} and pgq = {0,1,...,1024}, and
evaluated the Value of the likelihood, respectively, distance
function, at each grid point.

Data availability

The empirical raw data used have been downloaded
from GenBank (accession numbers LC031518-LC031623;
data from Niwa et al. (2016)). The empirical SFS can be
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downloaded from Supplemental Material, File S5. The sim-
ulation program and the inference program were written in
C++ and can be downloaded from GitHub under https://
github.com/Matu2083/MultipleMergers-PopulationGrowth.

Results and Discussion

The aim of this work was to derive the ancestral process for
an exponentially expanding population that undergoes
sweepstake reproductive events. We first derive the time-
inhomogeneous Markovian ancestral process that under-
lies the extended Moran model, and show that, analogous
to the Kingman coalescent, it can be described by a time-
homogeneous Markov chain on a nonlinear time scale. In
particular, we derive the coalescent rates and the time-
change function, and prove convergence to a A — coalescent
with Dirac measure at . Detailed derivations of the results,
which in the main text have been abbreviated to keep
formulas concise, can be found in File S1. On the basis
of these results, we derive a maximum likelihood inference
framework for the joint inference of the coalescent param-
eter and the population growth rate, and assess its accuracy
and performance through large-scale simulations. Further-
more, we quantify the bias of coalescent and population
growth parameter estimates when mistakenly neglecting
population demography or reproductive skew. Finally,
we apply our approach to mtDNA from Japanese sardine
(S. melanostictus) populations. where patterns of sequence
variation were shown to be more consistent with sole influ-
ence from sweepstake reproductive events, again highlight-
ing the potential mis-inference of growth if reproductive
skew is not properly accounted for (Grant et al. 2016;
Niwa et al. 2016).

Derivation of the ancestral limit process

Unlike in the case of a constant-size population, the sequence
of the number of offspring (Uy(n)),,,, changes along with the
(time-dependent) population size. Thus, the ancestral pro-
cess is characterized by an inhomogeneous Markov chain
with transition probabilities

\ o PN (Un(n) = u) (u)(Nn—u);
(n) L N x\t¥n i—x
G = 19a
= (X> L; (Nn); (192)
where (z); is the descending factorial, z(z—1)...(z —j+1)

with (z), = 1, and PV denotes the rescaled distribution of Uy
given by

P(Uv =u)u(u—1)/(NN - 1))

e

(19b)

Note that PV is scaled by the time-dependent coalescence
probability c](\7>, which scales the unit of time in the limit pro-
cess such that it is equal to G, steps in the discrete-time
model, and thus serves as the “natural” time scale for the
corresponding ancestral process—defined as


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300499/-/DC1/FileS5.txt
https://github.com/Matu2083/MultipleMergers-PopulationGrowth
https://github.com/Matu2083/MultipleMergers-PopulationGrowth
https://github.com/Matu2083/MultipleMergers-PopulationGrowth
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300499/-/DC1/FileS1.pdf

]E[UN(n)z - UN(n)}
Nn(Nn - 1)

—
=
=
1
2N
)
Il

(20)

for alln € N.
Plugging Equation 5 into Equations 19a and 20, and us-
ing Equation 4 then yields

6 = () sy =y (=N (max[2.40 1))
X (Nn—max{Z,Agl)—F
X (No—max [yNa, A +1] )i_x)

@1)

and

(1-N;7) (max [2, Axl) + 1])2 +N,” (max [len,
Nn(Nn - 1)

+1])’

(22)

respectively. Note that Equation 22 is the weighted sum
of the number of offspring for the two different reproduc-
tive events. Furthermore, taking the limit N— o in
Equation 3

im, A = Jim (N~ Noca)

> (23)
= \im Noys

=0

shows that A,(\?) is bounded for all n € N under the exponen-
tial growth model, and thus allows dropping of the maxima
condition in Equations 21 and 22. Furthermore, for suffi-
ciently large N, Equation 22 becomes

m (L= Ng )24 YNy (YN, —1) o2

= ~ . 2
N Na(Np — 1) Ny @Y

To prove that the time-scaled ancestral process of the un-
derlying extended Moran model converges to a continuous-
time Markov chain as the initial population size approaches
infinity, we apply Theorem 2.2 in Mohle (2002), which re-
quires the following definitions: First, consider a step func-
tion Fy : [0, ©)— [0, o) given by

(25)
Furthermore, let Gy' denote a modification of the right-
continuous inverse of Fy

Gyl (t)=inf{s > O|Fy(s) >t} — 1 (26)

which will constitute the time-change function in the follow-
ing. Since by assumption lim;_,  Fy(s) = o it follows that

1Dl__x + N,;V(max [¢Nn, Al 4 1DX

Gy'(t) is finite for all t € [0, ). Finally, Theorem 2.2
(Mohle 2002) requires that for all t € [0, )

lim inf N, =« 27)
N—o 1=n=gl(t)
and
Jim sup V=0 (28)

1=n=G,'(t)

holds, i.e., that—on the new time scale—the population size
remains large while the coalescent probabilities become
small.

Then, let (Afj,f Jnen denote the ancestral process of the
extended Moran model with exponential growth (see Model
and Methods), and let ¢ and £ denote two partitions of
[k] with é€c¢ of size a and b=b; +...+b; (where
bi=by= ... =b, = 1), respectively. The transition proba-
bility of (A nen at time n € N is given by

®N (n;b1,bg, . .., by)
1 N

= o Z E<(Dil(n))b1"'(Via(n))ba)'

all distinct'1-1a=1

(29

Thus, for the extended Moran model with exponential growth
Theorem 2.2 in Mohle (2002) states:

Theorem 1. (Theorem 2.2; Mohle 2002). Assume that
Equations 27 and 28 hold, and for all t € R~ ( the limit

7q((0,t];b1,...,bg)= lim

N— x©

Tl bl,bz,...

Zcp

7ba)

(30)

exists. Then, for each sample size, k € N, the ancestral pro-
cess (A'/’ o, WJe=o converges as N tends to infinity to a time-
contmuous and, in general, a time-inhomogeneous Markov
chain (H';’fk )i=o-

Note, though, that in its general form Theorem 1 was
derived for any generic Cannings model as well as any kind
of population size change (Méhle 2002).

We will now derive our first main result, and show that the
ancestral limiting process limy_, « (A,‘fl’_",f )¢=o converges to a
A — k — coalescent on a nonlinear time scale. First, we derive
the time-change function Gy (t) for the ancestral process by
considering the step function (Equation 25)

) &Y
nwgm

M “
n/-\

Fn(s) =

n=1

Solving for s then gives
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Gyl(t) =inf{s>0:Fy(|s>t])}

N {mgu + pyt] NV} (32)

pY W2

where we have used log[1 — py?/N?] ~ — py® /N for suffi-
ciently large N. In particular, we have
(0) _ log[1 + pyt]

Gl = Jim Ont(E)ey — (33)

Furthermore, Equations 27 and 28 hold, since

2\ N
lim inf N(l—p%)

N=w 1=n=G.'(t)

. . py>
= lim N f ——
No 15n129;1(t) exp( NY n) 34
= Nlim N1+ pyt)_%
= Vie (0, ),
and, by the same reasoning
d,z
lim sup ———— =0, Vte(0,o). (35)
N—w 1=n=Gy'(t) N(lfp%>

Finally, to show that Equation 30 holds, we first note that

(D((IN)(na b17 cee 7ba) = Oa (36)
and for a = 2, and there are two indices 1 =i<j=a with
bi: b] =2

7q((0,t];b1,...,bq) =0, 37
since the extended Moran model does not allow for more than
one reproductive event at a time.

Thus, limy_ « (_Ag‘f’1 © e=o is well defined and does not
feature any simultaneous coalescent events, implying that
the limiting process must be a (possibly time-inhomogeneous)

A — k — coalescent. Further, fora =1,

G, Gy'(t)
lim Y. &M (n;b) = lim Y Gy
n=1 N—oo pn3

N— o
= P2t

Hence, Theorem 1 implies that, for each sample size k € N the
limit of the time-scaled ancestral process (.Ag‘f’1 ¢=( EXIsts,
N

(38)

0 ,k)
and, from Equation 38 it follows that limy_, « (Ag;1 © ,k)t ~ols

a time-homogeneous A — k — coalescent. Further,
1
P2 =t / xP72A(dx) (39)
0

holds for all b € N; if, and only if, A is the Dirac measure at .
Thus, in the large population-size limit, the ancestral process,
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: ¥p
limy - « (Aggl(r),k

() rer o = lIMy - (A‘f;;cﬁjj,k)tzo , which is equal (in dis-

)e=0, converges to a psi-k-coalescent —

tribution) to a regular psi-k-coalescent (Hg'(?) ) with time

(nonlinearly) rescaled by

G(e) = exp(/;vyt) -1

(40)

Put differently, analogous to the results obtained for the
Kingman coalescent (Griffiths and Tavaré 1994, 1998; Kaj
and Krone 2003), the time-inhomogeneous ancestral lim-
iting process of the extended Moran model with exponen-
tial growth can be transformed into a time-homogeneous
psi-coalescent with coalescent rates given by Equation 10,
with branches rescaled by Equation 33, allowing it to be
simulated easily and efficiently. Intuitively, the transfor-
mation sums over the coalescence intensities of the time-
inhomogeneous process, and weighs them by the time
they were effective, such that, on the new time-scale co-
alescent intensities are constant across time, and the
(rescaled) process is time-homogeneous (see also Kaj
and Krone 2003). Thus, changing the time-scale by Equa-
tion 40 compensates for the shrinking population sizes
(going backward in time) and the effect of increasing (total)
coalescent rates.

To highlight the duality between the two processes, i.e.,
the (forward in time) extended Moran model and the corre-
sponding coalescent, key properties (e.g., the summed length
of all branches with i descendants T; and the total tree length
Tior) are compared in the File S2. Finally, note that Equa-
tion 33 is—except for the additional factor y that is propor-
tional to the coalescent time scale—structurally identical to
the time-change function in the Kingman case (see Equa-
tion 2.7 in Griffiths and Tavaré 1998). However, since
G 1(t) depends on the product py, it is impossible to obtain
a direct estimate of p (or y) without additional information,
and thus—analogous to the case of the population scaled
mutation rate 6—only the compound parameter can be esti-
mated. To keep notation simple, though, we will refer to p
(instead of the compound parameter py) when referring to
growth rate estimates.

Joint inference of coalescent parameters and population
growth rates

In this paragraph we modify the likelihood function

~ ¥k>

’ ® k-1 " (Sq)lgk))nl

P - _

L((an ) ’S> DI m, 4D
i=1 n o

derived in the Methods section to jointly infer the coalescent

parameter s and the population growth rate p. Note that,

while the general form of the likelihood function (Equa-

tion 14) is independent of the generating coalescent process,

changes in ¢ and p affect the normalized expected SFS, as

given by
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o = k(]iCLck)i _ 42)
i—1 (BCLey);

Recall that B and C depend neither on ¢ nor p, and that L. does

depend on ¢y but not on p, and that the time-inhomogeneity of

the underlying coalescent process enters only through the

first coalescence times ¢, which are given by

o

Gi= P(time of first coalescence for i individuals > t)dt

— /00“ exp((Q)ii/0[(1/5(5))615)(&,

where £(s) denotes the intensity measure (Polanski and
Kimmel 2003; Bhaskar et al. 2015; Spence et al. 2016). For
the psi-coalescent with exponential growth, &(t) = e 7", such
that Equation 43 becomes

N ~exp(pyt) — 1)
Gii= /O eXp((Q)u oy dt

(43)

exp ((Q)i,i PV) @9

pY

Ei(_ (Q)i,i P7)7

where Ei(x)= — [ (exp[—t]/t)dt denotes the exponential in-
tegral. Thus, when growth rates are measured on their cor-
responding coalescent scale, i.e., py under the psi-coalescent
vs. p under the Kingman coalescent, Equation 44 is a gener-
alization of the Kingman coalescent result (Equation 17) de-
rived by Polanski and Kimmel (2003). Finally, combining
Equation 44 with Equation 42 allows for the exact compu-
tation of the normalized expected SFS ¢®), avoiding the sim-
ulation error that would be introduced by Monte Carlo
simulations.

Figure 2 shows the normalized expected SFS obtained
from Equation 42, where higher frequency classes have been
aggregated (i.e., lumped) for different values of s and p. In
line with previous findings, both multiple mergers and pop-
ulation growth lead to an excess in singletons (Durrett and
Schweinsberg 2005; Eldon et al. 2015; Niwa et al. 2016).
Furthermore, this excess increases as sample size increases
under the psi-coalescent (Figure S1 in File S3), while it de-
creases for the Kingman coalescent independent of the pres-
ence or absence of exponential growth. These qualitative
differences stem from the different footprints reproductive
skew and exponential growth leave on a genealogy. While
the latter is a simple rescaling of branch lengths, leaving
the topology unchanged, multiple-merger coalescents by def-
inition affect the topology of the genealogical tree (Eldon
et al. 2015). In particular, when ¢ is large, adding samples
will disproportionally increase the number of external branches
T1, such that the genealogy will become more star-like, render-
ing disproportionately more singletons.

Though the excess in singletons characterizes either pro-
cess, their higher frequency classes will typically differ (Eldon

et al. 2015). When both processes—reproductive skew and
exponential growth—act simultaneously though, their joint
effects on the SFS (nontrivially) combine. As expected, in-
creasing growth under the psi-coalescent further exacerbates
the excess in singletons. More generally, exponential growth
leads to a systematic left shift in the SFS toward lower fre-
quency classes that is independent of . Increasing #, on the
other hand, changes the SFS—and in particular the higher
frequency classes—nonmonotonically even if there is no pop-
ulation growth (Figure S2 in File S3). Interestingly, for p = 0,
the last entry of the normalized expected SFS E[n, _,] initially
increases with ¢, and takes an intermediate maximum, de-
creases monotonically until ¢ ~ 0.85, peaks again, and then
quickly reduces to O as iy approaches 1. This effect prevails as
sample size increases (Figure S2 in File S3), even though the
intermediate maximum shifts slightly toward lower . How-
ever, this intermediate maximum is effectively washed out by
increasing p, such that the second peak becomes the maxi-
mum. Furthermore, the shape of the peak becomes more pro-
nounced as the sample size increases. Thus, reproductive
skew and exponential growth leave complex and distinct
genomic footprints on the SFS. While, in theory, population
growth and reproductive skew should be identifiable, in prac-
tice this strongly depends on sample size (Spence et al.
2016). In the next section, we will assess the accuracy of
our joint estimation framework, and perform extensive vali-
dation (Equation 14) on large-scale simulated data.

Simulated coalescent and demographic models

To test our inference framework, we followed two different simu-
lation approaches, each corresponding to two biological limiting
cases. In both, data were simulated for the Cartesian product set over
¢ = {0,0.15,0.3,0.45,0.6,0.75,0.9}, p = {0,1,10,100},
k = {20,50,100, 200}, and s = {100, 1 000, 10 000} per lo-
cus over 10, 000 replicates each. In order to make results com-
parable across different coalescent models, and, thus, across
different values of ¢ and p, we calculated the population-
scaled mutation rate # based on Watterson’s estimator
(Watterson 1975),

g—_ 2 _ (45)

B[]

for a fixed number of segregating sites s over the expected
total tree length under the generating coalescent model
(given by the denominator in Equation 42). Note that T
decreases with both increasing s and p. Thus, keeping s con-
stant implies that 6 effectively increases with iy and p. We will
discuss the latter point in more detail in light of the results
below. Data were simulated for the following two underlying
genetic architectures:

Case 1 (Independent-sites simulations): Under the Poisson
random field assumption, the underlying coalescent tree
at each site is independent (Sawyer and Hartl 1992;
Bhaskar et al. 2015). Thus, by averaging over independent
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Figure 2 The normalized expected (lumped) SFS for the psi-coalescent for an exponentially growing population (Equation 18) with sample size k = 20
(A) for different values of p and fixed s = 0.15, and (B) for different values of ¢ and fixed p = 1. The sixth entry in the SFS contains the aggregate of the

higher frequency classes.

realizations of the (shared) underlying coalescent process,
the SFS can be obtained by randomly drawing from a
multinomial distribution such that 1 ~ Multinomial(s, ¢).
Case 2 (Whole-genome simulations): In this scenario, we
consider a genome of ¢ = 100 independent loci, where
sites within each locus share the same genealogy (i.e.,
coalescent tree). Thus, for each locus, we draw a random
genealogy according to Equations 10 and 33, superim-
pose s ~Poisson(6,/2) random mutations onto the ances-
tral tree by multinomial sampling, and aggregate the
individual locus SFS into a single genome-wide SFS.

Finally, data sets where s = 1; (i.e., where all segregating
sites were singletons) were discarded, and simulated again
since these do not allow the underlying coalescent parameter
and demographic history to be identified. Note that both
types of simulations are merely for checking the robustness
and accuracy of the inference framework (and might not
always necessarily be biologically realistic). A discussion of
the independence assumption between loci and its biological
implications is given below.

Accuracy of the joint estimation framework

Next, we evaluated the accuracy of the joint estimation
framework by means of the mean absolute deviation
(MAD) MAD = 1/n> ;. ,|x; — X;|, the mean deviation (MD)
MD = 1/n2?:1xi —X;, the mean squared error (MSE)
MSE =1/ nZ?:l(xiﬂ%i)z, and the median deviation (MDD),
where x and X denote the true and the estimated parameter,
respectively. If not stated otherwise, results in the main text
are shown for the default parameters k = 100 and 6 (Equa-
tion 45), with s = 10,000. More results are given in File S3
and File S4. Recall that, for notational simplicity, we will refer
to p (instead of the compound parameter py) when referring
to growth rate estimates.

Inference under the independent-sites assumption: First,
for a consistency check, we applied our grid-search algorithm
to estimate ¢ and p from an idealized SFS (i.e., where the SFS
accurately reflects the expected branch length under the
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generating coalescent and demographic model ¢, except
for distortions due to rounding). An exemplary likelihood
surface (Equation 14) for such an idealized SFS is depicted
in Figure 3, which shows that the likelihood surface—up to
the resolution of the grid point—is smooth, and generally
unimodal, and that the true parameters can be estimated
accurately. Furthermore, Figure 3 shows that there is gen-
erally a negative correlation between ¢y and p, and that the
likelihood surface tends to be steeper and more concen-
trated along the ¢ direction, which suggests that growth
rate estimates might show a larger variance, and could, in
general, be more difficult to estimate. The steepness of the
likelihood surface along the ¢ axis tends to increase with ,
and sample size k, suggesting that the accuracy for estimat-
ing ¢ should increase as well, while it should become more
difficult to estimate p accurately.

An exemplary distribution of the jointly inferred maximum
likelihood estimates (@, p) assuming independent sites is
shown in Figure 4. The shape of this distribution resembles
that of the likelihood surface (Figure 3), indicating that there
is some variance—in particular along the p-axis—in the max-
imum likelihood estimates. However, the median and the
mean of the distribution match the true underlying coales-
cent and growth rate parameters (i.e., ¢ and p) very well,
implying that, if sites are independent, @ and p are unbiased
estimators.

Generally, as expected from the shape of the likelihood
surface, ¢ is estimated with high accuracy and precision, even
for large sample sizes (k = 200) with only a few segregating
sites (s = 100) and (nearly) independent of p (Figure 5A,
Figure S3A, Figure S4A in File S3, and Table S1 in File S4).
Growth rate estimates p, however, show a larger variance,
and, for some parameters—namely large k and small
s—might be slightly upwardly biased when both the coales-
cent parameter and the growth rate are large (Figure 5B,
Figure S3B, Figure S4B in File S3, and Table S2 in File S4).
Though, as the number of segregating sites increases, this bias
vanishes and the variance decreases (Figure S5 in File S3),
highlighting that the joint estimation procedure gives asymp-
totically unbiased estimators.
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Figure 3 Likelihood surface (Equation 14) of the idealized SFS with
k=100, 4y =0.3, p=10, and s = 10,000. Contours show the 0.95,
0.9675,0.975,0.99, 0.99225,0.9945, 0.99675,0.999,0.99945, and
0.9999 quantiles. Likelihoods below the 0.95 quantile are uniformly col-
ored in gray. The green square shows the true ¢ and p. The black star
shows the maximum likelihood estimates ¢ and p.

For a given s, increasing sample size k increases the signal-
to-noise ratio, and, thus, the error in both @ and p (Table S1,
Table S2, Table S3, and Table S4 in File S4) which is most
noticeable in growth rate estimates, in particular when p is
large (Figure S6 in File S3). This increase in estimation error
can (partially) be compensated by increasing the number of
segregating sites s (Figure S7 in File S3 and Table S5 in File
S4). Specifically, if the true underlying ¢ is large (ie., if
the offspring distribution is heavily skewed), an increasing
number of segregating sites is needed to accurately infer
p. However, the total tree length T;.,—and thus the number
of segregating sites s—is expected to decrease sharply with s
(Eldon and Wakeley 2006), implying that trees tend to be-
come shorter under heavily skewed offspring distributions.
This effect could (again, partially) be overcome by increasing
sample size since Ty—unlike the Kingman coalescent—
scales linearly with k as ¢y approaches 1 (Eldon and Wakeley
2006). However, population growth will reduce Ty, and the
number of segregating sites even further.

Calculating 0 based on a fixed and constant (expected)
number of segregating sites for the assessment of the accu-
racy of the estimation method evades this problem to some
extent. However, by making this assumption, we effectively
increase 6 in our simulations as ¢ and p increases. Our results
suggest, though, that even more segregating sites than con-
sidered in this study (i.e., an even larger 6) would be neces-
sary to infer population growth accurately. Thus, unless
(effective) population sizes and/or genome-wide mutation
rates are large, it might be very difficult to infer population
growth if the offspring distribution is heavily skewed (i.e., if s
is large). On the other hand, the few studies that have esti-
mated ¢ generally found it to be small (Eldon and Wakeley
2006; Birkner et al. 2013; Arnason and Halldérsdéttir 2015),
leaving it unresolved whether this problem is of any practical
importance when studying natural populations.

Figure 4 Heatplot of the frequency of the maximum likelihood estimates
for 10,000 data sets, assuming independent sites with k = 100, s = 0.3,
p =10, and 6 (Equation 45) with s = 10,000. Counts increase from blue
to red with gray squares showing zero counts. The green square shows
the true ¢ and p. The black star shows the median (and mean) of the
maximum likelihood estimates  and p.

Inference from genome-wide data: We next tested the ac-
curacy of our joint estimation framework when applied to
genome-wide data obtained from ¢ = 100 independent loci.
An exemplary distribution of the jointly inferred maximum
likelihood estimates (@, p) is depicted in Figure 6, and Figure
7 shows the overall performance of the joint estimation
method when applied to genome-wide data. While the
whole-genome simulations are designed such that each site
in a given locus shares the same underlying genealogy, and,
thus, violate the assumption of (statistical) independence
between sites, we find that coalescent and growth rate pa-
rameters (i.e., ¢ and p) can be estimated robustly and accu-
rately. In concordance with the independent-sites simulations,
the variance in @ is typically small, whereas p spreads consid-
erably, and increasingly so if ¢ is large. The mean and median
of the coalescent parameter and growth rate estimates are
again centered around the true value, implying that ¢ and p
are unbiased estimators (see also Table S6, Table S7, Table S8,
and Table S9 in File S4).

Next, we assessed how the precision of the coalescent and
growth rate parameter estimates depends on the number of
(independent) loci (i.e., the number of independent coales-
cent realizations), while keeping the number of segregating
sites constant. We find that coalescent and growth rate esti-
mates obtained from a single locus display a huge variance, in
particular, when the true underlying growth rate is large
(Figure S8 in File S3), warranting caution when interpolating
population trends from a single statistical realization as is
common practice in studies fitting a multiple-merger coales-
cent models. Expectedly, the precision of the coalescent and
growth rate parameter estimates increases (Figure S9 in File
S3 and Table S10 in File S4) when considering estimates
obtained from ¢ = 1000 independent loci (i.e., from indepen-
dent coalescent realizations), suggesting that sequencing ef-
forts should be put on covering the genome in its entirety
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Figure 5 Boxplot of the deviation of the maximum likelihood estimate from the true (A) ¢ and (B) p for 10,000 data , assuming independent sites with
k =100 and 6 (Equation 45) with s = 10, 000. Boxes represent the interquartile range (i.e., the 50% C.I.) and whiskers extend to the highest/lowest

data point within the box *1.5 times the interquartile range.

rather than on increasing coverage of individual genomic
regions.

Distance-based inference and the effect of lumping: As an
alternative to the likelihood-based method, Eldon et al.
(2015) proposed an ABC approach based on a minimum-
distance statistic (Equation 15). In this section, we assess
the accuracy of §; and pq when estimated from d; and d;
distances (i.e., the [; and [; distance). A surface plot of the [
and the [, distance is shown in Figure S10 in File S3. We find
that, for the [; and the [, distance, results are comparable to
those of the likelihood-based estimates, but generally dis-
play a larger variance (Figure S11, Figure S12, and Figure
S13 in File S3). Likelihood-based estimates, JML, tend to be
more accurate across the entire parameter space, though
differences between the two are marginal.

Over the majority of the parameter space, the same holds
true for p,, . Particularly for small-to-intermediate ¢, the
likelihood-based approach outperforms both distance-based
approaches considerably (Table S11 and Table S12 in File
S4). Interestingly though, for large ¢ and p (i.e., in the part
of the parameter space, where estimating p is generally dif-
ficult) the [; distance approach gives more accurate esti-
mates. When increasing the number of segregating sites,
though, the likelihood approach becomes more accurate
again, suggesting that the l; distance-based approach only
outperforms the likelihood-based approach when there is in-
sufficient data (data not shown). These general findings are
also upheld when considering genome-wide data (Figure S14
and Figure S15 in File S3). Despite the slightly reduced
power as compared to the maximum likelihood approach,
our results indicate that, given the asymptotic properties,
both the [; and the [, distance should perform reasonably
well when used in a rejection-based ABC analysis.

Finally, we investigated the effect of lumping (i.e., aggre-
gating the higher-frequency classes of the SFS into a single
entry after a given threshold i) on the performance of our
estimator. In contrast to Eldon et al. (2015), who found
that lumping can improve the power to distinguish between
multiple-merger coalescent models and models of population
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growth, we find that estimates based on the lumped
SFS (using i = 5 and i = 15) show considerably more error
(Table S13 and Table S14 in File S4). While ¢ can again be
reasonably well estimated, p—in particular when ¢ and/or p
are large—is orders of magnitude more inaccurate when
higher frequency classes are lumped. The reason is that,
when trying to differentiate between different coalescent or
growth models, lumping can reduce the noise associated with
the individual higher frequency classes, and, thus, increases
the power, provided that the different candidate models show
different mean behaviors in the lumped classes (Eldon et al.
2015). While this seems to hold true when considering “pure”
coalescent or growth models, the joint footprints of skewed
offspring distributions and (exponential) population growth
are more subtle. In particular, since growth induces a system-
atic left shift in the SFS toward lower frequency classes, most
of the information to distinguish between a psi-coalescent,
with or without growth, is lost when aggregated.

Mis-inference of coalescent parameters when
neglecting demography

As argued above, both reproductive skew and population
growth result in an excess of singletons (i.e., low-frequency
mutations) in the SFS. However, topological differences be-
tween the two generating processes in the right tail of the SFS
allows distinguishing between the two. In particular, fitting
an exponential growth model and not accounting for repro-
ductive skewness results in a vastly (and often unrealisti-
cally) overestimated growth rate (Eldon et al. 2015).

Here, we investigate how coalescent parameter estimates
(i.e., @) are affected when not accounting for (exponential)
population growth (i.e., assuming p = 0) when both processes
act simultaneously. As expected, we find that @ is consistently
overestimated (Figure 8) and that the estimation error—
independent of y—increases with larger (unaccounted for)
growth rates. This is because, unless the underlying genealogy
is star-shaped (e.g., when ¢ = 1), growth will always left-shift
the SFS, and, hence, increase the singleton class. Thus, when
assuming p = 0, increasing ¢ compensates for the “missing”
singletons.
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Figure 6 Heatplot of the frequency of the maximum likelihood estimates
for 10,000 whole-genome data sets assuming with ¢ = 100,k = 100,
¢ =0.3,p =10,y = 1.5 and 6 (Equation 45) with s = 1000. Counts in-
crease from blue to red with gray squares showing zero counts. The green
square shows the true ¢ and p. The black star shows the median (and
mean) of the maximum likelihood estimates  and p

Interestingly though, the estimation error changes non-
monotonically with ¢, and, for large p, can be as great as
twice the value of the true underlying coalescent parameter.
Furthermore, for low-to-intermediate ¢, even small growth
rates can result in a relative error of up to 23%. Overall, not
accounting for demography can lead to serious biases in ¢
with broad ecological implications when trying to under-
stand the variation in reproductive success.

Application to sardine data

Finally, we applied our joint inference framework to a derived
SES for the control region of mtDNA in Japanese sardine
(S. melanostictus; File S5). Niwa et al. (2016) recently ana-
lyzed this data to test whether the observed excess in single-
tons was more likely caused by a recent population expansion
or by sweepstake reproductive events, and found that the
latter is the more likely explanation. However, there is of
course no a priori reason to believe that both reproductive
skew and population growth could not have acted simultaneously.

When estimated jointly, the maximum likelihood estimate
is (@, p) = (0.46,0), which implies considerable reproductive
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skew, but no (exponential) population growth (Figure 9; see
Figure S16 in File S3 for the corresponding [; and [, distance
estimates). While our analysis confirms their results at first
glance, there are two points that warrant caution with this
interpretation. First, as indicated by the contour lines in the
plot, there is some probability that the Japanese sardine pop-
ulation underwent a recent population expansion, though, if
it did, it only grew at a very low rate. Second, our inference is
based on a single nonrecombining locus (i.e., mtDNA), im-
plying that there is correlation between sites. Our approxi-
mation, though, is exact only if there is independence
between sites. While violations of the independence assump-
tion seem to be robust on the genome-wide scale (see above;
Figure 7), per-locus estimates can vary drastically, and might
not be representative for the true underlying coalescent pro-
cess (Figure S8 in File S3).

Concluding remarks

This study marks the first multiple-merger coalescent with
time-varying population sizes derived from a discrete time
random mating model, and provides the first in-depth anal-
yses of the joint inference of coalescent and demographic
parameters. Since the Kingman coalescent represents a special
case of the general class of multiple-merger coalescents
(Donnelly and Kurtz 1999; Pitman 1999; Sagitov 1999;
Schweinsberg 2000; Spence et al. 2016), it is interesting
and encouraging to see that our analytical results—i.e., the
time-change function (Equation 33) and the first expected
coalescence times (Equation 44)—are generalizations of re-
sults derived for the Kingman coalescent (Griffiths and
Tavaré 1998; Polanski and Kimmel 2003). In fact, when
growth rates are measured within the corresponding coales-
cent framework (e.g., as p7y for the psi-coalescent or p for the
Kingman coalescent), these formulas should extend to other,
more general multiple-merger coalescents. This also holds
true for the challenges arising when calculating the normal-
ized expected SFS (Equation 13), which is central to estimat-
ing coalescent parameters and growth rates: Because of
catastrophic cancellation errors—due mainly to summing
terms involving large binomial coefficients and numerical
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Figure 7 Boxplot of the deviation of the maximum likelihood estimate from the true (A) ¢ and (B) p for 10,000 whole-genome data sets with
¢=100,k =100, y = 1.5, and 6 (Equation 45) with s = 1000. Boxes represent the interquartile range (i.e., the 50% C.l.), and whiskers extend to
the highest/lowest data point within the box *1.5 times the interquartile range.
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Figure 8 Boxplot of the deviation of the maximum likelihood estimate
from the true ¢ for 10,000 data sets, assuming independent sites with
k =100 and 6 (Equation 45) withs = 10,000 when not accounting for
population growth. Boxes represent the interquartile range (i.e., the 50%
C.1), and whiskers extend to the highest/lowest data point within the
box *£1.5 times the interquartile range.

representations of the exponential integral Ei(x) with alter-
nating signs—computations have to be carried out using
multi-precision libraries (Spence et al. 2016).

While both ¢ and p can generally be estimated precisely,
accurate estimation of the latter requires sufficient informa-
tion (i.e., a large number of segregating sites), especially
when offspring distributions are heavily skewed (i.e., if ¢ is
large). However, since strong recurrent sweepstake repro-
ductive events—analogous to recurrent selective sweeps—
constantly erase genetic variation (i.e., reduce the number
of segregating sites), there might be little power to accurately
infer p in natural populations in these cases. In accordance
with previous findings derived for the Kingman coalescent
(Terhorst and Song 2015), increasing sample size does
not improve the accuracy of demographic inference (i.e., es-
timating p) for a fixed (expected) number of segregating
sites s. However, unlike in the Kingman coalescent, where
s increases logarithmically with sample size, genetic varia-
tion in ¢ increases linearly for large ¢, which could offset—
or at least hamper—this effect.

More importantly, these results have proven to be robust to
violations of the assumptions underlying the approximate
likelihood framework (Equation 14), namely, that the expec-
tation of a ratio can be approximated by the ratio of two
expectations (i.e., (pl@), allowing ¢ and p to be estimated
accurately on a genome-wide scale. Interestingly, the perfor-
mance of the estimators seemed to improve when consider-
ing more independent loci (while keeping the number of
segregating sites constant; see also Figure S8, Figure S9 in
File S3, and Table S10 in File S4). Note, though, that we have
used a very simplistic genetic architecture, in particular one
where sites within each locus are maximally dependent, and
there is no correlation among genealogies across different
loci (i.e., where loci are independent). While these assump-
tions might be met for some loci and sites, they generally
mark the endpoint of a continuum of correlations, and might
not always be biologically realistic. Importantly, these linkage
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Figure 9 Likelihood surface (Equation 14) of the unfolded SFS (given
the ML rooted tree) of the sardine mtDNA sequences with k = 106
and s=78. Contours show the 0.95,0.9675,0.975,0.99, 0.99225,
0.9945,0.99675, 0.999,0.99945, and 0.9999 quantiles. Likelihoods be-
low the 0.95 quantile are uniformly colored in gray. The black star shows
the maximum likelihood estimates ¢ = 0.46 and p = 0.

disequilibria (i.e., the extent of statistical independence be-
tween sites) depend not only on the rate of recombination,
but also on the specifics of the reproduction parameters (i.e.,
y)—and can potentially be elevated, despite frequent recom-
bination, or largely absent, despite infrequent recombination
in the MMC setting (Eldon and Wakeley 2008; Birkner et al.
2012), potentially biasing results. For instance, when trying
to estimate the duration and the rate of exponential growth
under the Kingman coalescent, Bhaskar et al. (2015) found
that linkage equilibria cause the approximate likelihood ap-
proach (Equation 14) to become increasingly inaccurate,
and, thus, bias estimates. Likewise, Schrider et al. (2016)
recently found that linked positive selection can severely
bias demographic estimates. While their analyses assumed
a Kingman framework, positive selection and recurrent selec-
tive sweeps typically result in multiple merger events (Durrett
and Schweinsberg 2004, 2005; Neher and Hallatschek 2013;
Schweinsberg 2017). Thus, if neutral regions are tightly linked
to a selected site they will—at least partially—share the gene-
alogical relationship with the selected region, and potentially
skew inference. Similarly, large reproductive skew (i.e., large
) will induce correlations between coalescent trees across
loci (i.e., linkage), which will reduce the number of “effec-
tive independent loci,” suggesting an increased variance in
both coalescent parameter and growth rate estimates. How-
ever, due to the lack of explicit coalescent simulators that
allow for multiple-mergers, nonconstant population sizes,
and varying recombination rates, the effects of linkage on
the joint estimation of coalescent and demographic param-
eters cannot directly be assessed, and remain open for fu-
ture research.

Despite the fact that our model here considers organisms
with skewed offspring distributions under neutrality owing to
the specifics of their reproductive biology, increasing  is
tantamount to increasing the strength of positive selection
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under a non-neutral model, which is thus relevant to a very
broad class of organisms indeed. It is important to note
that while both processes—selection and sweepstake repro-
ductive events—have a similar effect on the SFS (i.e., an
excess of low-frequency alleles and a slight increase in
high-frequency alleles), there are of course vast qualitative
differences in the underlying processes and their causes.
First, in the presence of selection, offspring no longer choose
their parents at random, such that selected alleles need to
be tracked along the genealogy (e.g., see the ancestral se-
lection graph under the Kingman coalescent (Krone and
Neuhauser 1997), or under the A-coalescent (Etheridge
et al. 2010)). Second, similar to the effects of demography,
sweepstake reproductive events should have a genome-
wide impact, whereas traces of selection should remain
local, unless selection is very strong, such that only a single
individual gives rise to the entire next generation. Thus, it
should in principle be possible to discriminate between the
two processes, though, also analogous to demography, it
will be important to investigate the conditions under which
positively selected loci will be expected to reside in the tails
of genomic distributions under such models (see Thornton
and Jensen 2007).

Overall, our analyses emphasize the importance of ac-
counting for demography and illuminates the serious biases
that can arise in the inferred coalescent model if ignored.
Such bias can have broad implications on inferred patterns of
genetic variation (Eldon and Wakeley 2006; Tellier and Lemaire
2014; Niwa et al. 2016), including misguiding conservation
efforts (Montano 2016), and obscuring the extent of reproductive
skew.

Finally, most of the current analytical and computational
tools have been derived and developed under the Kingman
coalescent. In order to achieve the overall aim of generalizing
the Kingman coalescent model (Wakeley 2013), these
tools, though often computationally challenging, need to be
extended. Great efforts have recently been undertaken to-
ward developing a statistical inference framework, allowing
for model selection (Birkner and Blath 2008; Eldon 2011;
Birkner et al. 2011, 2012, 2013; Steinriicken et al. 2013;
Eldon et al. 2015; Spence et al. 2016). By setting up a dis-
crete-time random mating model, and deriving the ances-
tral process, along with providing the analytical tools
necessary to enable the joint inference of offspring distri-
bution and demography, this study makes an important
contribution toward this goal.
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