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ABSTRACT

A major goal of population genomics is to reconstruct the history of natural populations and to infer
the neutral and selective scenarios that can explain the present-day polymorphism patterns. However, the
separation between neutral and selective hypotheses has proven hard, mainly because both may predict
similar patterns in the genome. This study focuses on the development of methods that can be used to
distinguish neutral from selective hypotheses in equilibrium and nonequilibrium populations. These
methods utilize a combination of statistics on the basis of the site frequency spectrum (SFS) and linkage
disequilibrium (LD). We investigate the patterns of genetic variation along recombining chromosomes
using a multitude of comparisons between neutral and selective hypotheses, such as selection or neutrality
in equilibrium and nonequilibrium populations and recurrent selection models. We perform hypothesis
testing using the classical P-value approach, but we also introduce methods from the machine-learning
field. We demonstrate that the combination of SFS- and LD-based statistics increases the power to detect
recent positive selection in populations that have experienced past demographic changes.

GENOMES contain information related to the
history of natural populations. Past neutral and

selective processes may have left footprints in the
genome. Recent advances in population genetics aim to
understand the patterns of genetic diversity and
identify events that have led to genetic adaptations.
Among them, positive selection has been a focus of
many recent studies (Harr et al. 2002; Kim and
Stephan 2002; Glinka et al. 2003; Akey et al. 2004;
Orengo and Aguadé 2004). Their goal is to (i) provide
evidence of positive selection, (ii) estimate the strength
and the rate of selection, and (iii) localize the targets of
selection. These objectives form the basis of a long-term
pursuit, which is the understanding of the molecular
basis of adaptation of populations in a changing
environment.

Positive selection can cause genetic hitchhiking when
a beneficial mutation spreads in the population
(Maynard Smith and Haigh 1974). When a strongly
beneficial mutation occurs and spreads in a population,
linked neutral or slightly deleterious variants hitchhike
with it, and their frequency increases. According to
Maynard Smith and Haigh’s model, three patterns are
generated locally around the position of the beneficial

mutation. First, the level of variability will be reduced
since standing variation of the population that is not
linked to the beneficial allele vanishes, and tightly linked
polymorphisms may fix (Kaplan et al. 1989; Stephan

et al. 1992). Second, the site frequency spectrum (SFS),
which describes the frequency of allelic variants, shifts
from its neutral expectation toward rare and high-
frequency derived variants (Braverman et al. 1995; Fay

and Wu 2000). The third signature describes the emer-
gence of specific linkage disequilibrium (LD) patterns
around the target of positive selection, such as an
elevated level of LD in the early phase of the fixation
process of the beneficial mutation and a decay of LD
across the selected site at the end of the selective phase
(Kim and Nielsen 2004; Stephan et al. 2006).

The availability of genome-wide SNP data has made
possible the scanning of genomes and the identification
of loci that may have been targets of recent selective
events. Several approaches have been developed within
the last years that can detect the molecular signatures of
positive selection (Kim and Stephan 2002; Jensen et al.
2005; Nielsen et al. 2005). While the methods of Kim

and Stephan (2002) and Jensen et al. (2005) are
designed to analyze subgenomic SNP data, the ap-
proach of Nielsen et al. (2005) can be applied to both
subgenomic and whole-genome data (reviewed in
Pavlidis et al. 2008). For this reason we concentrate
here on the latter procedure. This method, called
SweepFinder, calculates the probability P(x) that a poly-
morphism of multiplicity x is linked to a beneficial
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mutation using a simple selective model and the SFS
prior to the selective event. Then, for each location in
the genome it compares a selective with a neutral model
assuming independence between the SNPs, therefore
calculating the composite likelihood ratio L. Thus, it
identifies regions where the likelihood of the selective
sweep is greater than that of the neutral model using the
maximum value LMAX of L.

The v-statistic, developed by Kim and Nielsen

(2004), detects specific LD patterns caused by genetic
hitchhiking (described above). In the study by Kim and
Nielsen (2004) the maximum value of the v-statistic
was used to identify the targets of selective sweeps. Later,
Jensen et al. (2007) studied its performance in separat-
ing demographic from selective scenarios. An impor-
tant result by Jensen et al. (2007) is the demonstration
that for demographic parameters relevant to nonequi-
librium populations (such as the cosmopolitan popula-
tions of Drosophila melanogaster) the v-statistic can
distinguish between neutral and selective scenarios.
This article further develops SweepFinder and the v--
statistic such that they can eventually be applied to
whole-genome SNP data sets that have been collected
from nonequilibrium populations. In particular, pop-
ulations undergoing population-size bottlenecks are of
interest as these size changes may confound the patterns
of selective sweeps (Barton 1998). For this reason we
use the following approach: first, we theoretically
analyze the genealogies of bottlenecked populations
under neutrality and show to what extent they resemble
the genealogies of single hitchhiking (SHH) events.
We also point out the importance of high-frequency-
derived variants in the identification of selective sweeps.
Second, we study the statistical properties of SweepFinder
and the v-statistic separately and in combination. As the
main result, we demonstrate that the combination of
these two methods (that include both SFS and LD
information) increases the power for detecting recent
SHH events in nonequilibrium populations, in particu-
lar when machine-learning techniques are employed.
Third we analyze the performance of SweepFinder and
the v-statistic in the detection of recurrent hitchhiking
(RHH) events.

METHODS

Modifications of the v-statistic and SweepFinder: The
proposed modifications aim at (i) adapting the v--
statistic for the analysis of whole-genome data and (ii)
increasing the accuracy of SweepFinder to predict the
target of selection. Instead of fixed windows, variable-
size windows are used in the v-statistic, and in the
SweepFinder algorithm a fraction of monomorphic sites is
incorporated.

The hitchhiking model by Maynard Smith and
Haigh (1974) predicts that an excess of LD arises after

the completion of the selective sweep within each of the
two regions flanking the selected site, but does not
extend across the two regions (Stephan et al. 2006;
McVean 2007; Pfaffelhuber et al. 2008). This is due to
the assumption that any observed polymorphism
around the sweep has been introduced in the popula-
tion prior the selective sweep and entered the beneficial
genetic background through recombination. Since in-
dependent recombination events are necessary to
explain polymorphisms on both sides of the selective
sweep, the LD vanishes across the site of the beneficial
mutation, but not within each side. This genomic
footprint may be captured using the v-statistic
(Kim and Nielsen 2004). Assume a genomic window
with S segregating sites that is split into a left and right
subregion with l and S – l segregating sites, respectively.
The v-statistic (Equation 1) quantifies to what extent
average LD is elevated on each side of the selective
sweep (see the numerator of Equation 1) but not across
the selected site (see the denominator of Equation 1):
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The v-statistic considers the space between the left
and right subregions as the center of the selective sweep.
Thus, a genomic region may be scanned and scores are
reported for each position. Then, using simulations, a
significance threshold is determined. The maximum
value vMAX predicts the target of recent positive
selection. In the original version of the v-statistic, the
borders of the left and right subregions are assumed
constant (Kim and Nielsen 2004; Jensen et al. 2007). This
may be valid for a subgenomic analysis, when the re-
combination rate r and mutation rate u do not fluctuate
much or a single selective event may have occurred.
However, in a whole-genome study these parameters that
affect the extent of LD may vary dramatically. Addition-
ally, the polymorphism patterns may have been shaped by
recurrent selective sweeps. Thus, the constant-border
approach implemented by Kim and Nielsen (2004)
may be limited. If the subregions are large, then vMAX

tends to decrease and the signal disappears. On the other
hand, short subregions might contain no SNPs and the
v-statistic cannot be calculated.

We have implemented a variable-window size v--
statistic. The borders of the left and right subregions
vary and the configuration that maximizes v is reported.
This approach overcomes the aforementioned prob-
lems inherent in the constant-border approach of Kim

and Nielsen (2004). Thus, it may be suitable for
scanning large genomic regions or whole chromosomes
characterized by variable r or u parameters and shaped
by recurrent adaptive substitutions.
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A naive implementation of the v-statistic scanning
algorithm would recalculate the LD of the positions as
the center of the sweep moves along the chromosome.
This is particularly critical for the variable-window size
approach since the number of calculations increases.
Our implementation, as illustrated in supporting in-
formation, Table S1, guarantees a single calculation
between any two sites that may participate in the v

calculation. Thus, it results in an algorithm that is
efficient when the number of polymorphisms is large.
Calculations are performed using a matrix Z (Table S1),
which stores the unweighted ZnS (Kelly 1997) values
(not divided by the number of comparisons) for all
possible windows. For a pair (i, i 1 1), Zi,i11 equals the
correlation coefficient between these two positions.
This value is then added to all cells Zj,i11, with j , i to
form the ZnS for the region [j, i 1 1]. With this method
all possible numerators of the v-statistic are formed.
When the left and right subregions are defined by [i, k]
and [k 1 1, j], respectively, then the denominator is
simply a weighted version of Zi,j � Zi,k � Zk11,j.

SweepFinder detects the shift of the SFS as a signature
of hitchhiking. Demographic effects are incorporated
through the neutral SFS, which is either provided by the
user or calculated from the data itself. Monomorphic
sites are generally excluded from the analysis (Nielsen

et al. 2005; Svetec et al. 2009) since tests that include
them may be more sensitive to assumptions regarding
the mutation rate (Nielsen et al. 2005). Additionally, for
realistic mutation rates, the majority of the sites remain
monomorphic. Thus, by including invariant sites, the
data set and the computational time required for
the analysis increase dramatically. On the other hand,
the decrease of diversity represented by the mono-
morphic sites constitutes a well-known signature of the
hitchhiking effect. Omitting them may decrease the
power of the tests (Nielsen et al. 2005) and lead to
inaccurate predictions about the target of selection.
Inaccuracies mainly emerge due to changes in the input
site density when only polymorphic sites are included.
We incorporate a fraction of the monomorphic sites
into the analysis in a way that (i) generates a uniform
input site density and (ii) preserves the signature of low
diversity in regions of depleted variation. Additionally,
since only a small fraction of monomorphic sites are
used, the computational time is only increased slightly.
Given a genomic region with S polymorphic sites we
include Sq monomorphic sites, where 0 , q , 1. In this
study q¼ 0.1, so that the number of monomorphic sites
are in the same order as the polymorphic sites. We
proceed as follows. In the first step, there are S � 1
intervals between the S polymorphic sites. A mono-
morphic site is included at a random location within the
largest interval. In the second step there are S 1 1 sites
and S intervals and the process is repeated. The cutoff
value is defined by treating the neutral simulations in
the same way. With this process the SNP density differ-

ences are reduced and monomorphic sites are embed-
ded in regions of depleted variation.

Quantifying the effects of population bottlenecks on
neutral genealogies: The v-statistic and SweepFinder can
scan genomes from natural populations that have expe-
rienced demographic changes and detect targets of
selection. We investigated whether the neutral demo-
graphic scenarios inferred by Li and Stephan (2006) and
Thornton and Andolfatto (2006) to describe the
demography of a European population of D. melanogaster
can result in patterns along a recombining chromosome
that resemble selective sweeps. In particular, we examined
which effects of population bottlenecks are responsible
for the polymorphism patterns that mimic the effects of
selective sweeps. We focused on the properties of geneal-
ogies that are generated by those two demographic
models because genealogies reflect demographic proper-
ties more comprehensively than summary statistics.

A way to measure the effect of a bottleneck on the
genealogies of a recombining genome is through the
ratio f ¼ Ln=Hn of the total length to the height of
the coalescent. Short, star-like genealogies have large
ratios and max Ln=Hnð Þ ¼ n is obtained for a n-furcated
star-like tree. On the other hand, for genealogies with
long internal branches the ratio takes small values and
min Ln=Hnð Þ ¼ 2 is obtained when the genealogy is
dominated by two very long internal branches. Using
simulations we first calculate the percentage of n-furcated
star-like genealogies (with large f values) in a region of
50 kb. Then, for each simulated instance we relate the
percentage of n-furcated star-like genealogies with the
resemblance to a selective sweep as this is measured using
SweepFinder (see theoretical analyses).

The joint effects of population bottlenecks and
selective sweeps on high-frequency derived alleles: A
hallmark of selective sweeps in constant populations is
the excess of high-frequency-derived variants around
the target of positive selection. High-frequency-derived
variants consist of mutations that were present in the
population prior to the selective sweep, hitchhike with
the beneficial allele, and, due to recombination, appear
as polymorphisms. This signature forms the basis of a
multitude of neutrality tests that are based on the SFS
(Fay and Wu 2000; Kim and Stephan 2002; Nielsen

et al. 2005) and contributes to the precise detection of
the target of selection. However, in natural populations
positive selection may occur simultaneously with de-
mographic changes. Using simulations from the de-
mographic models that were inferred by Li and
Stephan (2006) and Thornton and Andolfatto

(2006), we examine whether high-frequency-derived
alleles occur when demographic changes occur simul-
taneously with positive selection.

Measuring the precision of the inferred selective
sweep position: An objective of the genome-scanning
studies is the precise prediction of the selective sweep
locations. Usually, every position or a subset of them is
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scored for a given statistic (for example, the v-statistic or
the SweepFinder). Thus, peaks and valleys are formed
along the genomic region. Then, some of the peaks may
survive a cutoff value delimiting the potential targets of
selection. As illustrated in Figure S1, we determine the
distance between a peak on the landscape of the statistic
and the closest location where a selective sweep has
occurred given a user-defined threshold. In Figure S1,
two selective sweeps have occurred recently in the
history of the population. The positions of the sweeps
are illustrated as vertical green lines. A peak is defined as
the highest point in an isolated region by the cutoff
value. Thus, five peaks (a to e) have been formed in the
example of Figure S1. D measures the distance between
a peak and the closest selective sweep location. On the
basis of this approach we can measure the accuracy of
the different methods. Furthermore, we implemented
a simple randomization of the peaks to evaluate the
quality of the predictions. This is necessary because
finite genomic regions are simulated, and therefore the
distance between any location and the target of selec-
tion is bounded.

Supervised-learning techniques: We introduce super-
vised-learning approaches from the field of machine
learning that can be useful for the classification of a
genomic region as either neutral or selected. In a
classification problem, the goal is to separate these
classes using a function, which is inferred from the
available data. Such a process is called ‘‘learning from
the data’’ or ‘‘supervised learning’’ and is related to
finding the optimal hyperplane that distinguishes the
two classes. Typically, in a supervised-learning problem,
data consist of pairs of input and output objects. Input
consists of a vector of multiple entries that summarize
the data and are called features. Inputs can be set
arbitrarily depending on the specific problem. However,
the efficiency of the algorithm increases when they are
independent and capture the whole information of the
data. Output can be binary, denoting the class that the
object belongs to. In supervised learning the goal is to
use the input to predict the value of the output, and the
problem can be formulated as teaching the computer
the combinations of feature values that are associated
with either of the classes. In the specific problem we
examine here, the output is coded as neutrality/
selection. Then, using simulations of the neutral de-
mographic model and the model with selection we train
the algorithm to separate these two classes. As input for
the machine-learning approach we use vMAX, LMAX

(from the original algorithms), and combinations of
v and L, such as the distance between the genomic
positions of vMAX and LMAX and the correlation co-
efficient between v and L. The reasoning for this choice
of inputs is as follows. First, LMAX and vMAX capture
different aspects of the data. LMAX is affected mostly by
the SFS, whereas vMAX is affected by LD. Even if SFS and
LD can be correlated (Kim and Nielsen 2004), it is

expected that this correlation is lower than that from
using statistics that are based exclusively on the SFS or
LD. Second, previous studies have shown that LMAX and
vMAX are relatively robust to demographic changes (but
see Orengo and Aguadé 2010). Third, it seems in-
tuitively obvious that the peaks of v and L profiles
should point to the same genomic location if a selective
sweep has occurred. Thus, using the distance between
the peaks or the correlation of the profiles should
increase the classification performance of the algo-
rithm. In this study, both the distance between the
peaks and the correlation between the profiles are used.

For each demographic scenario that was simulated in
this study, we used a subset of simulations for training
and the remaining for testing the performance. The
supervised-learning approach can be employed to
classify a certain genomic region as either neutral or
selected. However, within a region the specific target of
selection cannot be specified by the method itself. To
achieve this, the features of the method (i.e., the v and
L profiles) should be inspected. Tables 1–4 provide
information about the accuracy of the features under
various demographic scenarios.

Traditionally, when neutrality tests are employed to
detect targets of positive selection, neutral simulations
are performed and the 5% percentile is used as a
threshold. This methodology assumes that neutrality
tests produce significantly larger values in data with
selection. This may be the case when the population size
remains constant. However, in nonequilibrium models
the values of the neutrality tests may overlap signifi-
cantly between neutral models and models with selec-
tion, and therefore their performance decreases.
Combining different statistics that capture different
aspects of the data may contribute to increasing the
classification performance.

Several methods have been developed for data
classification. For example, Bayesian classifiers, rule-
based classifiers, k-nearest neighbors, and linear dis-
criminant analysis are some of the approaches that have
been applied to supervised-learning problems (Duda

et al. 2000; Han and Kamber 2000; Hastie et al. 2001).
Here, we demonstrate the use of SVMs with a radial basis
kernel, which is the most widespread kernel. In general,
SVM uses a nonlinear mapping to transform the original
training data into a higher-dimensional space and to
search for an optimal linear hyperplane in this space. A
great advantage of SVMs is that they are highly accurate
and less prone to overfitting; i.e., they have desirable
generalization properties (Han and Kamber 2000).

Implementation and code availability: The C11

source code is available from http://www.bio.
lmu.de/�pavlidis. For the v-statistic, the user is able
to choose between constant- or variable-window-size
scanning modes. Additionally, besides r2 various other
measurements of LD, such as abs(D) and abs(Dv)
(Langley and Crow 1974), may be used in Equation 1.
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There are no specific library dependencies and the
software can be installed on any Linux machine that runs
the g11 compiler. Also, the modified version of Sweep-
Finder that has been used here to analyze data with
monomorphic sites is provided. In this version the likeli-
hood curve of monomorphic sites has been modified so
that the probability to observe a monomorphic site is high
in the proximity of the sweep position but becomes
negligible as distance increases (the rate of decrease is
larger than in the original version). The original version
of SweepFinder is provided by the website of Rasmus
Nielsen (http://people.binf.ku.dk/rasmus/webpage/
sf.html). Furthermore, perl scripts that have been
used in the analysis are available from http://www.bio.
lmu.de/�pavlidis or upon request from the authors.

THEORETICAL ANALYSES

The genealogies of bottlenecked populations may
resemble those of SHH in constant-size populations:
Past demographic changes such as bottlenecks may
confound the patterns of a selective sweep (Barton

1998). Similarly to a selective sweep, a bottleneck
scenario may result in coalescent trees dominated by
either external or internal branches. Short coalescent
trees with long external branches are obtained when,
due to a rapid, recent, and severe decrease of popula-
tion size, the time of the most recent common ancestor
of the sample is found within the bottleneck period. On
the other hand, if some of the lineages escape the
bottleneck, then long internal branches will be created.
In recombining genomic regions, short and long trees
may alternate, creating sweep-like patterns in the SFS
(Barton 1998).

We illustrate the effect of bottlenecks on genealogies
using the demographic scenarios that have been in-
ferred by Li and Stephan (2006) and Thornton and
Andolfatto (2006) to describe the history of the
European population of D. melanogaster. Scaling the
time in units of 4N generations (where N is the present
effective population size) the Li and Stephan (2006)

model describes a four-epoch scenario. Backward in
time, the population experiences a bottleneck from
0.0367 time units until 0.0375 time units. Within this
bottleneck period Nb ¼ 0.002N, where Nb denotes the
effective population size in the bottleneck. Then, in-
stantly, the size of the population size changes to 7.5N,
and eventually at the time 0.1395 it becomes 1.5N. The
bottleneck phase models the founding of the European
population from the ancestral population, whereas the
transition from 7.5N to 1.5N models a (forward-in-time)
expansion of the ancestral population. The demographic
scenario inferred by Thornton and Andolfatto

(2006) implements a three-epoch model. The values
of the parameters depend on the ratio r/u and here we
use the results obtained when r/u ¼ 10. The present
population size N is estimated to be 2.4 3 106, and
backward in time at 0.0042 it contracts to 0.029N.
Finally, the population reaches instantly the present-
day level at time 0.022.

The demographic model of Li and Stephan (2006)
produces both star-like and long genealogies in the
same genomic region of a recombining chromosome
(Figure 1). The length of these trees is on average
shorter than that of the standard neutral trees, thus
reducing variation. The effect of the Thornton and
Andolfatto (2006) demographic model is similar, but
milder. On average, it creates shorter genealogies and
effectively reduces the nucleotide polymorphism. How-
ever, it does not result in extreme star-like coalescent
trees as often as the Li and Stephan (2006) model
(Figure 1). This is because the population-size changes
are milder, the bottleneck period is longer, and starts
(backward in time) very recently in the usual coales-
cent time scale, allowing for a series of coalescent
events.

Next we used simulations to examine the relationship
between the percentage of star-like genealogies, the
number of segregating sites, and LMAX of SweepFinder,
which can be considered a proxy for the resemblance of
polymorphism patterns (based on the SFS) to a signa-
ture of a selective sweep. A 50-kb genomic region was
simulated using ms (Hudson 2002) for a sample of 12

Figure 1.—Histogram of the ratio
f ¼ Ln=Hn for the following demo-
graphic scenarios. (A) a single realization
of the bottleneck scenario inferred by Li

and Stephan (2006). Long coalescent
trees that escape the bottleneck tend
to produce small ratios (,4). On the
other hand, genealogies that coalesce
within the bottleneck period produce
star-like trees because of the recent,
rapid, and severe contraction of the

population. (B) A realization of the bottleneck scenario inferred by Thornton and Andolfatto (2006). In contrast to Li

and Stephan (2006), coalescent events occur continuously. (C) The standard neutral model. For the Li and Stephan (2006),
Thornton and Andolfatto (2006), and the neutral scenario, 12 chromosomes of 50 kb have been simulated. The recombina-
tion rate is r¼ 0.05/bp and the mutation rate u¼ 0.004/bp. The parameter values for the Li and Stephan (2006) and Thornton

and Andolfatto (2006) scenarios are described in the main text.
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chromosomes. The recombination rate r ¼ 0.05/bp
and the mutation rate u ¼ 0.004/bp. The demographic
model describes a recent population bottleneck (as
inferred by Li and Stephan (2006)). As illustrated in
Figure 2, a small number of star-like trees create a large
number of segregating sites and small LMAX values.
Similarly, when a genomic region is dominated by short,
star-like genealogies, the number of segregating sites
and LMAX decrease. Even if this constitutes a poly-
morphism valley, the pattern does not look like a sweep
because of a lack of the high-frequency derived variants
(Kim and Stephan 2002). On the other hand, the
simultaneous presence of star-like and long genealogies
creates sweep-like patterns. For intermediate frequen-
cies of star-like genealogies, LMAX assumes large values.
Since neighboring genealogies are not independent,
star-like genealogies form clusters and effectively create
valleys of reduced polymorphism resembling a selective
sweep. These results help to interpret some of our
findings below.

Selective sweeps in nonequilibrium populations may
result in a loss of high-frequency-derived variants and
violate the assumptions of SweepFinder and the
v-statistic: We examined the effects of selective sweeps
on polymorphisms, when they occur within demo-
graphic bottlenecks. A 50-kb genomic fragment was
simulated under the bottleneck model inferred by
Thornton and Andolfatto (2006), and a selective
sweep (a ¼ 2500) was assumed to take place within the
bottleneck period (Thornton and Jensen 2007). First,
we show that the combined action of selective sweeps
and bottlenecks results in SFS that differ considerably
from those generated by selective sweeps in equilibrium
populations. Figure 3 compares the modifications of the
average SFS around the target of selection in a constant-
size demographic scenario with the model inferred by
Thornton and Andolfatto (2006). It is apparent that
in equilibrium demographic models there is a dramatic
increase of the class n � 1 in the proximity of the
selective sweeps (Figure 3A). Neutrality tests based on
the SFS can detect the increase of the high-frequency-
derived variants and therefore the accurate prediction
of the target of selection is possible. In nonequilibrium
scenarios, when population contraction and selective
sweeps co-occur, the n � 1 class vanishes in a large
genomic region around the target of selection (Figure
3B). The joint effect of selection and population
contraction increases the probability of coalescences,
resulting in short genealogies where the most recent
common ancestor is located within the bottleneck
phase. Consequently, the frequency of the n � 1 class
vanishes in the present-day sample. Furthermore, the
part of the genealogy that is older than the selective
sweep/bottleneck phase is eliminated. Therefore the
vast majority of the present-day polymorphisms are
younger than the selective sweep. This violates the
assumptions of SweepFinder and the v-statistic and

may result in imprecise prediction of the target of
selection.

STATISTICAL PERFORMANCE OF THE TESTS
IN THE DETECTION OF SHH

In this section, the discrimination capacity of
SweepFinder and the v-statistic is scrutinized, and the
distance between the predicted and the true target of
selection is evaluated for single sweeps under the
scenarios (i) selection vs. neutrality in equilibrium
populations (i.e., standard neutral populations), (ii)
selection in equilibrium populations vs. neutrality in
nonequilibrium populations (i.e., populations that have

Figure 2.—The relation between (A) LMAX and (B) the
percentage of star-like genealogies and the number of segre-
gating sites in the Li and Stephan (2006) demographic sce-
nario. We have performed neutral simulations for 12
recombining chromosomes, assuming a length of 50 kb.
The recombination rate r ¼ 0.05/bp and the mutation rate
u ¼ 0.005/bp. The parameter values for the demographic
model inferred by Li and Stephan (2006) are described in
the main text. The number of short genealogies in the Li

and Stephan (2006) scenario determines both the number
of segregating sites and the sweep resemblance (measured
by the SweepFinder statistic). When a genomic region is dom-
inated by short star-like genealogies only a few segregating
sites are present. Even if this constitutes a polymorphism val-
ley, the pattern does not look like a single sweep because of a
lack of the high-frequency derived variants (Kim and Stephan

2002). Similarly, when the star-like trees are absent LMAX is
small. On the other hand, the simultaneous presence of
star-like and long genealogies creates sweep-like patterns.
This is because star-like trees tend to cluster together along
the recombining chromosome, creating valleys within poly-
morphism islands.
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experienced past demographic changes), and (iii)
selection vs. neutrality in nonequilibrium populations.
The performance is assessed as follows. First, the false
positive (FP) rate of the SVM is estimated. Using this
false positive rate we compare the true positive (TP)
rates of each test. Thus, all comparisons refer to the
same false positive rate. Second, for the evaluation of
the distance between the true and predicted targets we
use only simulated results that survive the threshold
defined by the false positive rate. Finally, for the
nonequilibrium models with selection we implement
a simple randomization process to assess the quality of
results (see methods).

SHH vs. neutrality in equilibrium populations: We
simulate a single selective sweep in the middle of a 50-kb
genomic region using the ssw software (Kim and
Stephan 2002). The parameter values have been
chosen for their relevance to natural populations
of D. melanogaster. Specifically, the parameter a ¼ 2Ns,
where s is the selection coefficient of the beneficial
mutation, assumes the values 500, 2500, and 5000 that
are realistic for D. melanogaster (Beisswanger and
Stephan 2008). For all data sets the mutation rate u ¼
0.005/bp, similar to the estimation of u for the
European population of D. melanogaster by Li and
Stephan (2006). The scaled recombination rate r ¼
0.05/bp, so that the ratio r/u ¼10 (Thornton and
Andolfatto 2006). The standard neutral simulations
were performed using the same value of r. We used
a sample size of 12 for all simulations.

Each realization of the selective sweep was compared
with those of the standard neutral model that are
obtained using uNEU ¼ uW ¼ Sn=hn . uNEU denotes the

u value used in standard neutral simulations, uW is
Watterson’s (1975) estimator of u obtained using
the number of segregating sites Sn of the selective
sweep realization, and hn ¼

Pn�1
i¼1

1
i . Thus, a selective

sweep is compared with the standard neutral realizations
that on average create the observed number of poly-
morphic sites [F u procedure (Ramos-Onsins et al.
2007)]. Alternative approaches to calculating the thresh-
old value may use the observed number of segregating
sites Sn or take into account the uncertainty on u by
considering a prior distribution of u. In neutral equilib-
rium populations these approaches result in the same
threshold values for the models tested in this study
(Figure S2). Here, for the calculation of thresholds we
use the Fu approach. Since, the null model is represented
by an equilibrium standard neutral model, u can be
estimated using the estimator uW. Figure S2 shows that the
cutoff value of the v-statistic decreases as Sn increases and
the opposite tendency is seen for the SweepFinder statistic.

Consistent with previous studies (Jensen et al. 2007) a
selective sweep is discriminated easily from the standard
neutral model. Indeed as illustrated in Figure 4A,
the vMAX and LMAX are distributed to a large extent
distinctly even for relatively small values of a (e.g., 500).
Results are summarized in Table 1. Next, the distance
between the true target of selection and the predicted
target of selection is estimated (Table 1). The v-statistic
is more accurate than the SweepFinder and the median
distance from the target of selection is about 0.5 kb.
However, the performance of SweepFinder in discriminat-
ing the two scenarios is higher. Combining SweepFinder
with the v-statistic increases the classification perfor-
mance (last column in Table 1).

Figure 3.—A selective sweep causes a spatial
modification of the SFS. The mean and the var-
iance of the frequency are modified when a selec-
tive sweep has occurred in the middle of a 50-kb
genomic fragment. The 50-kb region is split in 2-
kb nonoverlapping windows and in each one the
average mean (fi) (A and C) and the variance
var(fi) (B and D) of the frequency fi of the poly-
morphism class i is calculated. In A the plots
refer to a selective event in equilibrium popula-
tions (a ¼ 2500) that has been completed re-
cently, whereas in C, the plots refer to the
nonequilibrium model of Thornton and
Andolfatto (2006) (a ¼ 2500). The solid lines
refer to the singletons, the dashed lines to the
class 11, and the gray lines to the classes 2–10.
The dramatic change of the high-frequency de-
rived alleles in A contributes to the precise local-
ization of the selective event. On the contrary, in
C the high-frequency-derived SNPs are absent
even in the proximity of the selective sweep. This
is because the length of the branches of the co-
alescent tree that may generate high-frequency-

derived variants are very small due to the simultaneous action of the sweep and the bottleneck. Therefore, the observed
polymorphisms (mostly singletons) are younger than the selective event and spread over the whole genomic region, obscuring
the location of the selective sweep.
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SHH in equilibrium populations vs. neutrality in
nonequilibrium populations: Using simulations, selec-
tive sweeps have been generated as described above.
For realizing past bottleneck events we used the Li

and Stephan (2006) demographic history for the
European population of D. melanogaster. We follow a
similar approach as described in the previous section
to assess the cutoff value. However, since the null
hypothesis is not represented by the standard neutral
model, uW is not an appropriate estimator of u.
Instead, we use the generalized unbiased estimator
û ¼ 2Sn=EðTcÞ, where E(Tc) is the expected total length

of the coalescent of n sequences (Zivkovic and Wiehe

2008). E(Tc) depends only on the demographic history
of the population.

For large values of a (a ¼ 2500) the true positive rate
of the statistics vMAX and LMAX is greater than 70%
when the false positive rate is 18% (Table 2). For the
same false positive rate, the true positive rate of the
modified version of SweepFinder is above 90%. However,
when smaller selection coefficients (e.g., a ¼ 500)
define the hitchhiking effect, the selective sweep may
be inseparable from bottleneck scenarios similar to that
inferred by Li and Stephan (2006), using the original
version of SweepFinder or the v-statistic (TP rates , 10%,
Table 2 and Figure 4B). The modified version of
SweepFinder has a larger discrimination performance
(true positive rate �40%). The low discrimination per-
formance is indicated by the resemblance of genealo-
gies between bottleneck models and selective sweeps
in constant populations (see also theoretical analy-

ses). The distributions of vMAX and LMAX are largely
overlapping as illustrated in Figure 4B. The SVM approach
performs considerably better than any of the tests alone.
The true positive rate is 75% when the false positive is 26%
(Table 2). The main reason for the superior performance
of the SVM approach is that it uses information about the
distance of the peaks. In the scenarios with selection the
target can be predicted accurately (Table 2); therefore,
the distance between the peaks is considerably smaller
than in the neutral scenarios.

SHH vs. neutrality in nonequilibrium populations: In
this section we examine the statistical performance of
the neutrality tests to detect selection in a genomic
region and assess the distance between the true and the
predicted targets of selection. We focus on two bottle-
neck scenarios. The first one describes a deep and short-
lasting bottleneck (model A), whereas the second
scenario describes a shallow and long-lasting bottleneck
(model B). In both cases the severity (i.e., the product
depth 3 length) is the same (¼0.375 in units of 4N), and
the bottleneck begins (backward in time) at 0.01. The
present effective population size is assumed 106, and the
simulated region 50 kb. The recombination rate r for

Figure 4.—The joint distributions of LMAX and vMAX in
scenarios with and without selection. (A) We compare the
joint distribution of LMAX and vMAX between a model with
selection (a ¼ 500) in a constant population and a standard
neutral model. The overlap between the distributions is lim-
ited and the scenarios can be discriminated by the SweepFinder
(y-axis) and to a lesser extent by the v-statistic (x-axis). (B) We
compare a model with selection (a ¼ 500) with a neutral
model that has experienced a bottleneck as it has been in-
ferred by Li and Stephan (2006). Neither of the statistics
can discriminate accurately the two scenarios (see also Table
2). Note that the scales of the statistics are different in A
and B.

TABLE 1

Equilibrium neutrality vs. selection in equilibrium populations

Model parameter Performance SF SF* v v* SVM

a ¼ 500 TP (FP ¼ 0.03) 0.85 0.97 0.13 0.14 0.9
a ¼ 500 Median distance (bp) from target (SD) 1728 (5597) 754 (1333) 528 (480) 540 (525) —
a ¼ 2500 TP (FP ¼ 0) 0.97 0.99 0.82 0.85 0.98
a ¼ 2500 Median distance (bp) from target (SD) 5383 (4509) 4582 (3905) 789 (657) 794 (680) —

Using the SVM approach a false positive rate (FP) is estimated. For this FP rate, the true positive rates (TP) of the various neu-
trality tests are compared. The median distance and the standard deviation (SD) are also shown. SF, original SweepFinder; SF*,
modified SweepFinder; v, v algorithm with constant-size windows; v*, v algorithm with variable-size windows.
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the whole region is set to 500. In the deep bottleneck
scenario, the depth

present population size

bottlenecked population size
¼ 500

and the length 0:00075:

In the shallow bottleneck scenario, the depth equals 20
and the length 0.01875.

Neutral simulations have been performed using
Hudson’s ms (Hudson 2002) and simulations with
selection using the mbs algorithm (Teshima and Innan

2009). The design of simulations is as follows. In both
cases we fix the number of polymorphic sites (¼50) by
employing broad uniform priors on u and accepting
only those instances that result in 50 segregating sites.
This is justified by the dependence of the v-statistic and
SweepFinder on the number of segregating sites (Figure
S2 and Figure S3) and the large variance on segregating

sites that neutral bottleneck scenarios generate. Fur-
thermore, the rejection process guarantees that the
total length of the tree, the posterior u values, and the
number of segregating sites are coupled. The 25th and
75th quantiles of the posterior distribution of u are 32
and 52, respectively, for the deep-bottleneck scenario
and 32 and 48 for the shallow scenario; therefore, the
ratio r/u is close to 10. In the simulations with selection,
we examine scenarios of selective sweeps occurring
recently (between the present and the bottleneck,
sweep in phase 1), within the bottleneck (sweep in
phase 2), and after the bottleneck (backward in time,
sweep in phase 3). The parameters of the models with
selection are described in Table 3 and Table 4 for the
deep and shallow models, respectively. Similar to the
neutral cases, a broad uniform prior on u has been
used, and we condition on observing 50 segregating
sites. The posterior range of u depends on the timing of
the selective sweep; therefore, the ratio r/u is close to 10

TABLE 2

Nonequilibrium neutrality vs. selection in equilibrium populations

Model parameter Performance SF SF* v v* SVM

a ¼ 500 TP (FP ¼ 0.26) 0.1 0.41 0.04 0.03 0.75
a ¼ 500 Median distance (bp) from target (SD) 899 (878) 522.982 (824) 423 (428) 603 (513) —
a ¼ 2500 TP (FP ¼ 0.18) 0.73 0.93 0.72 0.74 0.84
a ¼ 2500 Median distance (bp) from target (SD) 3065 (3209) 2074 (3361) 917 (1653) 956 (1629) —

TABLE 3

Neutrality vs. selection in nonequilibrium populations (deep bottlenecks)

Model Parameter Performance SF SF* v v* SVM

Sweep in phase 1 TP (FP ¼ 0.51) 0.64 0.66 0.39 0.49 0.71
Median distance (bp) from target (SD) 10813 (6768) 10497 (6832) 11986 (6595) 10239 (6186) —
Random target distance (SD) 11053 (6827) 11308 (6803) 11575 (6645) 11944 (6945) —

Sweep in phase 2 TP (FP ¼ 0.20) 0.62 0.64 0.36 0.44 0.73
Median distance (bp) from target (SD) 9666 (6531) 10828 (6896) 11854 (6500) 10469 (6123) —
Random target distance (SD) 11508 (6885) 11397 (6808) 11877 (6750) 11555 (6804) —

Sweep in phase 2* TP (FP ¼ 0.08) 0.72 0.78 0.63 0.12 0.97
Median distance (bp) from target (SD) 9512 (6659) 10986 (6977) 10905 (6482) 11328 (6487) —
Random target distance (SD) 12067 (6983) 12265 (6920) 11647 (6950) 13236 (7213) —

Sweep in phase 3 TP (FP ¼ 0.56) 0.53 0.55 0.48 0.46 0.63
Median distance (bp) from target (SD) 10377 (6831) 10845 (6833) 11342 (6662) 10624 (6541) —
Random target distance (SD) 12202 (6908) 11641 (6860) 12151 (6920) 12220 (6824) —

A deep bottleneck, named model A, is examined. The ratio

present population size

bottlenecked population size
¼ 500

and the length of the bottleneck is 0.00075. A beneficial mutation may appear within each phase of this three-epoch model (where
time is measured backward in units of 4N generations): a recent sweep at time 0.01 (sweep in phase 1), a sweep within the bot-
tleneck at time 0.0107 (sweep in phase 2), and an old sweep at 0.115 (sweep in phase 3). The selection coefficient is 0.002. Ad-
ditionally, in the ‘‘sweep in phase 2*’’ model we describe a sweep that completes within the bottleneck (s ¼ 0.8). The true positive
rates of the neutrality tests are shown for each sweep model. The other rows depict the distance between the predicted and true
targets and the random expectations for the distance.
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when the sweep is either recent or old, but it decreases
when the selective sweep occurs within the bottleneck
phase.

First, we examined the performance of the v-statistic
and SweepFinder to detect whether a genomic region has
been shaped by positive selection. Results are presented
in Table 3 and Table 4. For all comparisons, we used the
false positive rate that is reported by the SVM. Then, we
compare the TP rates between the various tests; the
performance of a test is better when the TP rate is
higher. The combination of SweepFinder and v-statistic
performs better than each test (SVM column in Table 3
and Table 4). Also, SweepFinder outperforms the v-statistic.
In model A (deep bottleneck), when the sweep is either
recent or old, the discrimination between neutral and
selective models becomes problematic; when the false
positive rate is about 50%, the true positive is as low as 70
and 63%, respectively, for the SVM approach. For the
separate tests, the performance is even lower. This result
suggests that recent or old selection in populations that
have experienced deep bottlenecks cannot be discrim-
inated from neutrality. However, when selection has
occurred within the bottleneck phase, the false positive
rate decreases to 20% and the true positive rate is 73%
for the SVM and about 10% lower for the SweepFinder
(Table 3, sweep phase 2). Higher discrimination per-
formance is achieved when the sweep completes within
the bottleneck (Table 3, sweep phase 2*), but this
requires unrealistically high values of s.

In model B (shallow bottleneck), the discrimination
performance is slightly better than that of model A.
However, again the most challenging scenarios are either
recent or old sweeps and the performance increases
when the sweep occurs within the bottleneck phase

(Table 4). Finally, the distances between the true target
and the predicted target of selection are estimated. For
both models A and B the distance is large and close to
random expectations (Table 4).

Distinguishing RHH from neutrality in equilibrium
populations: In contrast to single selective sweep (SHH)
models, recurrent selected substitutions occur randomly
along a chromosome according to a time-homogeneous
Poisson process at a rate v per generation (Kaplan et al.
1989; Wiehe and Stephan 1993; Stephan 1995). Well-
known patterns of SHH models are modified under
RHH. As an example, the SFS is skewed toward the rare
variants; however, the excess of high-frequency-derived
alleles decreases (Kim 2006; Jensen et al. 2008). Pre-
viously, Jensen et al. (2007) have shown that it is difficult
to separate RHH models from neutrality on the basis of
vMAX-values or site frequency spectrum statistics. We
explore the same problem with our new versions of the
v-statistic and the SweepFinder algorithm. Using the
software developed by Jensen et al. (2008) we simulated
100-kb genomic regions for a given reduction of hetero-
zygosity (Wiehe and Stephan 1993), namely
HRHH=HNEU ¼ 0:05; 0:25; 0:5; 0:75, or 0.95. HRHH=HNEU

denotes the ratio of heterozygosity in the RHH model to
the heterozygosity in the absence of selective sweeps.
The selection coefficient s ¼ 0.0001 or 0.01. The null
hypothesis is represented by the standard neutral model.

The null model used for the SweepFinder calculations
and represented by the SFS of the population prior to
the selective sweep in the SHH cases (n-SFS) cannot be
described precisely by the standard neutral model. The
population size is assumed to be constant. However,
since adaptive mutations occur according to a time-
homogeneous Poisson process it remains obscure what

TABLE 4

Neutrality vs. selection in nonequilibrium populations (shallow bottlenecks)

Model Parameter Performance SF SF* v v* SVM

Sweep in phase 1 TP (FP ¼ 0.27) 0.46 0.49 0.22 0.25 0.5
Median distance (bp) from target (SD) 10116 (6872) 10691 (7001) 10268 (6658) 10868 (6670) —
Random target distance (SD) 11604 (6862) 11452 (6835) 10744 (6895) 11192 (7115) —

Sweep in phase 2 TP (FP ¼ 0.22) 0.58 0.56 0.27 0.32 0.6
Median distance (bp) from target (SD) 10233 (6866) 11059 (6807) 11659 (6721) 11531 (6643) —
Random target distance (SD) 11725 (6889) 11375 (6855) 10846 (6829) 11245 (6882) —

Sweep in phase 2* TP (FP ¼ 0.35) 0.67 0.74 0.65 0.4 0.67
Median distance (bp) from target (SD) 9610 (6814) 10148 (6962) 11356 (6683) 10680 (6539) —
Random target distance (SD) 11906 (6889) 12102 (6846) 12432 (6894) 11583 (7079) —

Sweep in phase 3 TP (FP ¼ 0.25) 0.4 0.38 0.23 0.27 0.46
Median distance (bp) from target (SD) 10232 (6710) 10447 (6744) 11693 (6965) 10829 (6625) —
Random target distance (SD) 11372 (6906) 11574 (6857) 11666 (6817) 13068 (6914) —

A shallow bottleneck, named model B, is examined. The ratio

present population size

bottlenecked population size
¼ 20

and the length of the bottleneck is 0.01875. A recent sweep at time 0.01 (sweep in phase 1), a sweep within the bottleneck at time
0.0107 (sweep in phase 2), and an old sweep at 0.115 (sweep in phase 3) are described. The selection coefficient in the model
‘‘sweep in phase 2*’’ is 0.1.
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the ‘‘prior to the sweep’’ SFS should be. Here, we follow
two approaches. First, we assume that the n-SFS is
derived from the standard neutral model and second
that the n-SFS is obtained from the genomic region
itself. Clearly, both approaches are approximations.
On one hand, using the standard neutral model we
increase the sensitivity of the SweepFinder. On the other
hand, the nucleotide polymorphism patterns of the
genomic region under investigation have been shaped
by selective sweeps, so the n-SFS forms a conservative
null model with small sensitivity. However, if real data
are consistent with the RHH model, the standard neutral
model cannot be supported as a null model since the
whole genome will be affected by recurrent sweeps.

When the n-SFS is derived from the data itself then
the power of the SweepFinder is greater for small values
(e.g., 0.0001) than for large values (e.g., 0.01) of the
selection coefficient s (Figure S4). Even if this appears
to be counterintuitive, it is reasonable because when s is
small the footprints of the selective sweep are local, and
a large fraction of the genome remains neutral. On the
other hand, for large values of s almost the entire
genomic region may be affected by RHH, contradicting
the assumption of the SweepFinder test that only a small
fraction of the genome has been shaped by positive
selection (Figure S4).

Under RHH models selective sweeps occur in differ-
ent genomic locations during the evolution of the
population following a time-homogeneous Poisson pro-
cess (Wiehe and Stephan 1993). When subgenomic
data are analyzed it is possible that the target of selection
is either inside or outside of the sequenced genomic
region. Furthermore, since selective events occur with a
certain probability per generation (Wiehe and Stephan

1993), patterns of polymorphism are shaped by both old
and new selective events. However, the v-statistic and
SweepFinder are based on the assumption that a single
selective sweep has just been completed. Thus, it is
important to test whether the algorithms are able to
predict the correct position of the adaptive events.

Incorporating a fraction of monomorphic sites into
SweepFinder analysis increases the precision of the
algorithm (Figure S5). Similarly, the variable-size sliding
window approach appears more accurate than the
constant-size sliding window method for high cutoff
values. When HRHH=HNEU ¼ 0:25, SweepFinder and the
v-statistic predict that a target of selection is within a 5-
kb distance from a true selective sweep position in about
40% of the cases. However, this fraction becomes
smaller for higher values of HRHH=HNEU (Figure S5).

DISCUSSION

The demography of natural populations: A major
challenge of population genomics studies is to
identify the loci that driven by positive selection
contribute to the adaptation of natural populations

and to localize the beneficial mutation accurately
(Kim and Stephan 2002; Sabeti et al. 2002; Jensen

et al. 2005; Nielsen et al. 2005; Akey 2009; Nielsen

et al. 2009; Pickrell et al. 2009). To address these
questions, it is important to consider the demo-
graphic history of the population, as this neutral
nonequilibrium model represents the null (Li and
Stephan 2006; Thornton and Andolfatto 2006).
Since the standard neutral model does not reflect
accurately the demography of most natural popula-
tions, neutrality tests should not be performed using
the standard neutral scenario as the null model. In
this study, we examined two bottleneck scenarios that
are relevant to the demographic history of the
European population of D. melanogaster (Li and
Stephan 2006; Thornton and Andolfatto 2006).
The properties of the coalescent trees that underlie
these demographic models differ considerably. In a
recombining genomic region, the model inferred by
Li and Stephan (2006) produces both star-like short
coalescent trees and genealogies with long internal
branches. Star-like genealogies are generated less
frequently by the Thornton and Andolfatto

(2006) model (Figures 1 and 2). As a consequence,
the null distributions of the neutrality statistics may
differ. Thus, inferring the demographic history of a
population is a prerequisite for performing genomic
scans for selective sweeps, which has been shown to be
a challenging task (Myers et al. 2008).

Separating single selective sweeps from neutral
models: When the value of the selection intensity a is
large, the joint distribution of L and v overlaps only
partially between a model of selection in an equilibrium
population and the bottleneck model inferred by Li and
Stephan (2006). However, for smaller values of a the
two distributions overlap greatly. A useful approach for
classifying an observation as either a neutral or selective
model is by combining the L and v profiles. Here, we
use the distance between the peaks and the correlation
of v and L. These features can be used in a classifier
(e.g., SVM). Training requires that there are known
instances of both neutral and selective models. For
simple selective and neutral models this is currently
possible, using coalescent-based programs. However, it
remains challenging for more complicated scenarios.
Forward simulations provide greater flexibility when
selective events occur in nonequilibrium populations
and they can be used efficiently when the population
size is relatively small (i.e., on the order of thousands)
or diffusion scaling applies (Hoggart et al. 2007;
Chadeau-Hyam et al. 2008; Hernandez 2008).

The rationale for employing combinations of L and v

is that under a selective model the two statistics assume
high values close to the target of selection. This implies
that the target of selection can be localized accurately.
Under selection models in equilibrium populations this
assumption is met even for small a values. Modifying
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SweepFinder to include a fraction of nonpolymorphic
sites in the analysis increased the accuracy of the
algorithm and the performance in separating neutral
scenarios from scenarios with selection. Furthermore,
both versions of the v-statistic, the constant- ad the
variable-size sliding window approach, are very accurate
for selection models in equilibrium populations.

However, in severe nonequilibrium scenarios (e.g.,
the estimated bottlenecks of Li and Stephan 2006 and
Thornton and Andolfatto 2006), when selection
and past demographic changes occur within the same
model, the target of selection cannot be predicted,
neither by SweepFinder nor by the v-statistic. The accuracy
of the target prediction when a selective sweep has
occurred within the bottleneck period is comparable to
that of randomized experiments. The reason is that
polymorphism valleys and short coalescent trees may
extend over large genomic regions, and the often used
sweep signature of an excess of high-frequency-derived
alleles vanishes. This result should be taken into account
when regions of strong and recent positive selection are
identified in genome scans. Since natural populations
can be described by equilibrium demographic models
only rarely, the true target of selection may be tens of
kilobases away from the predicted target.

In the case of a severe bottleneck, such as model A,
recombinants (carrying the selected mutation and the
derived neutral allele) are most likely formed in the
early period of the selective phase (forward in time), but
they will be lost with high probability due to drift after
the population size crashes. Therefore, high-frequency-
derived variants may not be observed. In contrast, the
frequency of rare variants (singletons) will dramatically
increase. Therefore, on the basis of site frequency
spectrum it is possible to discriminate, to some extent,
neutral from nonneutral scenarios (Table 3).

The analysis of the likelihood curves of SweepFinder
can provide further insights into the technical reasons
that, in the cases of selection in nonequilibrium
populations, make the prediction of the target of
selection challenging. SweepFinder implements a model
of selective sweep, which assumes that each observed
SNP existed prior to the sweep. It uses the compound
parameter g ¼ ðr=sÞlogð2N Þ (named a in Nielsen et al.
2005) and the position x where the selective event
occurred. (Here r denotes the recombination rate
per basepair.) As Figure S6 illustrates, low- and high-
frequency SNPs affect the likelihood in a similar way by
contributing high values in the proximity of the sweep.
Examining how the SFS changes over a genomic region
under an equilibrium demographic model with selection
and the Thornton and Andolfatto (2006) model with
selection (a ¼ 2500), it is apparent that there is a
dramatic increase of the class n � 1 in the proximity of
the selective sweep in the equilibrium model (Figure 3),
but a very slight change of singletons in the nonequilib-
rium model. In the equilibrium-model case the precise

localization of the sweep is possible, due to the spatial
patterns of the rare and high-frequency-derived variants.
However, in the Thornton and Andolfatto (2006)
model with selection this pattern vanishes, the high-
frequency-derived variants disappear and the singletons
spread over the whole genomic region. Thus, the target
of selection cannot be estimated accurately.

It should be noted, however, that the poor perfor-
mance of SweepFinder and the v-statistic under the
nonequilibrium models (bottlenecked populations
with selection) does not imply that the performance
of the tests is poor under any nonequilibrium model
with selection. These models represent extreme cases
that violate major assumptions of the algorithms. The
slightly improved performance of the machine-learning
approach is due to the fact that it uses information from
the sweep scenarios and, furthermore, it combines
information from both the v-statistic and SweepFinder.

Studying a scenario where a selective event took place
in a bottleneck period is of great biological importance.
Often, population bottlenecks are associated with a
major migration event. For example, the bottleneck
inferred by Li and Stephan (2006) for the European
population of D. melanogaster describes the colonization
of Europe from the African ancestral population.
Therefore, positive selection may have occurred in the
new habitat that contributed to the adaptation of flies to
the environmental conditions of Europe. As Tables 3
and 4 show, the performance of the tests (especially the
SVM, and to a lesser extent, the SweepFinder) is high
when the sweep occurs within the bottleneck. This
suggests that the approaches tested in this study can
be used for the detection of selective sweeps in pop-
ulations that have recently migrated to new environ-
ments. Furthermore, Tables 3 and 4 suggest that the
power of SFS-based tests is higher than LD-based tests.

A difficulty that arises from using simulations with
selection to train the algorithms is that the parameters
of the scenarios with selection are unknown, i.e., the
selection intensity a, the position of the sweep x, and the
time at which the sweep occurred. In the models that we
presented it was assumed that these parameters are
known. However, when real data are analyzed these
parameters are generally unknown, and moreover no
methods that can estimate them in scenarios with past
demographic changes are available. Thus, heuristic
approaches have to be used. First, the position x can
be assumed to be in the center of the fragment. Then, in
real-data analysis overlapping windows should be used
so that windows where x is located near their center will
exist. The time of the sweep should be recent (,0.1N).
In the classical approach this parameter is also implicitly
specified by assuming that the sweep has just been
complete. Finally, the selection intensity can be drawn
from a prior uniform distribution. In this case the
training set is composed of a mixture of models with
various selection intensities.
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Recurrent selective sweep analysis: Recurrent selec-
tive sweeps invalidate the assumption that a single
hitchhiking event has just been completed. In agree-
ment with Jensen et al. (2007), we find that for greater
rates v of selective events per generation the power of
the tests increases for a given HRHH=HNEU. One possible
explanation is that for smaller v a few strong selective
sweeps that affect a large portion of the genome and
shift the SFS of large genomic regions have occurred.
Thus, the local characteristic of the signature of a
selective event is lost. Another possible explanation is
that for smaller v the selective events are old on average
and the signature of selective sweep has faded away
( Jensen et al. 2007).

The variable-size sliding window approach increases
the accuracy of the v-statistic to predict the target of
selection. However, the performance is still poor. In
�20% of the peaks above a certain threshold found in a
scan of a given genomic region, the real position of the
sweep is located within a 5-kb distance. The perfor-
mance of the constant-size sliding window is about half
that of the variable-size approach and comparable to the
randomization experiments. A similar improvement has
been achieved with the modified SweepFinder algorithm.
RHH models imply that adaptive substitutions occur at a
time-homogeneous rate, i.e., uniformly in the history of
the population. This assumption may be violated in
domesticated populations or in populations that expe-
rienced environmental changes. Thus, an increase of
the performance of the tests (lower false positive rate,
greater accuracy in target prediction) may result when
RHH models are incorporated within the SweepFinder or
the v-statistic algorithms.

Recurrent selective sweep parameters such as the rate
v of adaptive substitutions and the decrease of hetero-
zygosity have been estimated recently. Jensen et al.
(2008) and Li and Stephan (2006) have estimated that
heterozygosity has decreased in genomic regions of
normal recombination by 50% whereas the estimate
of Macpherson et al. (2007) and Andolfatto (2007) is
about 20% (i.e., HRHH=HNEU ¼ 0.8). We examined
the performance of the SweepFinder and the v-statistic
for various levels of heterozygosity reduction,
HRHH=HNEU ¼ 0.25, 0.5, 0.75, and 0.95, and selection
coefficients s ¼ 10�2 and 10�4 (Figure 5). The power of
SweepFinder is greater for the Li and Stephan (2006)
and Jensen et al. (2008) estimations than for that of
Macpherson et al. (2007) and Andolfatto (2007),
given that selection is strong (s ¼ 10�2). For s ¼ 10�4

the differences in the performance of SweepFinder for
various levels of HRHH=HNEU are small. The reason is
that for s ¼ 10�4 the diversity is similar for values of
HRHH=HNEU between 0.05 and 0.95. This may be due to
inaccuracies of the RHH theory when s is small or due
to the stochastic trajectory of the beneficial mutation
(Coop and Griffiths 2004; Spencer and Coop

2004).

Time of the selective sweep: For SHH models (in
demographic equilibrium) we assume that the selected
mutation has reached fixation very recently. The selec-
tive model that underlies the SweepFinder algorithm
assumes a recent and strong selective sweep. Therefore,
the power of SweepFinder is expected to be higher for
recently completed hitchhiking effects. Indeed, simu-
lations have shown that the power decreases exponen-
tially after the selective sweep (P. Pavlidis, unpublished
results). It should be mentioned that the demographic
scenario that follows the selective sweep (i.e., between
the time of completion of the selective sweep and the
time of sampling) affects the performance of SweepFinder.
Simulations have shown that if the completion of a
selective sweep is followed by population expansion, the
performance of the likelihood ratio test implemented
in SweepFinder remains high even after the completion of
the selective sweep (P. Pavlidis, unpublished results).
The rationale behind this is that a population expansion
decreases the coalescent rate; therefore, the return to

Figure 5.—The distributions of LMAX for various levels of
the decrease of heterozygosity and s ¼ 10�2. Each distribu-
tion is discrete and the size of each bin has been set to 6.
(A) For HRHH=HNEU ¼ 0:05, 0.5, and 0.95 the cutoff values
(95th percentile) are 5.7, 9.7, and 11.9, respectively, and
the sensitivities of the test (percentage of true positives)
given the cutoff values are 0.74, 0.48, and 0.07. The power
of SweepFinder is greater for the Li and Stephan (2006) and
Jensen et al. (2008) estimations than those of Macpherson

et al. (2007) and Andolfatto (2007) because selection is
strong (s ¼ 10�2). (B) When s ¼ 10�4 the amount of diversity
is similar for HRHH=HNEU ¼ 0:05, 0.5, and 0.95. Therefore, the
performance of SweepFinder is relatively independent of the
HRHH=HNEU.
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the equilibrium SFS is slower and the signature of the
selective sweep is preserved for a longer period. In
contrast to SweepFinder, which is based on the low- and
high-derived variants, the v-statistic is more sensitive to
the time since the completion of the selective sweep.
Indeed, the LD pattern captured by the v-statistic
vanishes rapidly (Jensen et al. 2007), comparable to the
fixation rate of the high-frequency-derived alleles (Kim

and Stephan 2000; Przeworski 2002; Jensen et al.
2007).

Overlapping selective sweeps: In this study we fo-
cused on nonoverlapping selective sweeps. The RHH
model we have used describes successive and nonover-
lapping selective events. Chevin et al. (2008) have
shown that two interfering selective sweeps may modify
the pattern of linked neutral variation. A related pro-
cess, when the targets of selection are located closely to
each other in the genome, causes trafficking (Kirby and
Stephan 1996; Kim and Stephan 2003). A most extreme
scenario, which describes the appearance of beneficial
mutations at the same site, is described as ‘‘soft’’ sweep
(Hermisson and Pennings 2005). Soft sweeps may
emerge during the evolution of organisms (e.g., Plasmo-
dium) with high mutation rates (Nair et al. 2007).
Conversely, they may be of limited importance in the
evolution of D. melanogaster or Homo sapiens, for instance.
The patterns of neutral variation under these selective
scenarios are different from those of single selective
events. For example, the skew of Tajima’s D toward
negative values vanishes in the interference scenarios
described by Chevin et al. (2008) and can even be
positive between the selected sites. In general, SFS-
based approaches may not work under overlapping
selective sweeps because the frequency of the class of
polymorphisms in intermediate frequency may be quite
large. In such cases, LD-based statistics can be useful
because a multitude of extended haplotypes may exist
on the left and right sides of the selected region (Sabeti

et al. 2002; Voight et al. 2006; Tang et al. 2007).
Machine-learning approaches in population genetics:

Machine-learning approaches are widely used in a
variety of applications from image processing to classi-
fication of microarrays. Here, we are interested in the
subfield of machine learning that is related to super-
vised learning or classification. Typically, in a classifica-
tion problem a training set teaches the algorithm to
predict the class label of an input object (Duda et al.
2000; Hastie et al. 2001). The goal is to decide between
a selective and a neutral model. However, classifying a
data set as either neutral or selective is challenging
because the parameters of the neutral and selective
models are unknown. Therefore, parameter estimation
is required prior to the classification. In the cases that an
equilibrium model with selection is employed, the
selection intensity a can be estimated using the clsw
software (Kim and Stephan 2002) or the SweepFinder
algorithm (given that r is known). To our knowledge,

currently the only method able to estimate a given a
nonequilibrium (stepwise) model with selection has
been developed by Li and Stephan (2006). On the
other hand, several approaches exist for the estima-
tion of parameters in a neutral demographic model
(Nielsen 2000; Excoffier et al. 2005; Li and Stephan

2006; Hey and Nielsen 2007). Usually, these ap-
proaches require multiple loci to infer the demographic
parameters of a population. The next step in a classifi-
cation problem is feature selection, which aims at using
a subset of the features available from the data. Here,
LMAX, vMAX, and their combinations (distance between
peaks and correlation of v and L) have been used.
Combining v and L is powerful in comparisons between
equilibrium models with selection and neutral non-
equilibrium models when the selection intensity is small
(Table 2). Alternatively, various summary statistics, such
as Tajima (1989)’s D, Fay and Wu (2000)’s H, or ZnS

(Kelly 1997) can be used. Our choice is based on the
fact that SweepFinder uses SFS information whereas the
v-statistic is based on LD. The choice of the classification
technique is important and depends on the problem and
the nature of the data. Here, we demonstrate an applica-
tion using the SVM classifier (with the radial kernel), as it
is implemented in the e1071 package of the R-project. To
our knowledge, there are no studies on separating neutral
from selective scenarios that use supervised-learning
approaches. Future work will provide insight into the
feature selection problem and will also evaluate the
performance of the supervised-learning approaches.
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Orengo, D. J., and M. Aguadé, 2004 Detecting the footprint of
positive selection in a European population of Drosophila
melanogaster: multilocus pattern of variation and distance to
coding regions. Genetics 167: 1759–1766.
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