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Commentary

To Pool, or Not to Pool?
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IN this issue of Genetics, Futschik and Schlötterer

(2010) present one of the first and the most sys-
tematic explorations of the relative merits of pooling vs.
individual sequencing for several genetics applications.
They argue that pooling individuals is often more ef-
fective both for SNP discovery and for the estimation of
allele frequencies (and thus for population genomic
analyses) and as a result can be more cost effective
because less sequencing effort is required to obtain the
same precision of estimates. While the authors’ results
are strictly correct for the models that they examine,
application of the innovative and powerful statistical
framework that they have developed may be used to
show that, for a wide range of applications, pooling is in
fact less desirable than individual sequencing. Given
the prevalence and importance of current and future
whole-genome sequencing projects, it is worthwhile to
carefully consider these results.

The authors begin by considering SNP detection and
comparing pooling experiments to individual sequenc-
ing. Building upon the work of Eberle and Kruglyak

(2000), they derive both type I and type II errors under
both schemes. The authors find, as expected, that the
relative efficiency of pooling depends upon not only
expected coverage, but also upon the minimum num-
ber of reads required for allele calling. The trade-off in
power is clear: pooling is less efficient when coverage is
small, whereas individual sequencing becomes less ef-
ficient with higher expected coverage. However, regard-
less of the assumed model of sequencing errors, SNP
calling from pools is shown to be accompanied by a
tremendously high probability of sequencing errors,
unless the minimum coverage depth required to make a
call is quite high.

And herein lies the major drawback of the pooling
approach. The authors propose two possible corrections
to address this unacceptably high error rate: (1) nat-
urally, if an unbiased estimate of sequencing error is
known, this estimate could be used as a correction in

subsequent analysis; and (2) in the likely absence of this
knowledge, the authors propose a minimum required
allele frequency for inclusion of a site in SNP-based
analyses. Based on the assumption that sequencing er-
rors will be rare if this minimum frequency is suffi-
ciently large, this approach resigns itself to the loss of
a tremendous amount of information—notable partic-
ularly given the importance of low-frequency alleles in
population genetics analyses ranging from the detection
of patterns of hitchhiking (Maynard-Smith and Haigh

1974), to the quantification of positive (Przeworski

2002) and purifying selection (Charlesworth et al.
1993), to the estimation of demographic parameters
(e.g., Thornton and Andolfatto 2006).

Perhaps more importantly, the precise application
modeled by the authors, ‘‘SNP detection,’’ might subtly
differ from the application that many readers may
consider performing themselves. The application of
the Futschik and Schlötterer model has the goal of
discovering markers, which can subsequently be assayed
in future experiments. This application is, of course, an
important one, particularly in systems that have not yet
seen much genomic analysis. Conversely, it is an ex-
periment of essentially no utility in systems such as the
human or fly, where SNP discovery has been extensively
performed. Importantly, the key idea behind this
experiment is that discovered SNPs are ‘‘exchangeable.’’
The user cares only about the total number of markers
discovered and is untroubled by the fact that, if the
experiment were repeated many times, the precise SNPs
discovered would change with each experiment.

In the context of human genetics, for example, the
more common experiment is often called ‘‘medical
resequencing’’ and follows a general structure: N indi-
viduals who have some common disorder are se-
quenced, as are K individuals free of the disorder. The
experiment determines whether these N individuals
also share certain ‘‘kinds’’ of mutations (stop codons,
replacement sites, etc.) disproportionately. In this
experiment, the precise individuals sequenced and the
precise variants discovered matter, and because of that,
one comes to a very different conclusion about the re-
lative merits of pooling. Futschik and Schlötterer’s
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machinery may in fact be used to show that pooling is
always less efficient than individual sequencing for this
application.

In the medical resequencing experiment, the N indi-
viduals with a disorder are often ‘‘limiting’’; i.e., there is
not an infinite pool of individuals with that particular
disorder. The N individuals are perhaps all the samples
that will ever be available to the investigator. Funda-
mentally, this experiment seeks a complete catalog
of the variants in those N individuals. For example,
consider a human sample where N ¼ 100 and the pop-
ulation mutation rate, u ¼ 4Nm per site, is �0.001
(International HapMap Consortium 2005). In such
an experiment, we expect to find 0.00587 segregating
sites per site (Watterson 1975). For .90% of the SNPs
identified to be ‘‘real,’’ the error rate for the whole
experiment necessarily must be ,0.00065 per site.
Because individuals are diploid, we assume the follow-
ing base calling ‘‘rule’’: We call a site heterozygous if at
least six reads are seen from each allele and the minor
allele constitutes at least 15% of the total reads. Other-
wise, we call the majority allele homozygous, provided at
least six reads agree. Using this base-calling rule and
modifying the authors’ equation 3 appropriately,

qðdÞe ðk; l; eÞ ¼ 1� 1�
X
r $ 6

Xi # r�maxð6;0:15rÞ

i $ maxð6;0:15rÞ

�
r

i

�
eið1� eÞr�i

2
4

3
5lr

r !
expð�lÞ

0
@

1
A

k

;

it is easy to show that if we sequence each individual to
an average 30x depth, then the false positive rate per site
is less than 0.00051, whenever the per base sequencing
error is less than 1.4%. It is also easy to show
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that 99.45% of all heterozygotes will be detected by
these rules, and effectively all of the homozygous sites
will be correctly called. This experiment requires a total
sequencing burden of 100 3 30 ¼ 3000 reads per base.
There is no pooling experiment with 3000 reads per
base that can begin to approach this performance at
realistic error rates.

If we were to pool all 100 samples together, and
sequence the pool to a 30003 depth, we may ask the
minimum depth necessary to call a variant to achieve a
per-site error rate of ,0.00065. If the per-read error rate
is, for example, between 0.001 and 0.01, then the min-
imum depth to call a variant will range from 11 at the low
end to 50 at the high end. At the low end, 11% of all
singleton heterozygotes will be dropped. At the high
end, nearly 100% of the singleton heterozygotes, 100%
of the doubletons, and 75% of the tripletons will be
dropped. Thus, �29% of all variants will be lost at an
error rate of 1% per base per read (phred 20). Making

smaller pools helps if the error rate is sufficiently small,
but not at realistic error rates. If pools of size 10 each are
sequenced to a depth 3003, a rule of five reads will
suffice at an error rate of 0.001, whereby the per-base
false-positive rate meets our threshold and almost no
variants are lost. However, if the error rate per read is
closer to 1%, it will take at least 12 reads of the minor
allele to achieve a sufficiently low error rate, and once
again�28% of the variants will be missed from each pool.
It is important to note that to make these calculations we
have assumed that each DNA in the pool is at exactly
equal molar concentration (i.e., there is no variance
due to pooling). This is an unrealistic assumption and
amounts to a best-case scenario for pooling.

The earliest published pooled sequencing experi-
ments are obtaining similar results. Druley et al. (2009)
built a site-specific error model, trimmed all but the 10
most reliable bases from each read, and obtained a per
base error rate of �0.003 (much worse than modeled
here), while detecting only one singleton in pools
expected from neutral theory to contain �12. When
analyzing pools of 88 samples, Out et al. (2009) were
able to detect 3 out of 5 known singletons, but did not
report any statistics concerning false positive rates.

Apart from variant identification itself, the primary
interest of generating whole-genome polymorphism data
for population genetics analyses generally revolves around
an accurate characterization of the allele-frequency spec-
trum. Ignoring for a moment minimum allele-frequency
corrections, for individual-based sequencing most of the
sampling variance in the frequency spectrum stems
directly from the selection of individuals. Thus, by in-
cluding a large number of individuals in a given pool, this
sampling error may be dramatically reduced. By way of
quantifying frequency-spectrum-based inference under
these different approaches, the authors compare the
estimation of two commonly used scaled-mutation param-
eters (uW and up). In the absence of sequencing error,
pooling results in more accurate estimation for large
pools. However, sequencing error rates (1% per site per
base) suggest that, for a pool sequenced to 3003 depth
[as depicted by the black line in Figure 5 of Futschik and
Schlötterer] the necessary b to control for sequencing
error is 11, not 3. Quite clearly the advantage of pooling
for parameter estimation is beginning to disappear at b¼
3 and is dramatically reduced for anything other than the
largest imaginable pools at b ¼ 11. Furthermore, new
biases are introduced: some chromosomes in a pool may
not be sequenced, and others may be multiply sequenced.

Employing a model similar to Lynch’s (2009),
Futschik and Schlötterer clearly demonstrate that,
when individual DNAs can be pooled in exactly equal
molar concentrations, estimation of allele frequencies
for high-frequency alleles is always more efficient in
pools. However, one of the greatest technical challenges
to the pooling approach is obtaining equal molar
concentrations (Craig et al. 2009). As Futschik and
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Schlötterer show in Figure 8, when realistic variance
in DNA concentrations are assumed, pools must be very
large (hundreds of individuals) for the allele-frequency
estimation to be more efficient in pools than by in-
dividually sequencing 10 alleles to a 103 depth. Of
course, it is not at all clear why any investigator would
ever attempt to estimate allele frequency by sequencing
10 alleles to a 103 depth. A more realistic experiment
might sequence 100–1000 samples to a 303 depth. Of
course, for pools to perform better than individual
sequencing for this application, the pools must be
drawn from much larger populations, e.g., from thou-
sands to tens of thousands of individuals, which again
implies that the samples are not themselves limiting.
More pointedly, when sequencing pools of hundreds to
thousands of individuals, there is no possibility of
individual variant detection. All rare alleles will be lost.
The only SNPs that can be ‘‘called’’ are those at a very
high minor allele frequency in the general population.
Thus, the proper competitor experiment is not really
‘‘individual sequencing,’’ which would detect rare mi-
nor alleles, but instead ‘‘individual genotyping.’’ If only
high minor allele-frequency SNPs can be assayed, the
most straightforward experiment is simply to genotype
them in all samples, efficiently and inexpensively, and
avoid sequencing altogether. This trade-off—sequencing
pools large enough for efficient allele-frequency esti-
mation and thus destroying the ability to assay rare
alleles—is just one of many trade-offs associated with a
pooling approach.

Finally, although dismissed by Futschik and
Schlötterer as an acceptable trade-off in light of
the perceived relative advantages of pooling, it is sig-
nificant to note that haplotype information is necessar-
ily being sacrificed under this approach as well. While
this may indeed be a necessary price for a cost-effective
and accurate characterization of SNP frequencies in a
population of interest, it should not be disregarded as
insignificant. A number of recent methodological ad-
vancements in population genetics—ranging from the
inference of demographic (Davison et al. 2009) and
recurrent selection parameters (e.g., Jensen et al. 2008)
to the identification of both complete and incomplete
selective events (e.g., Hudson et al. 1994; Sabeti et al.
2007; Pavlidis et al. 2010)—revolve around patterns of
linkage disequilibrium. Additionally, given the seem-
ingly indistinguishable effects of selection and demog-
raphy on the site frequency spectrum, recent theoretical
work has argued for the importance of linkage disequi-
librium in distinguishing among population genetics
models (e.g., Stephan et al. 2006). At worst, this absence
of LD information may greatly limit the value of pooled
sequencing in evolutionary analyses, independent of
the loss of low-frequency alleles. At best, the loss of
LD information may represent a new challenge for
theoretical and computational population geneticists
to develop a novel class of test statistics designed to

utilize this future wealth of cost-effective pooled data
generation.

Although the authors do demonstrate several genetic
applications when pooling performance can be better
than individual sequencing, assuming realistic error
rates, those applications are relatively narrow and always
involve significant trade-offs. For many applications,
individual sequencing must always be preferred. Thus,
the work by Futschik and Schlötterer is significant as
it represents a careful and systematic comparison be-
tween two competing methodologies and identifies
trade-offs that ought to be carefully considered by the
multiple fields utilizing next-generation sequencing
technologies—from medical application to conserva-
tion genetics to population genomics.

LITERATURE CITED

Charlesworth, B., M. T. Morgan and D. Charlesworth,
1993 The effect of deleterious mutations on neutral molecular
variation. Genetics 134: 1289–1303.

Craig, J. E, A. W. Hewitt, A. E. McMellon, A. K. Henders, L. Ma

et al., 2009 Rapid inexpensive genome-wide association using
pooled whole blood. Genome Res. 19: 2075–2080.

Davison, D., J. K. Pritchard and G. Coop, 2009 An approximate
likelihood for genetic data under a model with recombination
and population splitting. Theor. Popul. Biol. 75: 331–345.

Druley, T. E., F. L. M. Vallania, D. J. Wegner, K. E. Varley, O. L.
Knowles et al., 2009 Quantification of rare allelic variants from
pooled genomic DNA. Nat. Methods. 6:(4) 263–265.

Eberle, M., and L. Kruglyak, 2000 An analysis of strategies for dis-
covery of single nucleotide polymorphisms. Genet. Epidemiol.
19: S29–S35.

Futschik, A., and C. Schlötterer, 2010 The next generation of
molecular markers from massively parallel sequencing of pooled
DNA samples. Genetics 186: 207–218.

Hudson, R. R, K. Bailey, D. Skarecky, J. Kwiatowski and F. J.
Ayala 1994 Evidence for positive selection in the superoxide
dismutase (Sod) region of Drosophila melanogaster. Genetics 136:
1329–1340.

International HapMap Consortium, 2005 A haplotype map of
the human genome. Nature 437: 1299–1320.

Jensen, J. D., K. R. Thornton and P. Andolfatto, 2008 An approx-
imate Bayesian estimator suggests strong recurrent selective
sweeps in Drosophila. PLoS Genet. 4: e1000198.

Lynch, M., 2009 Estimation of allele frequencies from high-coverage
genome-sequencing project. Genetics 182: 295–301.

Maynard Smith, J., and J. Haigh, 1974 The hitch-hiking effect of a
favourable gene. Genet. Res. 23: 23–25.

Out, A. A., I. J. van Minderhout, J. J. Goeman, Y. Ariyurek, S.
Ossowski et al., 2009 Deep sequencing to reveal new variants
in pooled DNA samples. Hum. Mutat. 30:(12) 1703–1712.

Pavlidis, P., J. D. Jensen and W. Stephan, 2010 Searching for foot-
prints of positive selection in whole-genome SNP data from non-
equilibrium populations. Genetics 185: 907–922.

Przeworski, M., 2002 The signature of positive selection at ran-
domly chosen loci. Genetics 160: 1179–1189.

Sabeti, P. C., P. Varilly, B. Fry, J. Lohmueller, E. Hostetter et al.,
2007 Genome-wide detection and characterization of positive
selection in human populations. Nature 449: 913–918.

Stephan, W., Y. Song and C. H. Langley, 2006 The hitchhiking
effect on linkage disequilibrium between linked neutral loci.
Genetics 172: 2647–2663.

Thornton, K. R., and P. Andolfatto, 2006 Approximate Bayesian in-
ference reveals evidence of a recent, severe bottleneck in a Nether-
lands population of Drosophila melanogaster. Genetics 172: 1607–1619.

Watterson, G. A., 1975 On the number of segregating sites in genet-
ical models without recombination. Theor. Popul. Biol. 7: 256–276.

Commentary 43


