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ABSTRACT

Rapid typing of genetic variation at many regions of the genome is an efficient way to survey variability in
natural populations in an effort to identify segments of the genome that have experienced recent natural
selection. Following such a genome scan, individual regions may be chosen for further sequencing and a
more detailed analysis of patterns of variability, often to perform a parametric test for selection and to
estimate the strength of a recent selective sweep. We show here that not accounting for the ascertainment of
loci in such analyses leads to false inference of natural selection when the true model is selective neutrality,
because the procedure of choosing unusual loci (in comparison to the rest of the genome-scan data) selects
regions of the genome with genealogies similar to those expected under models of recent directional
selection. We describe a simple and efficient correction for this ascertainment bias, which restores the false-
positive rate to near-nominal levels. For the parameters considered here, we find that obtaining a test with
the expected distribution of P-values depends on accurately accounting both for ascertainment of regions
and for demography. Finally, we use simulations to explore the utility of relying on outlier loci to detect
recent selective sweeps. We find that measures of diversity and of population differentiation are more
effective than summaries of the site-frequency spectrum and that sequencing larger regions (2.5 kbp) in

genome-scan studies leads to more power to detect recent selective sweeps.

major goal of population genetics is to use patterns

of variability in a natural population to identify
regions of the genome where allele frequencies have
been recently affected by the action of natural selection.
Historically, studies of naturally occurring molecular
variation were conducted at single loci, and uncertain-
ties about the demographic history of natural popula-
tions frequently complicated inferences aboutselection.
Current empirical work focuses on using either multi-
locus data sets (e.g., GLINKA et al. 2003; TENAILLON
et al. 2004; HADDRILL et al. 2005b; OMETTO et al. 2005;
WILLIAMSON et al. 2005; WRIGHT et al. 2005) or whole-
genome polymorphism data (e.g., CARLSON et al. 2005;
NIELSEN et al. 2005; KELLEY et al. 2006) to discern the
locus-specific effects of selection from the genome-wide
effects of nonequilibrium demographic history. In gen-
eral, this approach has been dubbed a “genome scan”
for selection.

Where whole-genome variation data are unavailable,
investigators will sample levels of variability from mul-
tiple regions of the genome using markers that are
both relatively rapid and relatively inexpensive to type,
such as microsatellites (e.g., HARR et al. 2002; KAUER et al.
2003; BAUER-DUMONT and AQuapro 2005), or short
fragments of nucleotide sequence to identify single-
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nucleotide polymorphisms (SNPs) (e.g., GLINKA et al.
2003; TENAILLON ¢t al. 2004; OMETTO et al. 2005; WRIGHT
et al. 2005). From such studies, a subset of these regions
may then be selected for additional sequencing, and
the parameters of a model of recent positive, directional
selection acting on new mutations will be estimated from
the data. How such regions are chosen for additional
sequencing varies from study to study, but most strate-
gies include a comparison of individual loci to the
empirical distribution of some feature of the data re-
sulting from a genome scan. For example, genome-scan
data consisting of short reads of DNA sequence may be
summarized by the number of mutations in each frag-
ment, with invariant fragments being used to identify
regions for further sequencing (e.g., GLINKA et al. 2003;
ScHLENKE and BEGUN 2004; BEISSWANGER et al. 20006).
Similarly, a region may be identified because variability
and/or allele frequencies of microsatellite markers are
extremely skewed in some regions of the genome rela-
tive to the data set as a whole (e.g., HARR et al. 2002;
Bauer-DuMonT and AQuabro 2005; PooL et al. 2006).
The rationale for the follow-up experiment is that the
statistics used to identify outlier regions (e.g., TAJIMA
1989; VoiGHT et al. 2006) are not formal tests for selec-
tion, as they do not specifically reject a neutral model in
favor of a model including selection. Thus, empirical
distributions from genome scans are often used as a
way to quickly identify regions of the genome in which
to estimate the strength and target of recent positive
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selection. Currently, such estimates are usually obtained
using the approach of KiM and StepHAN (2002) and
related approaches (Kim and NIELSEN 2004).

The rationale for choosing such extreme loci for more
detailed investigation is that models of selective sweeps
(MAYNARD-SMITH and Ha1GH 1974) predict both strong
reductions in diversity and skews in the site-frequency
spectrum, at neutral sites linked to a recent sweep
(BRAVERMAN e¢f al. 1995; Kim and STEPHAN 2002). How-
ever, such a procedure gives rise to at least three con-
cerns. First, when a genome-scan study surveys a large
number of (approximately) independent regions of the
genome, choosing the most extreme loci imposes a mul-
tiple testing problem for subsequent analysis. Second,
any empirical distribution has observations in the tails,
regardless of the model that generated the data. Third, it
isunclearin models of selective sweeps occurring in non-
equilibrium populations the extent to which selected
loci are expected to be enriched in the tails of an em-
pirical distribution. A recent simulation study (TESHIMA
et al. 2006) suggests that the efficacy of this approach
depends on which summary statistics are used to identify
outliers, as well as on the details of the underlying dem-
ographic model and the model of adaptation assumed
(for example, complete sweeps vs. sweeps from standing
variation).

In this article, we use simulations to investigate the
effect that choosing outlier loci has on parametric in-
ferences of selection, when the true model is one of
neutral mutations in a bottlenecked population. We
study a bottleneck model to explore the properties of
genome scans using parameters that may be relevant for
Drosophila melanogaster and also because population bot-
tlenecks severely confound the inference of selection
(e.g., JENSEN et al. 2005). We apply what is currently the
state-of-the art method for “subgenomic” scans (i.e., less
than whole-genome SNP data)—the composite-likeli-
hood method of Kim and SteEPHAN (2002) and the
goodness-of-fit (GOF) test of JENSEN et al. (2005). The
former method estimates both the strength and target
of selection, assuming the demographic null model of
a large, panmictic population, and gives a composite
likelihood-ratio test (CLRT) comparing the selective
sweep model to the standard neutral model. JENSEN et al.
(2005) proposed a GOF statistic intended to be applied
to data sets that reject neutrality following the proce-
dure of Kim and STEPHAN (2002). They showed that the
GOF procedure substantially reduces the false-positive
rate under nonequilibrium demographic models and
also results in a test statistic with a uniform distribution
of Pvalues when the true model is a single selective
sweep occurring in a large, constant-size, panmictic pop-
ulation (the model assumed by the CLRT). In JENSEN
et al. (2005), the calculation of the GOF test was applied
to simulated data assuming that loci are random draws
from a population model. In practice, however, both the
method of Kim and STEPHAN (2002) and the GOF tests

are often applied to loci that are preselected by an in-
vestigator because some feature of the region is an out-
lier in a multilocus genome scan (e.g., HARR et al. 2002;
BAUER-DUMONT and AQUADRO 2005; BEISSWANGER ¢t al.
2006; PooL et al. 2006).

Here, we show that the CLRT and the GOF are very
sensitive to choosing outlier loci from the tails of
empirical distributions, leading to false inference of
selection when the true model has no selection occur-
ring (>50% of the time for the parameters investi-
gated). We describe a correction procedure that both
is efficient and restores the false-positive rate to near
nominal levels. In addition, we use a novel simulation of
selective sweeps to explore the efficiency of outlier
detection at identifying selected loci in models of
demography-plus-selection. We find that using levels
of diversity, or of population differentiation, performs
better than summaries of the site-frequency spectrum,
as recently found by TESHIMA ef al. (2006). Additionally,
we find that the size of the region surveyed in a genome
scan (ie., the length of each fragment sequenced)
affects the efficiency of outlier detection, with a clear
advantage to scanning longer fragments.

METHODS

Simulating genome-scan data: We simulated genome-
scan data consisting of 100 independent loci, from a
population that has undergone a recent, severe re-
duction in population size. Our goal here is to mimic
the experimental designs that have been applied to
D. melanogaster (e.g., GLINKA et al. 2003; OMETTO et al.
2005; BEISSWANGER ¢t al. 2006). Such genome scans
consist of two phases. First, short fragments of DNA are
sequenced at a large number of regions of the genome
(GLINKA et al. 2003; OMETTO et al. 2005). Second, if a
fragment from the first step is identified as interesting,
further sequencing will be performed in the region
containing the fragment, and additional, linked frag-
ments will be sequenced (e.g., BEISSWANGER et al. 2006),
and a parametric test of selection will be applied, such
as that of Kim and StepHAN (2002). To simulate this ex-
perimental design, we simulate genealogies from 10.5-kb
regions, according to the scheme shown in Figure 1.
This scheme consists of five, 500-bp fragments evenly
spaced over the 10.5 kb. The third, central, fragment
represents the initial fragment surveyed in a genome-
scan experiment. Should this fragment be chosen for
further study, the simulated data from the four other
linked fragments are added to the central fragment,
and a parametric test of selection is performed. A ge-
nome scan data set of 100 regions is thus generated
by simulating 100 of the 10.5-kb regions shown in Figure
1, and we simulated 1000 such data sets (a total of 10°
10.5-kb regions).

We simulated both the ancestral population and
the derived, bottlenecked, population, according to the
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FiGure 1.—Simulation scheme for genome-scan data. A
data set consists of five linked, 500-bp fragments, with 2 kb
between fragments. The central fragment (solid box) repre-
sents data obtained in a genome-scan study. The other four
fragments (hatched boxes) represent the follow-up sequenc-
ing that is done if the middle fragment is chosen for further
investigation of variability in the region.

model in Figure 2. This model has five parameters: the
population mutation rate (6 = 4Ny, where N is the
effective size of the ancestral population), the popula-
tion recombination rate (p = 4Nyr), the time at which
the derived population recovered from the bottleneck
(%), the duration of the bottleneck (d), and the severity
of the bottleneck ( f; 0 < f= 1). In this study, we use 6 =
0.01/site, p=0.1/site, t, = 0.004, d=0.015,and f=0.03,
as these bottleneck parameters are compatible with data
from European samples of D. melanogaster (THORNTON
and ANDOLFATTO 2006). To perform these simulations,
a program was written using the coalescent simulation
functions in libsequence (THORNTON 2003).

Modeling selective sweeps: We consider a contiguous
fragment of M nucleotides. A beneficial mutation has
swept to fixation at position X, 1 = X= M. We consider
a coalescent process for a Wright-Fisher model with
intragenic recombination (HupsonN 1983) and measur-
ing time, ¢ in units of 4N generations (¢ = g/4N, where
g is the number of generations). In this model, the
selective sweep ends (i.e., the beneficial mutation fixes
in the population) at time 7 = 0. We model the
trajectory of the selected allele using the deterministic
approximation given in STEPHAN et al. (1992), with the
frequency of the beneficial allele at time ¢ of the sweep
given by

3

x(t) = £+ (1 — §)e2°‘<t*m;

0=t=4, (1)

where o = 2Ns and # = —(logg/a), the length of the
sweep in units of 4Ngenerations. Here, we use § = 1/2N.
The simulation has two phases—a neutral phase and
a selective phase (BRAVERMAN et al. 1995). The neutral
phase is the standard coalescent model with recombi-
nation (Hupbson 1983). At time 7 in the past, the
simulation enters the selective phase, which is modeled
as a structured coalescent process (e.g., KAPLAN et al.
1988; BRAVERMAN et al. 1995), and time is incremented
in small units, 8¢ until the frequency of the beneficial
allele first reaches x(¢f) < &, at which point the sim-
ulation continues in a neutral phase until the most re-
cent common ancestor of the sample is reached. Events
at time ¢ during the sweep occur with the following
probabilities. First, there are the probabilities of co-
alescence in the favored and unfavored classes,

Past

No

Present

F1cure 2.—Bottleneck model in a derived population. The
model considers a derived population that experiences a bot-
tleneck upon splitting from an ancestral population. In this
model, time is scaled in units of 4N, generations, where N
is the present size of the ancestral population. Moving back-
ward in time, the derived population recovers from the bot-
tleneck at time /. The bottleneck reduced the population
size of the derived population from Nj to fN, for duration
d. At time {. + d in the past, the two populations split from
a common ancestor of size (1 + f)N,. For recombining re-
gions, this model then has five parameters: the scaled muta-
tion rate 0, the scaled recombination rate p = 4Ny, ¢,, d, and f.

 kg(kp—1)
M (D)3 = T&t (2)
No(1)dt = m&. (3)

In the above, at time ¢ during the sweep, there are B
lineages in the favored class and &in the unfavored. The
probabilities of recombination within the same two
classes are

N (2)dt = x(t)p (f: Li,favorcd) ot (4)
=1

b
)\4(t)8t = (1 - X(t))p (Z Li,unfavored) atv (5)

where p = 4Ny, the population recombination rate per
site, and Zjl::l L; , refers to the total number of positions
at which recombination events may occur in the kth
class. During the sweep, if the ith chromosome in class
kbegins at position /and ends at position [ (1 = I < M,
1<J=M,and I<]), then L;;,=max(X, /) —min(X, [).
Finally, there are the probabilities of recombination
from the favored class to the unfavored,

)\5(t)8t = (1 - x(t))p <Z Li,favored) dt, (6)
=1
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and recombination from the unfavored to the favored,

b
)\G(t)at = x(f)P (Z Li,unfavored) ot. (7)
=1

For example, in Equation 6, a chromosome from the
favored class is selected, and the position of the re-
combination eventis chosen uniformly along the length
of the chromosome. After the recombination event, the
chromosome fragment that does not contain the selected
site is placed in the unfavored class. (Recall that time is
moving backward, and therefore the fragment not con-
taining the selected site had its ancestor in the unfavored
class.) A similar argument is made for Equation 7.

Our implementation of the selective phase applies
the rejection algorithm of BRAVERMAN et al. (1995) to
choose among the various possible events. We tested the
accuracy of our simulation in two ways, using code pro-
vided by Yuseob Kim and described in Kim and STEPHAN
(2002). First, for a given set of parameters, the distribu-
tion of several summary statistics was compared between
the two implementations of the sweep process, and
results were in excellent agreement (data not shown).
Second, the inference machinery described in Kim and
STEPHAN (2002), which estimates Xand a on the basis of
the spatial distribution of variability, was applied to the
output of both programs. We checked that the distribu-
tions of X and & were similar when obtained from the
output of both simulations, as a check that the patterns
of variability surrounding the selected site were simu-
lated accurately in our code.

Sweeps in two-population models: We extended the
above model of a selective sweep to a two-population
model in which one population undergoes a stepwise
bottleneck (Figure 2), and no migration occurs between
populations. Sweeps in the bottlenecked population
occur during the period when Nis reduced, constrained
so that a selective sweep event does not cross a change in
population size (4 <7< { + dand . <7+ i, < 4 + d).
In this article, we do not consider the case of sweeps in
the ancestral population.

We calculate the trajectory of the favored allele using
& = 1/2/N, and a = 2fN,sin Equation 1. This calculation
results in #, the length of the sweep, being in units of
4/N, generations; i.e., t = g/4fN,, where gis the length
of the sweep in generations. However, we measure time
in the simulation in units of 4\, generations, and there-
fore events during the selective phase occur on different
timescales in the two populations, which is accounted for
as described below.

During the selective phase of a two-population model,
there are three demes that must be considered: the fa-
vored class, the unfavored class, and the population not
undergoing a sweep. Events in the derived population
occur according to Equations 2-7, with 8¢ = 1/4/N,, and
we simulate along the trajectory of the beneficial allele

from 1 — 1/2fN, = x(¢) = 1/2fN,. Events in the unswept
deme occur with probabilities

7\7(t)8t2 = k(;(k(; — 1)6t2 (8)

Cc
Ag(l‘)Btg =p (Z Lz’,unswepl) 8t2' (9)

i=1

In the above, there are C lineages in the population
not experiencing a sweep, and 3t = f8¢ = 1/4N,, rep-
resenting that scaled time moves ffold slower in the
larger, ancestral population. Note that L; ynswept = J — 1
because the position of the selected site is not relevant
for the population not undergoing the sweep (for the
case of no migration between populations considered
here). If j generations pass between events, the time in
the simulation is incremented from ¢ to ¢ + s, en-
suring that the total time on the genealogy is in units of
4N, generations.

We simulated genealogies for an equilibrium, ances-
tral population and for a derived population under
demography-and-selection, as described in METHODS
and Figure 2. For each population the sample size was
n = 24 chromosomes, using the model parameters de-
scribed above. We chose selection parameters to max-
imize the effect of a sweep on the genealogy. We
simulated 10.5-kb regions, and X, the position of the
selected site, was assigned uniformly from 1 = X = 10,
500 for each replicate. We considered two different
sampling schemes, sampling either 500 bp in the center
of the 10.5 kb or 2500 bp. The beneficial mutation fixed
in the recent past at T = 0.0041 or 0.015, and we ex-
amined two strengths of selection—a = 2fNys = 100 or
o = 1500. We assume Ny = 2.4 million (THORNTON and
ANDOLFATTO 2006), and therefore our values of a cor-
respond to s~ 7 X 10~*and ~ 0.01, respectively. We are
therefore studying the effect of a recent and relatively
strong (2fNys>1) sweep occurring at all loci in the
history of the derived population.

From these simulations, we explore three summary
statistics. First, RH = émder/émmc, where éﬁ is TAJIMA’s
(1983) estimator of 0 in the derived and ancestral pop-
ulations, respectively. A natural-log transformation of
these distributions would be analagous to the In RH
statistic for microsatellite data (KAUER et al. 2002).
Second, we explore the Isr-statistic of HUDSON et al.
(1992). Finally, we study the distribution of H = 0, — 0.,
where 0, = 37" ik;/(n — 1), which is a sum over the
occurrences of derived mutations at frequency 7 in a
sample of size n (J. SHAPIRO and C.-I Wu, personal com-
munication; see also THORNTON and ANDOLFATTO
2006).

Parametric tests of selection: We apply two param-
etric methods to simulated data to test for a recent
selective sweep. The first method is the CLRT of Kim and
STEPHAN (2002), and the second is the GOF test of
JENSEN et al. (2005). Both tests require the simulation of
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FIGURE 3.—Empirical cumulative density func-
tions of GOF P-values when applied to outliers in

—~— genome scans. One thousand 100-locus data sets

S were simulated under a bottleneck model with no

selection (Figure 2, see METHODS for parame-
ters), using the sampling scheme from Figure
1, and outlier loci were chosen for follow-up se-
quencing and application of the CLRT (Kmm
and StEPHAN 2002) and GOF (JENSEN et al.
2005) methods (see METHODS). The vertical line
at P = 0.05 is the significance threshold for the
GOF test. P = 0.05 leads to the inference that
the selection model is rejected in favor of a demo-
graphic explanation, while P > 0.05 is taken to
mean that selection is inferred to be a better ex-
planation than demography. In this case, any
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a null distribution, which is simulated under a neutral
model for the former method and under a model of
selection for the latter. For the CLRT, all null distributions
consist of 10* simulated samples, and for the GOF test, we
used 10” simulations to generate null distributions.

Following previous work, null distributions of the
CLRTwere simulated using the observed i (WATTERSON
1975) as the mutation rate (Kim and STEPHAN 2002;
JENSEN et al. 2005), and the null distributions for the GOF
test were simulated using S, the observed number of
mutations in the data (JENSEN et al. 2005), as simulating
with éw does not result in a uniform distribution of
Pvalues when the true null model is a recent selective
sweep (J. JENSEN, unpublished results).

RESULTS

The ‘“goodness-of-fit” test applied to neutral ge-
nome-scan data: We simulated 1000 100-locus genome-
scan data sets that mimic the sample sizes and locus
lengths of the largest studies to date in D. melanogaster
(GLINKA et al. 2003; OMETTO et al. 2005; see METHODS),
using the model from Figure 2 (see METHODS for
parameters).

We apply two methods to choose outlier loci for
follow-up studies in the derived population. First, we
choose a locus if the fragment surveyed is invariant in
the derived population. Second, we choose a locus if
the value of TajimMA’s (1989) D statistic in the derived
population is less than or equal to the value of D at the
lower 2.5th percentile of the empirical distribution (D =
D’%%) . These two ascertainment schemes identify non-
overlapping sets of loci for further analysis, as D is
undefined for invariant regions.

From the 1000 100-locus, neutral data sets, we ob-
tained 10,827 regions chosen on the basis of having
no variation and 3300 on the basis of D = D’°*. Note

T P> 0.05 is therefore a false positive. If the false-
positive rate were nominal (z.e., 5%), then the cu-
mulative density of Pvalues should reach 0.95 by
P =0.05 (vertical line), which is not the case for
either of the ascertainment schemes plotted.

that Dis a discrete statistic, and therefore the value of D
may be identical at different percentiles of the empirical
distribution, which is why we obtained more than the
expected 2500 outliers.

We then applied the CLRT of KiM and STEPHAN
(2002) and, for those loci rejecting neutrality at P <
0.05, calculated Pvalues for the GOF method as pre-
viously described (JENSEN et al. 2005). For the GOF test,
there is a range of Pvalues (P = ~0.05-0.2) where it is
unclear if selection can be distinguished from demog-
raphy (JENSEN et al. 2005). For our purposes, we apply a
strict cutoff at P= 0.05, such that P= 0.05 implies that a
recent selective sweep with the parameters estimated
from the composite-likelihood method is not the best fit
to the data. Likewise, P> 0.05 implies that the rejection
of neutrality by the CLRT is more likely due to a sweep
than due to demography alone.

When regions were chosen because the scanned
fragment was invariant, 7048 (65%) of the simulated
data sets rejected neutrality according to the CLRT, and
6822 (96.7%) of those had GOF Pvalues >0.05, in-
dicating that the selection model fit the data better than
a demographic scenario (despite the data being simu-
lated under a strictly neutral model). If outliers are
chosen on the basis of D < D%, 2931 (88.8%) reject
neutrality using the CLRT, and 2614 (89.1%) of those
had GOF P-values >0.05. If the false-positive rate were
properly controlled, the empirical cumulative density
function (ECDF) of P-values for the GOF test would
have a cumulative density of 0.95 at P = 0.05 when
applied to neutral data. This is not the case when
regions are ascertained from a genome scan—very little
of the cumulative density is <0.05, indicating false
acceptance of the selection model for the majority of
data sets (Figure 3). This leads to total type I errors of 63
and 79.2% when choosing regions because they are
invariant or have an unusual Tajima’s D, respectively. We
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should note, however, that this is a substantial improve-
ment over relying solely on the tails of the empirical
distribution. If we had simply assumed that our outliers
were subject to selection, our type I error would have
been 100%, but applying the GOF method reduces the
error rate by 20-40%.

Controlling the false-positive rate: In this section, we
explore controlling the false-positive rate when loci are
not randomly sampled from the genome. In practice,
follow-ups to genome-scan experiments have to deal
with the issue of nonequilibrium demography and of
how loci are selected for further analysis, and it is not
clear which issue has a greater impact on downstream
analysis. For example, is it necessary to correct for both
demography and ascertainment, or is it sufficient to
correct for either demography or ascertainment? From
a statistical point of view, the appropriate quantity to
keep track of is the distribution of P-values for each of
these procedures and then to choose the procedure that
results in a uniform distribution of Pvalues when the
null model is correct. Although we discuss the problem
in terms of genome scans that survey single-nucleotide
polymorphisms and follow up with the CLRT/GOF
tests, the statistical issues addressed here are quite gen-
eral. All statistical tests of neutrality that we are aware of
assume a null distribution where loci are random draws
from the model, but the ascertainment of a region and
its use in a subsequent hypothesis test samples from a
different null distribution. The general issue here is how
to sample from the correct null distribution, illustrated
with specific examples using the KiM and STEPHAN
(2002) framework. Further, as the GOF test is applied
only to regions that reject the null model with the CLRT,
it is sufficient to control the false-positive rate of the
CLRT. In other words, if a null distribution for the CLRT
gives a 5% false-positive rate, then the total false-positive
rate of the entire procedure (the CLRT + GOF tests) is
necessarily =5%, and therefore we can identify the
maximum false-positive rate.

For the results described above, there are two factors
that contribute to a high false-positive rate. First, in
practice, one obtains P-values for the CLRT by simulat-
ing a null distribution under the standard neutral
model (HARR et al. 2002; Kim and SteEPHAN 2002;
BAUER-DUMONT and AQuADRO 2005; BEISSWANGER
et al. 2006; PooL et al. 2006), which is problematic when
the demographic assumptions of that model are vio-
lated (JENSEN et al. 2005). Second, the CLRT (and the
subsequent GOF) are not applied to randomly chosen
loci in practice, but to outlier loci identified by a ge-
nome scan (e.g., HARR et al. 2002; BAUER-DUMONT and
AQUADRO 2005; BEISSWANGER ¢t al. 2006; PooL et al.
2006). Such ascertainment procedures choose loci with
very unusual underlying genealogies, resulting in a
pattern of spatial variability that may mimic that of
a recent selective sweep, such as an excess of high-
frequency, derived mutations surrounding a region of
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Ficure 4.—The expected spatial pattern of variability for a
10.5-kb region is plotted, given that the region has been ascer-
tained because it contains a small invariant fragment. Esti-
mates of the expectation of three estimators of 6 = 4N,
are plotted for nonoverlapping 500-bp windows—,, (solid
line, Tajima 1983), 8y (dashed line, WATTERSON 1975),
and 0,, (dotted/dashed line, Equation 1 of THORNTON and
ANDOLFATTO 2006). These data were simulated under the
bottleneck model in Figure 2 with parameters 6 = 0.01/site,
p = 0.1/site, , = 0.004, d = 0.015, and f= 0.03. The expect-
ations are for n = 20 and are based on 1000 simulated repli-
cates, analyzing only the derived, bottlenecked population.
One-hundred-kilobase regions were simulated, a single win-
dow of 500 bp with no variation was identified, and the flank-
ing 5 kb on either side were then analyzed.

reduced diversity (Figure 4). This pattern is observed
because lineages in the invariant region reach common
ancestors in the relatively recent past during the
bottleneck, whereas lineages in the flanking regions
have different genealogies due to recombination and
reach common ancestors further back in the past
(either later during the bottleneck or they coalesce at
a time more ancient than the bottleneck). This effect is
also predicted by BarTOoN (1998), who showed that
many of the properties of genealogies are very similar
between bottlenecks and selective sweeps. In this
section, we show that the false-positive rate of genome
scans can be controlled if the demographic model is
known and the ascertainment procedure accounted for
when simulating the null distribution. We explore the
case of ascertaining a region of the genome on the basis
of the original scanned fragment having no variation,
but the principles apply to any ascertainment scheme.

The statistic of interest is A, the composite likelihood-
ratio statistic from the CLRT of KiM and STEPHAN
(2002). We wish to obtain a null distribution of \ that
is both generated from the correct demographic model
and conditional on the ascertainment scheme (asc). In
other words, for a specified demographic model, we
wish to sample A from the conditional distribution
Pr(\|asc) =Pr(\ Nasc)/Pr(asc). An estimate of Pr(asc)
is used as a weight on the observed statistic A,ps, and
Pvalues are estimated using n draws from the condi-
tional null distribution as
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Y I = fr(asc)Aobs)
n

; (10)

where I(x) = 1 if the condition xis true and 0 otherwise.
These corrected P-values can be calculated using a rejec-
tion algorithm (described below) and available software
(e.g., HubsonN 2002). In practice, one can simply run a
simulation until 7 replicates satisfying the ascertain-
ment scheme are recorded, keeping track of the £ trials
required, allowing Pr(asc) to be estimated as n/k. The
steps of this algorithm are detailed in the APPENDIX.

To mimic the ascertainment scheme, we accept only
simulation runs where the middle of the five fragments
is invariant. In practice, the null distribution of the
CLRT is obtained using Hw (WATTERSON 1975) as the
mutation rate in the simulations. This poses a practical
problem when simulating under demographic models
that reduce diversity—if fragments of a region are sam-
pled, the probability that all fragments are invariant can
be relatively high for small 6y. We therefore accept
simulation runs only if the middle fragment is invariant
and there is at least one segregating site in the data.
Therefore, Pr(asc) = Pr(middle region invariant N § >
0). Conditioning on the data set being variable is also
appropriate as an investigator would not perform the
CLRT on a region completely devoid of variation.

We applied this procedure to the 10,827 data sets that
were ascertained from our simulated neutral data on the
basis of having an invariant region in the scanned frag-
ment. As described above, 65% of these data sets falsely
reject the equilibrium neutral model in favor of selec-
tion. When the correct demographic null model is used
(a stepwise bottleneck with ¢, = 0.004, d = 0.015, and f=
0.03), and ascertainment is accounted for, 3.8% of loci
reject neutrality, making the test slightly conservative.
The ECDFs of Pvalues for these two cases are shown in
Figure BA. If the Pvalues are truly drawn from the null
distribution, then the cumulative density function
(CDF) of Pwvalues should be a linear function F(P) =
P. When ascertainment and demography are not ac-
counted for, ~65% of Pvalues are <0.05 (thick solid
line in Figure 5A). Accounting for demography and as-
certainment leads to an ECDF that grows approximately
as expected (thin line in Figure 5A). Further, account-
ing for ascertainment and demography affects the rank
order of P-values (Figure 5B). The change in rank order
shows that the standard CLRT Pvalues are not an
appropriate metric to compare the evidence in favor
of selection at different loci, when loci are ascertained
from a genome-scan experiment. For each value of éw,
the null distribution consisted of 50,000 replicates
matching the ascertainment criteria under the bottle-
neck model. Results were nearly identical using only
1000 replicates (data not shown). The acceptance rates
in the simulations [i.e., I?r(asc)] ranged from 0.12
to 0.52, depending on the value of Bw. This procedure
is therefore efficient enough to be performed using
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F1Gure 5.—The effect of region ascertainment on the P-
values for the CLRT of Kim and STeEPHAN (2002). These plots
are generated from our simulated data for the case where
neutral regions are ascertained on the basis of an invariant
fragment in a population that has undergone a recent, severe
bottleneck (see METHODS) and are calculated from the same
data used in Figure 3. (A) Cumulative densities of Pvalues for
the CLRT of Kim and StEpHAN (2002) for ascertained
genome-scan data. When the null model is the standard neu-
tral model and ascertainment is not accounted for, the cumu-
lative density grows quickly; ¢.e., there is a large false-positive
rate (thick solid line). When both the demographic model
and ascertainment are accounted for, the cumulative density
grows approximately as expected, with a 3.8% false-positive
rate (thin solid line). (B) The Pvalues in A are plotted against
each other. The Pvalues on the xaxis do not account for as-
certainment or demography and correspond to the thick
solid line in A. The corrected P-values are on the y-axis.

available software to simulate from the neutral coales-
cent (e.g., Hupson 2002).

Application to data: BEISSWANGER et al. (2006) re-
cently analyzed levels of nucleotide variability in a
Netherlands and a Zimbabwe sample of D. melanogaster.
They sequenced in this region because a previous study
(GLINKA et al. 2003) had identified a small (~500 bp)
fragment without variation near the wapllocus on the X
chromosome in the Netherlands sample. BEISSWANGER
et al. (2006) sequenced 12 short (again, ~500 bp)
fragments distributed along a 110-kb region surround-
ing the wapl locus. The data therefore consist of 13
fragments in total, including the fragment originally
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discovered in GLINKA et al. (2003). In this section, we
explore the effects that ascertainment and demography
have on the Pvalue of the CLRT applied to the Nether-
lands data from this region. Specifically, we estimate the
CLRT Pvalue under four scenarios:

1. Using the standard neutral model as the null model
and not accounting for ascertainment: This is the
standard application of the CLRT.

2. Using the standard neutral model as the null, but
accounting for ascertainment.

3. Using the point estimates for a bottleneck model
for the Netherlands population (THORNTON and
ANDOLFATTO 2006) as the demographic null model
and not accounting for ascertainment. We use point
estimates here, rather than simulate from the full
posterior distribution on the parameter space, to
keep the procedure as practical as possible using
available tools, such as ms (Hupson 2002).

4. Using the point estimates for a bottleneck model
for the Netherlands population (THORNTON and
ANDOLFATTO 2006) as the demographic null model
and accounting for ascertainment.

To improve simulation efficiency when generating a
null distribution for an ascertained region under the
standard neutral model, we applied a slightly different
scheme from that described in the previous section. For
each simulated replicate, we calculated 7, the total
length of the genealogy in the ascertained fragment
(the invariant fragmentidentified in GLINKA et al. 2003),
and placed no mutations on that fragment. For the
ith replicate, Pr(asc;) = Pr(ascertained region invariant |
OLT,) = ((0LT))*/k!)e ", where 0 is the mutation rate
per site, L is the length of the fragment, and £ = 0. The
P-alues are then estimated as

>or TN = Pr(asci)Nobs) ’ (11)
n

This approach is appropriate for sparsely sampled frag-
ments (Figure 1) and has the advantage that all sim-
ulation replicates can be used, rather than relying on
rejection sampling, which would be inefficient as the
probability of an invariant fragment is low under the
standard neutral model.

The CLRT Pvalues estimated under these four
schemes are shown in Table 1. In all calculations, we
used estimates of 6 and p from BEISSWANGER et al.
(2006) and an input file for the CLRT kindly provided
by Steffen Beisswanger. When the standard CLRT is
applied to the data, the Pwvalue is nearly significant
(0.054). When either ascertainment or demography is
accounted for individually, the Pvalue is much larger
(0.99 in both cases). Finally, when both demography
and ascertainment are accounted for in the null
distribution, P = 0.81. Clearly, the impacts both of
demography and of how regions are selected for analysis
may have a large influence on the strength of evidence

TABLE 1

The effect of different null distributions on CLRT P-values,
applied to the Netherlands data in BEISSWANGER et al. (2006)

Null model Ascertainment Pr(asc) CLRT Pwvalue
SNM* Ignored NA 0.054
SNM Accounted for® 0.025 0.99
SNM Accounted for* 0.024¢ 0.99
Bottleneck’ Ignored 0.998/ 0.27
Bottleneck’ Accounted for 0.414¢ 0.81

“SNM, standard neutral model. When ascertainment of re-
gions is ignored, this is the standard CLRT (KiM and STEPHAN
2002), and Pr(asc) is not relevant.

* Calculated using rejection sampling and Equation 10.

‘Calculated using Equation 11, see text for details.

“ Calculated as the mean of ((0LT})"*/k!)e=*", from 10 sim-
ulated replicates.

“Using the parameters from THORNTON and ANDOLFATTO
(2006), t. = 0.004, d = 0.015, f = 0.03 (see Figure 2), and
the mutation and recombination rates used in BEISSWANGER
et al. (2006). R R

/Calculated using Equation 10, with Pr(asc) = Pr(S>0).

¢ Calculated using Equation 10, with Pr(asc) = Pr(middle
region invariant NS> 0).

in favor of selection. Although correcting either for
ascertainment alone or for demography resulted in a
nonsignificant CLRT for this example, it is not guaran-
teed that either procedure adequately controls the false-
positive rate. We explore these issues below.

Correcting for ascertainment under the standard
neutral model: The results in Table 1 suggest that ac-
counting for ascertainment of regions alone, and as-
suming the standard neutral model, may have a strong
effect on CLRT Pwvalues. Given that there is consider-
able uncertainty concerning the appropriate demogra-
phic model to use for the null distribution, we explore
here the effect of accounting for ascertainment, but as-
suming the standard neutral model as the demographic
null model.

We generated null distributions for the CLRT for
10,827 data sets ascertained from our genome-scan
simulations based on having an invariant region.
The simulation scheme is as described above for the
BEISSWANGER et al. (2006) data, calculating Pvalues
according to Equation 11 from 1000 simulated data
sets. Accounting for ascertainment alone resulted in
an overly conservative distribution of Pvalues (100% of
the data sets had P = 0.422). The reason that this
procedure is so conservative is due to the demographic
assumptions. In an equilibrium population, the proba-
bility of ascertaining an invariant, 500-bp region is high
for small éw, in which case there is little information in
the data and therefore little power to reject the null
model. At the other extreme, it is very unlikely to
ascertain a 500-bp invariant region for high Bw, and
therefore the weight placed on the observed \ is very
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small, such that Pr(A = PAr(asc))\(,bs) is high when esti-
mated using the standard neutral model as the null.

Correcting only for demographic effects: In the
analysis of the BEISSWANGER et al. (2006) data, correct-
ing for demographic effects alone resulted in a non-
significant CLRT. We explore here whether or not
correcting for demography, while ignoring ascertain-
ment of regions, is sufficient to control the false-positive
rate. To do this, we generated a null distribution for the
same 10,827 data sets under the correct demographic
model, but ignoring ascertainment. Because there is a
nonzero probability that all five segments will be in-
variant for small 6 for this model, we condition on the
regions being variable and estimate Pr(asc) = Pr(S> 0)
by rejection sampling as described above. The distribu-
tion of Pwvalues for the CLRT in this case had a
substantial excess of small Pvalues, with 49.8% of data
sets having P = 0.05. In other words, correcting for
demography, but ignoring how loci are selected for
testing, improves the false-positive rate by ~23% (from
65% for the standard CLRT to 49.8%) when the CLRT
is applied to regions ascertained from a bottlenecked
population due to the observation of an invariant
fragment. In other words, for the demographic model
considered here, correcting for demographic effects
alone results in an overly liberal test, whereas account-
ing for ascertainment, but not for demography, results
in an overly conservative test. The intuitive explanation
for this is that the procedure of identifying regions on
the basis of small, invariant fragments specifically scans
for regions with spatial patterns of variability that look
like arecent sweep (i.e., qualitatively similar to Figure 4).
While such spatial patterns are quite rare under the
standard neutral model (i.e., there is a low probability of
discovering such regions), they are enriched for under
diversity-reducing neutral models compared to the
standard neutral model. Thus while correcting for
demography alone may result in a nonsignificant CLRT
for individual examples (Table 1), this is not true in
general (and holds only ~50% of the time for the model
studied here).

FiGURrE 6.—Reduction in diversity in nonequilibrium pop-
ulations. The distribution of diversity (6;) in the derived pop-
ulation, relative to 6, in the ancestral population is plotted
for models of a bottleneck, as well as those of a bottleneck-
plus-selection. For the cases including selection, a 10.5-kb re-
gion was simulated, and the position of the selected site was
randomly placed (from a uniform distribution) in the region.
The bottleneck parameters are given in METHODS. In each
plot, the case of no selection is plotted as a reference and
compared to two selection coefficients, a = 2fNys = 100
and 1500. In addition, a vertical line is placed at the 5th per-
centile of the empirical distribution without selection. In A—
D, different values of T, the time of fixation of the beneficial
allele, as well as different lengths of regions (500 or 2500 bp
sampled from the middle of the 10.5 kb), are considered: (A)
7=0.0041, 500-bp region; (B) T = 0.0041, 2500-bp region; (C)
T = 0.015, 500-bp region; (D) T = 0.015, 2500-bp region.
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The utility of empirical distributions: In the previous
sections, we demonstrated that choosing loci from
the tails of the empirical distribution of a summary
statistic imposes an ascertainment bias that must be
accounted for in subsequent analyses (e.g., Figures 3 and
5A). Of particular importance is how such loci are
chosen from the tails in the first place. In practice, the
choice is not made using the results of the CLRT/GOF
(due to computational impracticability), but rather
on the basis of a summary of the data (e.g., HARR et al.
2002; GLINKA et al. 2003; BAUER-DUMONT and AQUADRO
2005; BEISSWANGER et al. 2006; PooL et al. 2006).

TeEsHIMA et al. (2006) have recently found that
choosing outlier loci on the basis of low levels of diver-
sity is more powerful than choosing on the basis of
summaries of the site-frequency spectrum. They sim-
ulated genome-scan experiments consisting of 10-kb
regions, with mutation rates appropriate for humans or
maize. Diversity levels in maize are similar to those in D.
melanogaster and are ~10 times lower in humans. Thus,
the economic efficiency of genome scans, in terms of
SNPs discovered per dollar, depends on the organism.
Further, the largest genome scans in flies have relied
on ~ 500-bp fragments (GLINKA et al. 2003; ORENGO and
AcUAaDE 2004; OMETTO et al. 2005). Here, we explore
the effect of region length on the power of genome
scans, finding that longer regions have considerably
more power. We have developed a novel simulation
program that allows us to simulate a sweep in a derived,
bottlenecked population in addition to the genealogy of
the ancestral population. Our simulation allows us to
explore the effect of sweeps on population differentia-
tion, which was not considered in TESHIMA et al. (2006),
but has been considered as a statistic in genome scans
(e.g., AKEY et al. 2004; STORZ et al. 2004) because selec-
tive sweeps in structured populations are expected
to increase population differentiation (SANTIAGO and
CABALLERO 2005).

From our simulations, we estimated the distributions
of three summary statistics—RH, Fst, and H (Figures
6-8; see METHODS for descriptions of the statistics). In
Figures 6-8, a vertical line is placed at the 5th quantile
(95th for Fgt) of the distribution of the statistic under
the bottleneck. Therefore, the density to the left (right
for Fgr) of this line represents the amount by which

FIGURE 7.—Differentiation between ancestral and derived
populations in models of selection-and-demography. The
same data analyzed in Figure 6 are analyzed here, calculating
the distributions of Fst (HUDSON et al. 1992) between the an-
cestral and the derived population. As the position of the se-
lected site is random a fixed difference between populations
was added to the data at the position of the beneficial muta-
tion before calculating Fst. A vertical line is placed at the 95th
percentile of the distribution without selection. (A) T =
0.0041, 500-bp region; (B) 7 = 0.0041, 2500-bp region; (C)
7 = 0.015, 500-bp region; (D) T = 0.015, 2500-bp region.
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selection in a bottlenecked population enriches the tail
of an empirical distribution for selected loci.

In general, when selection is both recent (7 = 0.0041)
and strong (a = 1500), the tails of empirical distribu-
tions will be enriched for selected loci. However, the
power to detect this pattern depends both on the sta-
tistic used and on the design of the genome-scan ex-
periment. If one looks at RH, the reduction in diversity
in the derived population, strong recent selection can-
not be identified in the tails of a genome-scan experi-
mentwhen 500-bp regions are surveyed, for the mutation
and recombination rates considered here (Figure 6A).
The reason for this is that, under this bottleneck model,
a500-bp region has an ~10% chance of being invariant,
and a selective sweep obviously cannot reduce diversity
any further. However, if 2500-bp regions are surveyed in
the genome scan, values of RH = 0 are unlikely under
the demographic model, and strong selection can be
detected, even relatively far back into the past (Figure 6,
B and D). Interestingly, there is no apparent effect of
sequence length on Fsr (Figure 7). There is a dramatic
improvement in the efficiency of H to detect selection if
longer regions are surveyed (compare Figure 8A to 8B),
but the power vanishes rapidly with increasing 7 (Figure
8, Cand D).

DISCUSSION

We have studied the effect that the ascertainment of
regions from genome-scan studies has on inferences of
selection in subsequent analysis. When the true model
is a nonequilibrium, neutral model, ascertainment of
“unusual” regions for further analysis can lead to the
false inference of selection (Figure 3) because the as-
certainment procedure itself identifies regions with spa-
tial patterns of variability mimicking what is expected
from a selective sweep (Figure 4). For the parametric
tests of selection considered here (Kim and STEPHAN
2002; JENSEN et al. 2005), the false-positive rate can be
controlled if both ascertainment and demography are
accounted for when generating the null distribution for
the tests (Figure bA).

Uncertainty about demographic model: While ascer-
tainment is easily accounted for, the true demographic
model for most populations of interest is unknown. In
our analysis of the BEISSWANGER et al. (2006) data, we
used bottleneck parameters inferred from the genome

Frcure 8.—High-frequency, derived mutations in nonequi-
librium populations. The same data analyzed in Figure 6 are
analyzed here, calculating the distributions of /' (Equation 2
of THORNTON and ANDOLFATTO 2006), a summary of high-fre-
quency, derived alleles in the bottlenecked population. Again,
avertical line is placed at the 5th percentile of the distribution
withoutselection. (A) T =0.0041, 500-bp region; (B) 7= 0.0041,
2500-bp region; (C) 7 = 0.015, 500-bp region; (D) 7 = 0.015,
2500-bp region.
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scan that identified the waplregion (GLINKA et al. 2003;
THORNTON and ANDOLFATTO 2006) and used those
parameters as the demographic null model to analyze
the new data. Although these parameter estimates are
based on the simplifying assumptions that p/0 is con-
stant across loci on the D. melanogaster X and that the
African population is at demographic equilibrium (dis-
cussed in THORNTON and ANDOLFATTO 2006), our ana-
lysis suggests that correcting for the ascertainment of
the waplregion in The Netherlands, and not attempting
to account for demography, greatly weakens the evi-
dence for a recent selective sweep (Table 1).

When correcting for demographic effects, our ap-
proach made use only of point estimates of demographic
parameters and failed to account for uncertainty in
the estimates. However, Equations 10 and 11 are easily
extended to simulating from the full, joint poste-
rior distribution of parameters. Further, the approach
can be extended to multiple demographic models.
For example, PRITCHARD ¢t al. (1999) implemented a
summary-statistic Bayesian method with equal prior
weight on different demographic scenarios, and the
acceptance rate from each model was proportional to
the posterior probability that the data were drawn from
that model. In principle, a similar approach could be
used to generate null distributions for the CLRT that
take into account uncertainty about demography. The
power of any of these approaches, and their computa-
tional feasibility, however, remains an open question.

Empirical distributions: Although we have shown
how ascertainment from the tails of empirical distribu-
tions can be accounted for, power of the outlier de-
tection approach to identify selected loci depends on
the design of the genome-scan experiment. In the
simulations we conducted, we find that summaries of
diversity (Figure 6) or population differentiation (Fig-
ure 7) are likely to be of more use in reliably identifying
outlier loci that are under selection than summaries of
the site-frequency spectrum (Figure 8). TESHIMA el al.
(2006) have recently reached similar conclusions in a
simulation study focusing on demographic models
believed to be plausible for humans and maize.

Of particular interest is the effect that the size of the
regions surveyed has in a genome scan. For the models
explored here, we find that there is a substantial prac-
tical benefit to surveying longer regions (Figures 6-8).
To date, the largest genome-scan data sets in D. mela-
nogaster have consisted of fragments that are short
enough to sequence across in a single pass (GLINKA
et al. 2003; OMETTO et al. 2005). However, such regions
may be too short, such that selected loci are not more
extreme than neutral loci, as measured by levels of diver-
sity (Figure 6), although such an effect is not observed
when looking at Fgr (Figure 7). The advantage of
sequencing larger fragments is also important in post-
genome-scan analyses, since sequencing small, dis-
persed fragments leads to poor estimates of selection

parameters (J. D. JeNseN, K. R. THORNTON and C. F.
AQUuUADRO, unpublished results).

Important caveats: In our simulations of selection, we
have assumed a specific model where adaptation occurs
from new mutations sweeping to fixation (MAYNARD-
SmrtH and HaiGcH 1974). PRZEWORSKI ¢f al. (2005) have
recently used simulations to show that selection on
standing variation (i.e., a previously neutral mutation
that becomes beneficial) results in selective sweeps with
less pronounced effects on variability at linked, neutral
sites. Further, selection on standing variability does not
enrich the tails of empirical distributions to the same
extent as positive selection acting on new mutations
(TesHIMA et al. 2006). Thus, while genome scans will
identify interesting candidate loci, the false-positive and
false-negative rates depend on details both of the
demographic history of the populations in question
and of the nature of beneficial mutations (TESHIMA et al.
2006).

In this study, we have considered only the case of
ascertainment bias imposed by studying a region be-
cause of prior knowledge of levels of polymorphism.
Our simulations assumed that the polymorphic markers
themselves are randomly sampled from the population.
While this is appropriate for the large SNP data sets that
currently exist for Drosophila (GLINKA et al. 2003;
OMETTO et al. 2005), they do not mimic the sampling
schemes that are currently being applied to the largest
data sets for humans, where SNPs are first identified in a
small discovery panel and then later genotyped in larger
samples (HINDS et al. 2005; INTERNATIONAL HAPMAP
ConNsorRTIUM 2005). Ascertainment of markers is
straightforward to account for in simple cases (NIELSEN
et al. 2004), and accurate inferences of levels of diversity
and population structure depend on applying such
corrections (CLARK et al. 2005). Attempts to identify
recent directional selection in the human genome by
outlier analysis therefore have two types of ascertain-
ment to account for, that of markers and that of outlier
regions (e.g., CARLSON et al. 2005; KELLEY et al. 2006).

Future prospects: We have focused on keeping the
false-positive rate under control in genome-scan studies.
Further progress requires both evaluation of the power
of existing methods and the development of procedures
to increase the power to detect selection in nonequi-
librium populations. Alternatively, methods that are
robust to demographic effects will provide an impor-
tant, complementary approach. The recent method of
NIELSEN et al. (2005) is an important advance in this
regard, although it relies on the assumption that a class
of neutral DNA exists in the genome, which may not be
the case in Drosophila (AkasH1 1995; HALLIGAN et al.
2004; ANpoLraTTO 2005; HADDRILL et al. 2005a). In
addition, the current study and that of TESHIMA et al.
(2006) have conducted simulations under the simplify-
ing assumption that mutation rates are constant across
loci. Given that looking for outliers in terms of levels of
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diversity may be the most promising approach to
identify selected loci, variation in mutation rates is a
particular concern, as regions of low variability will
contain both selected loci and loci with low mutation
rates. In principle, examining statistics like RH and In
RH should control for variation in mutation rates
(ScHLOTTERER 2002; KAUER et al. 2003), but the issue
of power remains.
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APPENDIX: SIMULATING THE NULL
DISTRIBUTION UNDER ASCERTAINMENT

We describe here an algorithm to simulate a null dis-
tribution of samples from a model where loci are not
randomly sampled. The algorithm is general and re-
quires the following ingredients:

1. The parameters of a demographic model: For exam-
ple, one may use point estimates obtained from
fitting a demographic model to the initial genome-
scan data (e.g., OMETTO et al. 2005; THORNTON and
ANDOLFATTO 2006).

2. A means of generating coalescent samples from the
demographic model: If the initial genome scan was
done by surveying single-nucleotide polymorphisms,
a perl script to run ms (Hubpsox 2002) would be
sufficient. In this article, we wrote the simulations
directly, using libsequence (THORNTON 2003). If the
genome scan were performed using microsatellites,

and unusual regions then followed up on by survey-
ing SNPs (e.g., BAUER-DUMONT and AQuaDRO 2005;
PooL et al. 2006), a program like simcoal (EXCOFFIER
et al. 2000; LAavaL and Excorrier 2004) could be
used, which is capable of simulating linked SNP and
microsatellite data.

3. A function that checks if a simulated sample is
compatible with the ascertainment criteria: We label
this function ascertain(data) and assume it returns
1 (true) if the ascertainment criteria are met and
0 (false) otherwise. For example, the function may
return 1 if the middle 500 bp of a region are invariant
or if Tajima’s D < —1.5 (if the 5th quantile of the
empirical distribution of D in the genome scan were
—1.5). If the empirical data are sampled sparsely over
large regions (e.g., BEISSWANGER ef al. 2006), then
care must be taken to analyze only the portions of
the simulated sample corresponding to the regions
sampled in the data.

Given the above ingredients, the algorithm to gener-
ate nsamples from the null distribution under ascertain-
ment is:

set k=10
set m =0
while m < n do
setk=k+ 1
Generate a single coalescent sample, data, from the
demographic model
if (ascertain(data) = = 1) then
setm=m+ 1
save data to a file
end if
end while
return Pr(asc) = m/k.

At the end of the algorithm, an estimaAte of the as-
certainment probability under the model, Pr(asc), is ob-
tained. Further, the n instances of data that were stored
are samples from the null distribution under ascertain-
ment. The ascertainment-corrected distribution of A, the
CLRT test statistic, would then be obtained as previously
described (Kim and STEPHAN 2002), and the P-value of
the test would be calculated from Equation 10. Note that,
while we discuss processing the stored instances of data
for the CLRT, the method of generating samples from the
corrected null distribution is general and in principle
should be applied to any follow-up analysis of loci that are
nonrandomly sampled from the genome.



