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Abstract

Research has shown that RNA virus populations are highly variable, most likely due to low fidelity replication of RNA
genomes. It is generally assumed that populations of DNA viruses will be less complex and show reduced variability when
compared to RNA viruses. Here, we describe the use of high throughput sequencing for a genome wide study of viral
populations from urine samples of neonates with congenital human cytomegalovirus (HCMV) infections. We show that
HCMV intrahost genomic variability, both at the nucleotide and amino acid level, is comparable to many RNA viruses,
including HIV. Within intrahost populations, we find evidence of selective sweeps that may have resulted from immune-
mediated mechanisms. Similarly, genome wide, population genetic analyses suggest that positive selection has contributed
to the divergence of the HCMV species from its most recent ancestor. These data provide evidence that HCMV, a virus with a
large dsDNA genome, exists as a complex mixture of genome types in humans and offer insights into the evolution of the
virus.
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Introduction

Human cytomegalovirus (HCMV) is member of the b-

herpesvirus family. It is a ubiquitous, opportunistic pathogen,

with seroprevalence of 30–90% in the United States [1]. In

healthy individuals, primary HCMV infection is usually asymp-

tomatic or can result in a mild febrile illness. However, infection

persists throughout the life of the host. HCMV infections can be

problematic for those with compromised or immature immune

systems. For example, congenital HCMV infection is the leading

cause of birth defects resulting from an infectious agent, affecting

about 0.5% of all live births [2] and costing the U.S. Health care

system ,$2 billion annually [3]. Long term sequelae of congenital

HCMV infections include deafness, blindness and/or mental

disability [4].

HCMV contains the largest genome of any human virus with a

dsDNA genome of ,236 kilobase pairs [5]. Sequence analysis

predicts that the genome encodes approximately 164 open

readings frames (ORFs) [6]. The genome contains two unique

regions (termed UL and US) that are flanked by repeats (termed RL

and RS) both internally and terminally, although the internal RL

region is not present in clinical isolates or low passage strains.

Previous work with cell culture passed virus has shown that the

genome of HCMV displays sequence variability. For example, the

laboratory strain AD169 is a highly passaged, attenuated variant.

The genome of AD169 as compared to low passage strains has an

approximately 15 kb deletion which encodes an additional 19 or

22 open ORFs, referred to as the UL/b’ region [6,7,8].

Approximately 20 ORFs of HCMV have been shown to exhibit

nucleotide variability when sequenced from infected hosts

[9,10,11,12,13,14,15,16,17,18,19]. These studies have often fo-

cused on the variability of ORFs encoding envelope glycoproteins

or ORFs of UL/b’, which are thought to be important for

pathogenesis. As examples, UL55 and UL73, encoding the gB and

gN glycoproteins, respectively, commonly exist as one of 4

genotypes, with less common genotypes also identified [19,20].

In the UL/b’ region, UL144, encoding a TNF-a receptor [21],

and UL146 and UL147, encoding a-chemokines [22], also show

significant variability among hosts [9,14,23,24,25].

Although it is known that HCMV is polymorphic among hosts,

the source of the variability remains unresolved. There are at least

two possibilities to explain the observation. The first is that de novo

mutations arise upon introduction into a new host, resulting in a

unique strain for each individual. The second possibility is that

multiple HCMV genotypes exist within each host, and infection

into a new host represents a selection event whereby a new

dominant genotype is selected for and detected in subsequent

assays. In support of this model, others have found evidence of

mixed genotype populations at the few loci examined. Mixed

populations have been observed when measuring gB genotypes
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[26,27,28,29,30], though the phenomenon has also been shown

for other ORFs, such as gN, gO, gH, gL, UL139, and UL146

[31,32,33,34,35,36,37]. Furthermore, mixed populations have

been shown in a range of patient populations, including

immunocompetent, asymptomatic adults [31] and have been

shown at multiple loci simultaneously [33]. While definitive

relationships between genotypes and diseases are lacking, there is

mounting evidence that mixed genotype infections serve as

markers of severe or prolonged complications from HCMV

infections [26,27,29,30,34,36]. A shortcoming of the mixed

genotype studies has been limited coverage of the HCMV

genome. To our knowledge, less than 5% of the HCMV genome

has been sequenced from clinical specimens in these types of

studies (Figure S1). Thus, a remaining question is whether HCMV

diversity is limited to a subset of ORFs or is found throughout the

genome.

From earlier studies, it appears that HCMV may exist as a

mixture of genotypes. Due to limitations of previous technology, it

was unrealistic to study mixed HCMV populations to great depth

or sequence the HCMV genome to high coverage. To address

these shortcomings, we have adapted high throughput sequencing

to sample many members of the HCMV genomic population,

rather than just a dominant member. With the improved output of

next generation sequencing, we were able to take a genome wide

approach and sequence thousands of HCMV genome equivalents

from each patient sample. Here we sampled the HCMV genomic

populations present in urine samples collected from three

congenitally infected newborns. These data reveal a high level of

intrahost variability and offer strong evidence that HCMV exists

as a complex mixture of variants. We also found evidence of

selection at both the intrahost and interhost levels, highlighting

evolutionary forces that shape the HCMV genome. These results

greatly improve our understanding of the structure of HCMV

populations in humans, and have important implications for the

study of DNA viruses.

Results

Development of sequence methodology and error
filtering protocol

In clinical samples, HCMV DNA represents a very low

proportion of the total DNA. Thus, direct sequencing would yield

a low depth of the HCMV population with human DNA being a

major source of contaminant. Because there is homology between

the human and HCMV genomes [38,39], this contaminant would

be problematic in downstream sequence analyses. We developed a

series of approximately 70 long range, overlapping PCR reactions

to selectively amplify the entire HCMV genome. However, PCR

amplification can introduce errors of its own, which could be

misinterpreted as polymorphisms. To assess the error associated

with sample processing, we resequenced BACs that contained the

genomes of the HCMV strains AD169 and Toledo. The BACs

have been shotgun sequenced to a 10X depth [40], producing

reliable reference sequences for these purposes.

The BAC DNA was amplified through a series of PCR reactions

and sequenced on the Illumina GA II paired end platform. The

sequence output was equivalent to ,220 genomes per strain

(Table 1). The sequence reads were aligned to the appropriate

reference sequence and the alignments were analyzed for errors.

We assumed that all mismatches between the sequencing reads

and the reference sequence were errors introduced by either PCR

or sequencing. This assumption is most likely conservative because

there is the possibility that variants were created by propagating

the BACs in E. coli or that errors could be present in the reference

sequences. The alignment data contained in the pileup file was

then processed with a variant filtering program. The variant

filtering program only outputs variants that are above threshold

values for basecall quality, mapping quality, depth at the position,

number of occurrences of the same variant and frequency of the

variant in the data. The thresholds used were: basecall quality

$30, mapping quality $89, depth $15, number of occurrences

$3, and frequency $.019. The basecall quality and mapping

quality values are used to filter nucleotides with low confidence

from sequencing or from reads that align with low confidence,

respectively. Depth, number of occurrences of variant and

frequency are used to remove likely errors because random errors

(from either sample amplification or sequencing) have the highest

likelihood of occurring as singletons and doubletons (1 or 2

occurrences). These threshold values were chosen by training the

filtering program with BAC resequencing data. The resequencing

data from AD169 and Toledo were mixed in various ratios to

model a mixed population. The filtering thresholds were selected

to increase specificity of detecting true variants; however, they

carry a penalty of reducing sensitivity and underestimating the

amount of variants in the sample (Table S1). The number of false

positives remains low at various depths and mixtures of the

sequences. We did not find evidence of amplification-induced

skewing of variant frequencies. Further discussion of analysis of

error can be found under Materials and Methods and Supple-

mental Information.

High throughput sequencing of clinical populations
We sampled HCMV genomic populations present in the urine

collected from 3 HCMV-positive neonates within 2 weeks of birth

(identified as U01, U04, and U33). The entire HCMV genome

was amplified as discussed above. The PCR reactions and amount

of template DNA were identical between the BAC resequencing

and the clinical sequencing. Therefore, the error filtering protocol

developed through BAC resequencing can be applied to the

clinical sequence data. From clinical sequencing, .300 megabases

of output per sample yielded an average depth of 1843 genome

equivalents and an average genome coverage of 97.8% for the 3

samples (Table 1 and Figure S3).

Initially, the sequence reads from the urine samples were

aligned to the sequence of the Merlin strain, which was used as the

HCMV reference genome (Ref Seq ID: NC_006273). From the

Author Summary

Human Cytomegalovirus (HCMV) is a dsDNA virus that is
the leading source of birth defects associated with an
infectious agent. There is currently no effective HCMV
vaccine and few treatment strategies for congenital
infections exist. Thus, a better understanding of HCMV
infections is warranted. Limited data has shown that HCMV
exists as a mixture of a few genotypes in human hosts.
Here, we describe our use of high throughput sequencing
to study the extent of genome wide variability within
HCMV infections sampled from congenital infections.
Surprisingly, we find that HCMV populations are as variable
as quasispecies RNA viruses; it is commonly believed that
DNA viruses are more genetically stable than RNA viruses,
and thus produce homogenous populations. Additionally,
we find evidence of evolutionary pressures acting on the
HCMV genome, both within and among populations.
These results provide the first evidence that diversity of
DNA virus populations can be comparable to that of RNA
virus populations.

Genome Wide Variability of HCMV
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alignment, .104 single nucleotide variants (range: 11289–15709)

were detected per viral population. Variants segregated into

clusters at frequencies #.1 or $.9 (Figure 1). Variants with

frequency #.1 represent on average 73% (Range 67%–78%) of

the total and variants with frequency $.9 represent 20% (Range:

16%–24%). From these data, we conclude that the high frequency

variants result from the major alleles found in the viral population

while the low frequency variants result from the minor alleles.

Generation of a sample specific genome type
To study HCMV intrahost variability, we defined the major

HCMV genome type of each sample and called intrahost variants

from this reference genome type (Figure S4). A genome type is the

genome wide analog of a genotype [41,42,43]. The major genome

type contains the major allele found at every position of the

genome. Thus, any variants from this genome type represent

minor alleles or minor variants. It should be noted that the

genome type may not represent any single DNA molecule in the

viral population. Rather, the major genome type is a computa-

tional tool that allows for the detection of minor variants in the

population, and every position of the genome in this analysis and

all later analyses are treated independently (i.e. unlinked).

To define the major genome type, output from an initial

alignment to Merlin was used to detect variants with frequencies

.0.5 (Figure S4). These variants were interpreted to represent the

major allele of the sample at each position. Variants were

incorporated into the reference sequence to create an initial

sample-specific genome type. Reads that did not initially align

were used as substrate for de novo contiguous sequence (contigs)

assembly. The contigs were aligned to the initial sample-specific

genome type and incorporated into the genome if sequence

identity was found. This modified genome type was used to serve

as the reference sequence for another round of alignment of the

sequencing reads and subsequent incorporation of high frequency

variants and assembly of contigs onto the sample specific genome

type. This process of constructing a sample-specific genome type

was repeated until no additional reads were aligned between

rounds of building the genome type (usually 4 rounds). At the end

of the process, a single sequence was produced that represents the

sample-specific genome type and contains the major nucleotide of

the sample at every position of the genome. Lastly, the sequence

reads were aligned to this genome type, and the alignment was

used to call intrahost variants and to quantify intrahost diversity.

Intrahost HCMV populations are diverse
Intrahost variants were classified by ORF to quantify both

intergenic and genome wide variability (Table 2, Table S3 and

Figure 2). There were .8,500 intrahost variants in each sampled

population. (Range: 8,562–13,335) (Table 2), and ,91% of the

variants were present at frequencies ,0.1. We compared the levels

of variants from clinical sequencing and BAC resequencing to

determine the level of false positives or errors within the clinical

data. The false positive rate was reduced to 6.7% with filtering

(Figure S2).

Our initial analysis of the intrahost variability focused on the

ORFs encoding the glycoproteins, gB (UL55) and gN (UL73).

These ORFs have well defined genotype classifications [19,20]

and previous studies have shown mixed genotype populations for

these ORFs [27,44]. Full genotypes cannot be determined using

short read sequencing because linkage information is lost between

regions larger than a sequence read (i.e. 72 nt in this work). We

analyzed the presence and frequency of amino acid variants that

are markers of gB or gN genotypes as a substitute for full-length

genotype data. For example, at position 181 of gB, a lysine is

unique to the gB2 genotype and an arginine is unique to gB3 [19].

K181 or R181 within gB serves as a marker of these two

genotypes. The frequency of these markers is the inferred

Table 1. Sequence output of high throughput sequencing experiments.

Source1 Type Reads % Aligned Reads Sequence Output (Mb) Depth2 Coverage3

AD169 BAC 774,803 94.9% 51.1 218 98.7%

Toledo BAC 720,120 96.0% 47.5 226 96.8%

U01 Urine 2,444,677 74.9% 337.4 1493 97.0%

U04 Urine 3,395,157 74.7% 468.5 1990 98.7%

U33 Urine 3,490,699 80.7% 481.7 2046 97.7%

1Source was BAC DNA encoding the AD169 or Toledo genome, or urine samples collected from neonates (,2 weeks from birth) with congenital HCMV infections.
2Depth is the average number of reads that cover each position of the genome.
3Coverage is expressed as percentage of the genome for which sequence data was generated. For AD169 and Toledo resequencing, the published sequence was used
to calculate coverage. For clinical material sequencing, the coverage is estimated by using the Merlin strain reference genome.

doi:10.1371/journal.ppat.1001344.t001

Figure 1. Single nucleotide variant frequencies of HCMV
populations segregate into low and high frequency classes.
Histogram of binned variant frequencies within three HCMV popula-
tions sampled from urine samples. The graphs are labeled according to
patient sample (U01, U04, and U33). The variants have been filtered to
reduce errors, thereby eliminating variants of frequency ,1.9%. See
Figure S2 for analysis of the effectiveness of the error filtering algorithm.
doi:10.1371/journal.ppat.1001344.g001

Genome Wide Variability of HCMV
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frequency of the full-length genotype. We determined that mixed

genotype populations existed for the gB (UL55) and gN (UL73) loci

in congenitally infected infants in agreement with previous studies

[27,44] (Table 3). However, these data represent ,0.5% of the

HCMV genome, and led us to determine whether evidence of

mixed populations exists throughout the genome.

To further define the intrahost diversity of HCMV populations,

we first analyzed the genome wide data at the nucleotide level. We

used the measures of nucleotide diversity (p) [45] and mean

diversity [46], which were calculated as averages for all ORFs of

the HCMV genome (Tables 2 and S3 and Figure 2). p is the

average pairwise distance of sequences in the population, and

mean diversity is the percentage of variant sequence within the

population. The genome wide average for p for the 3 samples was

0.22% (Range: 0.18%–0.25%). As a point of comparison, this

value is similar to the genome wide p for HIV [47] and the single

ORF intrahost p of other RNA viruses, such as hepatitis C,

dengue, and West Nile [48,49,50,51] (Figure 3 and Table S4).

Single ORF intrahost p was as high as 0.64% for HCMV. The

HCMV genome wide mean diversity was 0.20% (Range: 0.17%–

0.22) and is similar to that of HIV-1 and dengue virus [46,50].

Figure 2 also reveals that intrahost diversity was not limited to a

few loci but was found within most ORFs. The ORFs encoding gB

(UL55) and gN (UL73) were in the 32nd and 20th percentile for

ORF intrahost diversity, respectively, (Table S3) and do not reflect

the genome wide diversity. Therefore, HCMV populations are

variable and using unbiased, genome wide data for studying that

diversity offers an advantage over previous techniques that have

focused on a limited set of loci.

We grouped ORFs by gene product function or expression

kinetics using the classification of Sylwester et al. [52] to further

investigate the patterns of intrahost diversity (Figures 4 and S6).

However, there was considerable variation of sequencing depth of

some ORFs (Table S3) raising the possibility that uneven

sequencing depths could influence this analysis of diversity.

Indeed, there was a correlation between nucleotide diversity of

an ORF and the extremes of sequencing depth (Figures S5A). To

reduce the influence of excessive depth on the analysis, we focused

on ORFs with sequencing depths between 15 and 1200 (n = 338)

(Figure S5B). In this range, the influence of depth on nucleotide

diversity will be ,.01%, which is approximately the level of noise

generated from errors in BAC resequencing. After selecting for

ORFs sequenced to depths within this range, we did not observe

significant difference nucleotide diversity across expression class.

However, we did find a statistically significant association between

ORF function and intrahost nucleotide diversity (p ,.0001)

(Figure 4 and S6). ORFs encoding glycoproteins showed a reduced

level of intrahost nucleotide diversity. This latter result was

Figure 2. Intrahost nucleotide diversity was detected in most
ORFs of the HCMV genome. Intrahost nucleotide diversity (p) was
plotted for each ORF of the HCMV genome based on high throughput
sequence data of clinical samples from three patients: U01, U04, and
U33. The ORFs are listed in layout of the standard HCMV genome from
59 to 39. See Table S3 for a tabular representation of these data. Due to
space constraints, not all ORFs are named on the plot. The major
divisions of the HCMV genome are shown below the graph.
doi:10.1371/journal.ppat.1001344.g002

Table 2. Intrahost diversity of hcmv populations in clinical samples: genome wide averages.

Sample Variants1 p2 (%) Mean Diversity (%) pAA
3 (%) pSYN

3 (%) Variable AA Sites4 (%)

U01 8,562 0.18 0.17 0.14 0.04 12.3

U04 13,335 0.25 0.22 0.15 0.05 13.8

U33 10,318 0.22 0.21 0.16 0.06 14.0

1Variants are the total intrahost single nucleotide variants.
2p is the nucleotide diversity as calculated using the formula of Nei and Li [45].
3pAA is the intrahost amino acid diversity and pSYN is the diversity of all synonymous mutations. Both were calculated in the same way as p but only using
nonsynonymous or synonymous mutations, respectively.

4Variable AA Sites are the percentage of amino acid positions in which nonsynonymous intrahost variants were detected.
doi:10.1371/journal.ppat.1001344.t002

Table 3. Frequency of gB and gN genotype markers in high
throughput sequence data.

U01 U04 U33

gB1 gB1 6.5% 2.9% 97.3%

gB2 91.1% 93.3% 2.7%

gB3 2.4% 3.8% -

gB4 - - -

gN1 gN1 9.8% - 3.7%

gN2 2.8% 100% 2.6%

gN3 5.8% - 4.3%

gN4a 78.8% - 89.4%

gN4b - - -

gN4c 2.8% - -

1gB genotyping is based on [19], and gN genotyping is based on [20]. Unique
amino acid variants for each gB or gN genotype were used as markers of the
respective genotype. The frequency values of the markers in the sequenced
populations are listed in the table.

doi:10.1371/journal.ppat.1001344.t003
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unexpected given that glycoproteins were the most frequently

analyzed in earlier studies of intrahost variability.

To confirm the results obtained via high throughput sequenc-

ing, we assayed for p and genotype distribution by clonal Sanger

sequencing of three highly variable ORFs in each patient sample.

We found that the major genotype detected in both methods is the

same (data not shown). Also, the values for p determined by both

high throughput and Sanger sequencing were generally similar for

each ORF (Table 4). Clonal Sanger sequencing of these ORFs

revealed a high density of unique genotypes in the clinical samples,

with as many as 13 unique genotypes from 20 clones. The Sanger

sequence data was also used to generate unrooted phylogenetic

trees (Figures 5 and S7). Within the trees, we have included major

genotype sequence data from the other patient samples in this

study to provide perspective on the diversity of the clones. In some

Sanger datasets, the diversity of clones could be explained by one

or two mutational steps from the major genotype (Figure 5A).

Other datasets revealed clones within a patient sample that were

more divergent than sequences among patient samples (Figure 5B).

This result could represent a highly mutagenic viral population, a

co-infection with two or more strains, mixtures of viral variants

from different compartments, or a combination of these

mechanisms. An interesting side note is that, in a single patient

sample, there is evidence for diversity from a few mutational

events (Figure 5C), and possible evidence of co-infections

(Figure 5D). Thus, the mechanism(s) that leads to the diversity

of HCMV populations may be complex.

Because the coding sequence of HCMV populations appeared

to be highly variable, we next investigated whether there were

differences in variability between coding and non-coding regions

of the genome. For this analysis, coding regions were defined as

protein coding sequences, and non-coding regions comprised the

remainder of the genome. Thus, the non-coding regions likely

contain functionally important sequences due to the inclusion of

regions such as the origin of replication, transcription factor

binding sites and miRNA sequences. Using these parameters, we

found that there was a statistically significant difference between

intrahost diversity of the coding and non-coding regions (Table 5).

The coding regions had higher nucleotide and mean diversity

values than the non-coding regions; however, the average

frequency of coding variants was significantly less than the average

frequency of non-coding variants. Although the differences in

values for these summary statistics are small, as seen in the U04

population, it should be noted that coding and non-coding variants

are interspersed across the genome. Thus, this proximity should

allow for statistical robustness and may reflect a fine-scale

mechanism regulating the amount and frequency of coding and

non-coding variants.

We next investigated the clinical HCMV populations at the

amino acid level. The average intrahost amino acid diversity (pAA)

was 0.18% (Table 2), which is comparable to RNA viruses such as

dengue and West Nile [48,50]. The diversity at nonsynonymous

sites (pAA) was ,3-fold higher than at synonymous sites (pSYN),

suggestive of a slight excess of nonsynonymous mutations within

the HCMV populations. The genome wide average for the

percentage of amino acid sites that exhibited intrahost variability

was 13.4% (Range: 12.3%–14.0%) (Table 2). This value reveals

the substantial variation in intrahost coding potential of HCMV

populations. Taken together, these data support a model of

HCMV existing as diverse populations at both the nucleotide and

amino acid levels. This result is novel for a large dsDNA virus,

which encodes a DNA polymerase with exonuclease activity [53].

Evidence of positive selection in HCMV intrahost
populations

Having found significant levels of intrahost variability, we felt it

was important to determine whether the patterns in variability

were the result of genetic drift (i.e. neutrality) or if selection could

explain the observed variant frequency patterns in the populations.

We applied the model of Nielsen et al [54] to detect selective

sweeps within the genome wide variant data. Selective sweeps are

caused by positive selection and result in reduced variability

around the region under selection [55,56]. Importantly, the test of

Nielsen et al is robust to demographic effects. This is a critical

function because the HCMV populations under study have most

likely undergone significant recent demographic changes, such as

population bottlenecks and expansions associated with primary

infection. The Nielsen approach is an outlier test that calculates

the likelihood of a selective sweep based on the distribution of

variant frequencies within a region as compared to the genome as

Figure 4. HCMV intrahost nucleotide diversity is significantly
correlated with ORF function. Intrahost nucleotide diversity was
calculated for each ORF of the HCMV genome. The ORFs were then
grouped by function and average nucleotide diversity was calculated
across all three patients. Error bars represent the 95% confidence
interval for the calculated mean. 1-factor ANOVA test for significance:
p ,0.0001.
doi:10.1371/journal.ppat.1001344.g004

Figure 3. HCMV intrahost diversity is similar to RNA viruses. A
logarithmic number line plotting nucleotide diversity for representative
RNA viruses is shown. West Nile virus (WNV), dengue virus (DENV) and
human immunodeficiency virus (HIV) were chosen because they exhibit
low, mid, and high levels of p, respectively, for RNA viruses. The HIV
values are from a whole genome sequencing study of 12 samples [47],
and the minimum (HIV Min) and maximum (HIV Max) values are shown.
HCMV Average is the genome wide average across patients for p and
HCMV Max is the maximum ORF value obtained from Illumina
sequencing. See Table S4 for a more thorough list of nucleotide
diversity values for RNA virus populations.
doi:10.1371/journal.ppat.1001344.g003

Genome Wide Variability of HCMV

PLoS Pathogens | www.plospathogens.org 5 May 2011 | Volume 7 | Issue 5 | e1001344



a whole. The composite likelihood ratio (CLR) of the region is a

measure of this comparison, with higher CLR values indicating

the region is a more extreme outlier and thus, more likely a target

of positive selection. Applying the model of Nielsen et al to the

HCMV genome wide data, we identified an average of 9 ORFs

per population (Range: 2–15) under statistically significant positive

selection (Figures 6 and S8 and Table S5), including UL83 (pp65)

and UL123 (IE1). While there was no overlap between the positive

selected ORFs in the three samples, there was evidence of overlap

in protein function. For example, UL102 in the U01 sample and

UL105 in the U04 sample were targets of selective sweeps, and

protein products of both ORFs are subunits of the helicase-

Figure 5. Unrooted phylogenetic trees of HCMV populations show varying levels of diversity. Highly variable ORFs in the high
throughput sequencing dataset of each patient sample were selected for clonal Sanger sequencing. Unrooted phylogenetic trees were generated
from the data, and major genotype sequence data from the other patient samples in this study were included to provide perspective (shown in red
text). The trees from some datasets showed clones that were unique but closely related (5A, 5C). The clones from others datasets were more
divergent, such that divergence within a patient sample was larger than divergence between patient samples (5B, 5D). Examples of both patterns
could be seen at different ORFs from the same patient sample (5C, 5D). Phylogentic trees generated from all Sanger datasets can be seen in Figure
S7. Units for scale bars are substitutions per site.
doi:10.1371/journal.ppat.1001344.g005

Table 4. Intrahost nucleotide diversity as measured by two sequencing methods.

Patient Sample ORF p (Illumina)1 p (Sanger)2 Clones Sequenced3 Unique Genotypes3

U01 UL2 0.59% 0.50% 20 10

UL4 0.53% 0.51% 19 7

UL51 0.40% 0.33% 20 9

U04 UL117 0.64% 0.40% 19 9

UL15a 0.64% 0.58% 19 8

UL26 0.62% 0.52% 20 9

U33 UL48a 0.62% 0.52% 19 9

UL136 0.61% 0.48% 18 9

UL15a 0.57% 0.57% 20 13

1p (Illumina) is the nucleotide diversity calculated from Illumina high throughput sequence data.
2p (Sanger) is the nucleotide diversity calculated from clonal Sanger sequencing.
3The number of clones sequenced and unique genotypes refers to the Sanger sequencing data.
doi:10.1371/journal.ppat.1001344.t004
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primase complex. Many of the ORFs highlighted in this analysis

have either poorly defined or no known function.

Interhost HCMV variability and selection
The generation of HCMV sequence data from urine specimens

allowed for genome wide analysis of interhost polymorphisms across

clinical samples, as opposed to those observed in laboratory

passaged strains. For this analysis, polymorphisms were defined as

variants from the HCMV reference sequence with frequencies

.0.5, and are the same class of variants previously incorporated

into a sample specific genome type. By resequencing HCMV BACs,

we determined that the error rate for calling polymorphisms is

0.028%., i.e., ,65 erroneous polymorphisms are called within a

236,000 bp genome type (Table S2). On average, there were

,2600 polymorphisms per genome type resulting in an interhost

variability of 1.1% at either the nucleotide or amino acid level

(Table 6). Only 7.9% (612 of 7,780) of the nucleotide polymor-

phisms and 1.2% (25 of 2,129) of the amino acid polymorphisms

were common among the 3 samples. This result shows that most of

the polymorphisms are not only different between clinical

populations and a laboratory passaged strain (Merlin), but they

appear to be uniquely associated with the specific environments of

the viral populations. Thus, these findings are consistent with

previous work showing diversity of the HCMV species [5].

Next, we wanted to determine whether there is evidence of

selection within the interhost sequence data. Previously, single

Table 5. Distribution of intrahost variants in coding and non-coding regions of the HCMV genome.

U01 Non-coding Variant Sites Variants Length (bp) p
Mean
Diversity

Average Variant
Frequency

p value (Mean
Diversity)1

p value
(Frequency)2

1222 69544 48552 0.14% 0.12% 6.44%

Coding Variant Sites Variants Length (bp) p Mean
Diversity

Average Variant
Frequency

,.0001 ,.0001

7462 498257 187075 0.18% 0.19% 5.02%

U04 Non-coding Variant Sites Variants Length (bp) p Mean
Diversity

Average Variant
Frequency

p value (Mean
Diversity)1

p value
(Frequency)2

2430 115228 48521 0.24% 0.25% 5.44%

Coding Variant Sites Variants Length (bp) p Mean
Diversity

Average Variant
Frequency

,.0001 ,.0001

11152 797847 187117 0.25% 0.26% 4.50%

U33 Non-coding Variant Sites Variants Length (bp) p Mean
Diversity

Average Variant
Frequency

p value (Mean
Diversity)1

p value
(Frequency)2

1474 51079 48451 0.17% 0.13% 7.07%

Coding Variant Sites Variants Length (bp) p Mean
Diversity

Average Variant
Frequency

,.0001 ,.0001

9043 904298 186841 0.22% 0.27% 5.23%

1p value for a Z-test of proportions of the mean diversity of the non-coding and coding variants.
2p value for a two-tailed Mann-Whitney test for the distribution of variant frequencies of the
doi:10.1371/journal.ppat.1001344.t005

Figure 6. Selective Sweeps were detected within HCMV
intrahost populations. Intrahost variant data was processed with
the model of Nielsen et al and composite likelihood ratios (CLRs) were
calculated for 235 bp windows across the HCMV genome. CLRs are
measures of the probability of a selective sweep within a genomic
region. Simulations were run to determine the threshold values for
significance and these values are depicted as red, dashed lines across
the graphs (see Figure S8 for a presentation of the simulation data).
Each CLR above the threshold is considered significant and is indicative
of a selective sweep occurring within the window. See Table S5 for a
tabular presentation of ORFs located in statistically significant regions
and the corresponding CLR and p values.
doi:10.1371/journal.ppat.1001344.g006

Table 6. Interhost variability of hcmv populations in clinical
samples: genome wide averages.

Patient Polymorphisms p1 dN/dS2 pAA
3

U01 2,909 1.20% 0.10 1.05%

U04 2,347 0.97% 0.14 1.09%

U33 2,524 1.01% 0.14 1.23%

1p is the nucleotide diversity between the consensus sequence from each
clinical HCMV population and the HCMV reference sequence (Merlin) as
calculated using the formula of Nei and Li [45].

2dN/dS was calculated using the formula of Nei and Gojobori [73].
3pAA is the interhost amino acid diversity between clinical major genome type
and the HCMV reference sequence (Merlin). It is calculated with the same
formula as p but only nonsynonymous mutations are included.

doi:10.1371/journal.ppat.1001344.t006
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ORFs of the HCMV genome have exhibited dN/dS ratios of less

than 1 [57,58], suggestive of negative selection. Using the genomic

data, we calculated dN/dS values for all ORFs of the HCMV

genome and also calculated a genome wide average. In agreement

with previous studies [57,58], the genome wide average dN/dS

values were significantly below 1 (p ,0.0001, G-test) (Table 6,

Table S6 and Figure 7). Approximately 5% of ORFs exhibited

dN/dS values greater than 1, which is suggestive of positive

selection. To find patterns in the genome wide dN/dS values,

ORFs were classified according to protein product function and

expression kinetics (Figures 8 and S9). No significant association

was seen between dN/dS and expression kinetics, but a highly

significant association was observed between protein product

function and dN/dS (p = 0.0002). Envelope proteins exhibited

elevated dN/dS values and DNA replication proteins showed low

dN/dS values (Figure 8).

We next used the McDonald-Kreitman (MK) test on the clinical

sequence data to further analyze selective pressures. The input

data for the MK test are the divergent (i.e. interspecies) nonsynon-

ymous (DN) and synonymous (DS) mutations and the polymorphic

(i.e. intraspecies) nonsynonymous (PN) and synonymous (PS)

mutations [59]. Due to the inclusion of both polymorphic and

divergent mutations, the MK test is a more sensitive test for

selection than the dN/dS statistic. A 2x2 contingency table of the

values is used to calculate significance of the mutational pattern

and the respective ratios provide information regarding the

direction of the test rejection. For example, positive selection is

generally regarded to result in a (DN/DS)/(PN/PS) ratio .1, while

negative selection results in a ratio ,1.

A genome wide MK test was performed using sequences of all

orthologous ORFs (n = 160) from Merlin and the three clinical

samples with the inclusion of chimpanzee cytomegalovirus

(CCMV) as the outgroup. Approximately 65% (n = 104) of ORFs

were scored as neutral in this test. ORFs yielding (DN/DS)/(PN/

PS) ratios significantly .1 were ,4-fold more frequent than ORFs

producing ratios significantly ,1 (n = 45 and n = 11, respectively)

(Table S7). This pattern could result from positive selection.

However, considering the statistically robust, non-neutral dN/dS

values, there is also widespread evidence of pervasive negative

selection. Taken together, the results suggest that positive selection

has driven the fixation of HCMV-specific mutations, and

contributed to the divergence of the HCMV and CCMV species.

However, demographic effects could also contribute to the

observed mutational patterns and cannot be completely ruled

out from these analyses, though considering inter-digitated

synonymous and nonsynonymous sites ought to allow for a robust

statistic.

Discussion

High throughput sequencing has dramatically increased the

number of genomes sequenced and is a useful tool for analyzing

populations present within various environments. Our work

represents the first use of high throughput sequencing technology

to study the intrahost genomic populations of a large DNA virus in

clinical samples. We observed substantial intrahost variability that

was found throughout the HCMV genome and found evidence of

selection both at the intrahost and interhost levels.

An unexpected finding of this study was that almost every ORF

of the HCMV genome showed some level of intrahost diversity in

the three populations that were sampled. Thus, these results are an

important extension of previous work that has revealed intrahost

diversity within a small number of ORFs, including gB and gN

[27,44]. However, the present data suggest that genotyping may

not be a reliable surrogate for measures of HCMV diversity in

clinical specimens. For example, the gB and gN genotype data in

Table 3 suggest that sample U01 is genetically the most diverse

and U04 is the least diverse. However, Table 2 shows the opposite

to be true. U01 is the least diverse and U04 is the most diverse for

HCMV on genome wide scales.

By quantitating variability using the measure of nucleotide

diversity, it can be seen how the intrahost diversity of HCMV is

comparable to those of RNA viruses, including HIV. The

similarity in values is striking considering the common assumption

Figure 7. A majority of ORFs appeared to be under negative
selection based on interhost dN/dS values. Interhost dN/dS were
plotted for each ORF of the HCMV genome based on high throughput
sequence data of clinical samples from three patients: U01, U04, and
U33. The ORFs are listed in layout of the standard HCMV genome from
left to right. See Table S6 for a tabular representation of these data. Due
to space constraints, not all ORFs are named on the plot. The major
divisions of the HCMV genome are shown below the graph.
doi:10.1371/journal.ppat.1001344.g007

Figure 8. HCMV interhost dN/dS is significantly correlated with
ORF function. Interhost dN/dS values were calculated for each ORF of
the HCMV genome. The ORFs were then grouped by function and
average interhost dN/dS was calculated across all three patients. Error
bars represent the 95% confidence interval for the calculated mean. 1-
factor ANOVA test for significance: p = 0.0002.
doi:10.1371/journal.ppat.1001344.g008
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that RNA viruses exist in more highly diverse populations than

DNA viruses due to the lower replication fidelity of RNA genomes.

Thus, this work leads to a questioning of the source of the diversity

observed in HCMV populations. One possibility is the prevalence

of high mutation rates during replication of viral DNA genomes,

similar to RNA viruses. This possibility does not seem likely

considering that HCMV encodes a DNA polymerase with

proofreading activity [53]. A second possibility is low mutation

rates but high levels of replication, leading to an accumulation of

mutations. In support of this model, it is suspected that only a

single or very few virions cross the placenta to initiate a congenital

infection. At the time of collection (,2 weeks postnatally), the

samples contained ,107 HCMV genome copies per mL of urine

(data not shown). Thus, there had been many rounds of recent

replication within the new host before the populations were

sampled, which could lead to the accumulation of many variants

even with a low mutation rate. Alternatively, the diversity could

result from re-infection or co-infection. The phylogenetic trees of

select ORFs (Figure 5 and S7) suggest that some ORFs are highly

divergent from a central population of genotypes, which suggests

re/co-infection events. However, phylogenetic trees for other

ORFs reveal highly similar clones. More experiments are needed

to sort out these possibilities.

Although the source of diversity is currently unclear, the

existence of high intrahost diversity does lead to models of HCMV

evolution. Creation of de novo mutations is stochastic and most

likely occurs rarely, as suggested by the proofreading DNA

polymerase encoded by HCMV. A high level of standing or pre-

existing variation means that a pool of variants exists prior to the

introduction of a new selective pressure. A low frequency variant(s)

could quickly rise to high frequency because the selection

coefficient of this allele could be increased under the new

environmental conditions. Thus, diversity should offer a rapid

mechanism of evolution for the virus in an environment of

changing selective pressures. Alternatively, the low frequency

variants could simply represent non-functional genomes or be

reduced in frequency by negative selection. Data showing that the

frequency of variants in coding regions is significantly lower than

the frequency of variants in non-coding regions of the viral

genome (Table 5) are consistent with this explanation. Again, it is

possible that changing selective pressures could reverse this effect

and cause a change in frequency of these variants. Future

experiments should test the effect of changing selective pressures

on the frequency of pre-existing variants in the population.

Analysis of the sequence data revealed evidence of selection

within the viral populations. The results of the selective sweep

analysis (Figure 6 and Table S5) are intriguing in the context of host-

pathogen dynamics. Both UL123, encoding IE1, and UL83,

encoding pp65, were found to be within regions of selective sweeps

in one patient sample (U04). These proteins are demonstrated

targets of CD8+ T cells in neonates with congenital infection [60]

and suggest an immune-mediated mechanism of selection. This is

the first evidence that known HCMV immune targets are also

targets of positive selection. The selective sweep analysis also

detected many ORFs with no known function. Whether these ORFs

are under immune selection or are targets of positive selection for

other reasons, such as tropism or viral replication, is still unknown.

We found evidence of both positive and negative selection within

the genome when comparing interhost variation. The results suggest

a model in which positive selection contributed to the divergence

across the HCMV species, but genetic stability of the viral species is

maintained with negative selection. Contrasting these long term

selective forces to the observed high level of standing variation of the

intrahost populations may lead to a clearer interpretation of the

results. As mentioned above, the standing variation potentially

reduces the time of adaptation to a novel environment or pressure.

However, the negative selection acting on the variants may balance

this phenomenon and prevent deleterious mutations from reducing

the fitness of the overall HCMV species.

Two groups have recently reported using high throughput

sequencing to study HCMV from clinical material. In the report

by Cunningham et al [61], a major genome type sequence was

generated from clinical material. In contrast, Gorzer et al [44].

studied genetic populations at three loci. These approaches are

complementary to that presented here in which we sequenced

HCMV populations on genome wide scales. As compared to the

work of Cunningham et al, our study requires PCR amplification

to select for HCMV DNA, which produces more HCMV-specific

sequence data on a single sequencing run and greater depth of the

viral population. This increased sequencing depth allows for a

more accurate detection of minor variants within the population

(Table S1). However, the approach by Cunningham et al differs

from ours in that it allows for a more rapid sequencing of the

major genome type, thereby producing greater sequence infor-

mation about the HCMV species. In contrast, Gorzer et al

sequenced three loci of the HCMV genome to a greater depth

than our study, leading to higher levels of confidence in detecting

minor and rare variants. However, our use of a genome-wide

approach allows for unbiased detection of variability. As proof of

the power of this approach, a commonly studied variable ORF,

such as UL73 (gN), is in the lowest quintile for intrahost diversity,

while many of the ORFs with the highest intrahost diversity have

not been studied for variability. Therefore, a genome-wide study

can highlight loci for future studies using ultra-deep sequencing.

The results presented here suggest that diversity of DNA virus

populations should be studied more thoroughly to determine the

universality of the high level of variability. For example, in this

study we sampled HCMV populations from urine of congenitally

infected children. It is unknown if the genomic populations

sampled from urine are representative of the populations in other

compartments of the host. Also, the levels of replication during

congenital infections are very high, such that the diversity

observed in asymptomatic, adult hosts may be much lower due

to lower levels of replication and, therefore, fewer opportunities for

mutagenesis. Alternatively, the chance of co- or re-infection in

adults is much higher, possibly leading to more diverse

populations. Others have shown that Marek’s disease, another

herpesvirus, virus exists as a collection of mixed genotypes in

culture [62]. Thus, there is evidence of a similar phenomenon.

Whether high diversity, mixed genotype populations exist for other

herpesviruses or other dsDNA viruses outside of this family

remains to be seen.

Materials and Methods

Ethics statement
Clinical specimens were obtained from neonates with congenital

HCMV infection and de-identified prior to receipt by the

investigators. Specimens were gathered as part of a standard

clinical procedure. None of the investigators were involved in

specimen collection. The use of these specimens for research was

approved by the University of Massachusetts Medical School

Institutional Review Board (IRB Docket # 10778).

Patient population, collection of samples and cloned viral
DNA

Neonates within two weeks of age were diagnosed with

congenital HCMV infection at the request of their respective
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care providers. The University of Massachusetts Memorial Health

Center clinical virology laboratory performed diagnostic virus

isolation. De-identified urine samples were then used for this study.

No clinical information about the infants was available. Samples

were stored at 280uC until DNA purification. DNA was purified

using a Qiagen Blood and Tissue Kit using the standard protocol.

HCMV BAC DNA has been described previously [40] and was

kindly provided by Tom Shenk (Princeton University). Isolation of

BAC DNA from E. coli strains was performed as described [63].

Amplification of HCMV DNA
We constructed a set of primer pairs spanning the entire

HCMV genome. Primers were designed to anneal to conserved

sites of the HCMV genomes, based on publicly available HCMV

sequences. These databases included the sequence of an HCMV

genome type (Strain 3157) that was produced directly from clinical

material without amplification [61]. Primer homology with this

strain supports the assertion that the chosen sites are found in wild

type strains, and will reduce primer mismatch bias. Amplicons

overlapped by ,100–500 bp such that sequence was generated at

primer binding sites from the adjoining amplicon. Using this

overlap data, primers were reevaluated and redesigned primers as

necessary, given that these new data potentially represent

thousands of unique HCMV genomes per experiment. Lastly,

primers were designed to have no or low homology to both human

sequence and any other possible contaminating DNA sources,

such as other herpesviruses or common human parasites and

commensal bacteria.

Most amplicons were ,6 kilobases (kb). Some were reduced to

3 kb if the original longer amplicon either gave no/weak

amplification or non-specific products as determined by Sanger

sequencing. Primer sequences used in this study are listed in Table

S8. For BAC and clinical sample PCR amplification, initial PCR

reactions were carried out using serially diluted templates to

determine the lowest quantity necessary for efficient amplification.

Quantitative PCR was performed using primers and probes

described previously [64] and it was determined that each reaction

contained ,1300 HCMV genomes. The conditions for PCR were

as follows: 1X PfuUltra II PCR buffer, 0.25 mM each dNTP

(NEB), .25 uM each primer (IDT DNA), 0.5 uL PfuUltra II

Polymerase (Agilent) and 1 M betaine. A touchdown PCR was run

on an Eppendorf Mastercycler ep gradient S with the following

program for all reactions: 98uC for 2 min, 5 cycles of 98uC for

30 s, 63uC (decreasing by 1u/cycle) for 30 s, 72uC for 2 min,

followed by 25 cycles of 98uC for 30 s, 58uC for 30 s and 72uC for

2 min, with a 10 min final extension at 72uC. All amplified

products were size-selected on agarose gels and gel purified.

Because insertions or deletions could produce amplicons of visibly

different sizes than expected, we used direct Sanger sequencing of

questionable amplicons to test for presence of the expected

HCMV sequence. After amplification of the HCMV genome, all

amplicons were quantified on a Nanodrop 1000, pooled in

equimolar proportions and used as substrate in Illumina

sequencing.

Illumina sequencing
The DNA in pooled amplicons was sheared by sonication on a

Sonic Dismembrator 550 (Fisher) until the median size was

,350 bp. The DNA library was prepared as stated previously

[65]. Briefly, DNA was end-repaired using the End-Repair

Enzyme Mix (NEB), and A-tailed using the ATP and Klenow

(exo-) (NEB). Adapters with appropriate barcodes were ligated

onto the modified DNA ends. The library was then size selected on

a 2% agarose gel, to produce a library with a median size of

350 bp+/250 bp. The library was amplified with Illumina

primers (P/N 1003454) (www.illumina.com). Once prepared, the

libraries were combined in appropriate ratios and submitted for

paired-end sequencing on the Illumina GAII. A Toledo strain

amplicon set was included as an internal control for measuring

error rates.

BAC resequencing and development of methodology
HCMV BAC DNAs of the AD169 and Toledo strains were

PCR amplified and processed for sequencing as described above.

The barcoded DNAs were then sequenced on a single lane of the

Illumina GAII. Output sequences from the Illumina GAII were

first converted from Illumina FASTQ format to Sanger standard

FASTQ and were then separated based on barcode sequences,

which were subsequently trimmed before subsequent processing.

The sequences were then aligned to either the AD169 BAC

(GenBank # AC146999) or Toledo BAC (GenBank # AC146905)

using Novoalign (Novocraft). The alignment data were then

ported to MAQ through the Novo2MAQ utility (Novocraft) and

downstream analyses were performed with the MAQ software

suite [66]. The pileup output from the alignment was then

analyzed to call any mismatches between the sequence reads and

the reference genome. All mismatches from this output have an

associated basecall quality, mapping quality, local depth, number

of mismatch occurrences and mismatch frequency. The basecall

quality and mapping quality are calculated by the sequencing and

alignment software, respectively.

Development of variant filtering algorithm
We used HCMV-BACs as templates for PCR amplification and

paired-end sequencing on the Illumina GAII to develop an

algorithm that would reduce error. The output was 108 megabases

of HCMV sequence or the equivalent of approximately 466

HCMV genomes (Table 1). The data were aligned to the

appropriate reference genome using Novoalign and MAQ. Using

these data, we developed a variant filtering algorithm. This

algorithm has been designed to filter the mismatch output from the

alignment stage and aid in sorting ‘‘true’’ variants in the viral

population from those mismatches created by PCR or sequencing

errors. We produced in silico models of mixed viral populations in

which the AD169:Toledo ratio was 1:1, 1:10, 1:100, 1:200, and

1:1000. Thresholds for minimum basecall quality ($30), mapping

quality ($89), depth ($15), mismatch count ($3) and mismtach

frequency ($0.019) were found to minimize false positives. With

these conservative thresholds, we had a detection rate of up to

75%, suggesting that the variants detected in clinical samples will

under-represent the true level of variation in the populations.

However, the number of false positives was very low in these in

silico experiments even when the input minor genome was 1% of

the population (Table S1). Modeling of two genotype mixed

populations, like those represented in Table S1, illustrates a worst

case scenario for a false positive rate. In Table S1, there are two

types of variants: ‘‘true’’ variants, sourced from the minor genome

type, and errors resulting from PCR or sequencing. The absolute

level of true variants will be dependent on the number of minor

genome types; as the number of minor genome types increases, the

number of true variants also increases. The number of errors,

though, is a function of PCR and sequencing and should be

independent of the number of minor genome types. Thus, the

ratio of errors to true variants (the false positive rate) will decrease

as the number of minor genome types increases. In this modeling

experiment, there is only one minor genome type and thus, we are

recording the upper limit of false positive rates of a mixed genome

type population. From the Sanger dataset (Table 4), it was shown
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that the populations studied are comprised of many genotypes (e.g.

13 unique genotypes from 20 clones), not just one minor genotype.

Thus, this modeling experiment overestimates the actual false

positive rate of the clinical data.

It was possible that the relatively high G:C content of the

HCMV genome could alter error rates across the genome, and

should be addressed by the error filtering protocol. However, we

did not detect a relationship between error rates and G:C content

from the BAC resequencing data (data not shown). We did observe

an association between G:C content and depth, with reduced

depth at very low (20%) or very high (.80%) G:C content (data

not shown). This characteristic of the Illumina platform has been

documented previously [67]. We corrected for differences in depth

when analyzing the intrahost populations (Figure S5) so that

changes in depth associated with G:C content should not alter our

analyses.

Performance of quantitative high throughput
sequencing

To determine the quantitative capabilities of our methodology,

we combined Toledo and AD169 BAC DNA in ratios of 1:10 and

1:100 as templates for PCR amplification (with Toledo present as

the major genome) and then amplified two regions of the genome

using our PCR amplification technique. These two regions

represent ,6 kb of the HCMV genome and have a GC content

of 58%, approximately equal to the genome wide average of 57%.

In these regions, there are 118 sites of mismatch between the

Toledo and AD169 genomes. The amplification products were

processed and sequenced using the Illumina GAII platform and

the output was aligned to the Toledo genome. We ran the data

through our variant filtering algorithm to detect the minor variants

in the sequence population (i.e. AD169-derived sequence). Our

data revealed a 48% detection rate when the minor genome is

present as 10% of the PCR template and a 38% detection rate

when present as 1% (Table S9). The relatively low detection rate is

a consequence of the stringency of the filtering algorithm we

developed. The frequency of the minor variants detected in the

output sequence was approximately equal to their frequency in the

input DNA. These data show that this methodology is suitable for

detection and quantitative description of variants in populations.

Calling sample specific genome type of clinical samples
A schematic for calling genome types is shown in Figure S4.

The high throughput sequencing reads were initially aligned to

Merlin (Ref Seq ID: NC_006273). Output from this initial

alignment was used to call variants with frequency .0.5 at every

position of the genome because these variants were interpreted to

best represent the major allele of the sample. Sites that did not

have an allele with a frequency .0.5 were left as uncalled bases

(N), and were excluded from intrahost diversity measurements

since they represent tri- or quad-allelic sites. The high frequency

variants were incorporated into a sample specific genome type.

Reads that did not initially align were used as substrate for de novo

contiguous sequence (contigs) assembly using SHARCGS [68].

These contigs were then aligned to the sample specific genome

type using Geneious [69] and incorporated into the genome if

sequence identity was found. Using this strategy, we were able to

remove up to ,1 kb of uncalled bases from the genome type. The

sample specific genome type was used in another round of

alignment of the sample’s sequencing reads. With this strategy, we

observed a 1–6% increase in the number of aligned reads after this

round as compared to the initial alignment to Merlin. Because

more reads aligned, additional high frequency variants were

called. The high frequency variants were incorporated into the

sample specific genome type and again contigs were aligned to the

genome type. This process was repeated until no additional reads

aligned between rounds of building the sequence (usually 4 rounds

were required). At the end of the process, a single specific genome

type was created for each sample, which incorporates all high

frequency variants found within. It is unknown if the sample

specific genome type represents any single genome within the

sample because linkage information is lost from short read

sequencing. The sample specific genome type is a computational

tool that aids in the alignment of short reads, particularly when a

pre-existing reference sequence is unavailable or is divergent from

the sample.

Analysis of false positive rate of clinical samples
Variants were called from the clinical sequencing data or BAC

resequencing data through filtering with the variant caller

algorithm. All alignments used to generate the data were

normalized to an average depth of 200 genome equivalents. A

depth of 200 was chosen because the lowest depth of an included

dataset was ,200 (i.e., AD169 BAC resequencing), so the ceiling

was set to normalize across datasets. Mismatches from BAC

resequencing were assumed to be errors and mismatches from

clinical sequencing were assumed to be either errors or true

variants. Without filtering, BAC resequencing generated, on

average, 106,485 called mismatches and clinical sequencing

generated 116,594 mismatches (Figures S2A, S2C). Therefore,

we estimate a false positive rate in the unfiltered clinical data of

91.3% (106,485 of 116,594). However, filtering with the variant

caller reduced estimated false positives to 6.7% of the clinical

variants within populations (Figures S2B, S2D).

To determine the error rates of calling interhost polymorphisms

(frequency .0.5), a similar analysis of the BAC resequencing data

was undertaken. We determined that the error rate for calling

polymorphisms is 0.028%, or ,65 erroneous polymorphisms per

genome (Table S2). On average, interhost HCMV sequence data

contained .2300 polymorphisms per genome.

It should be noted that the error rate for calling interhost

polymorphisms is significantly lower than the error rate for calling

intrahost variants (0.028% vs. 6.7%). Intrahost variants must occur

at least 3 times as part of the filtering strategy. However, interhost

polymorphisms, because they are present at frequency .0.5 and

the minimum depth is 15, must occur more than 8 times to be

called. Because random errors generated by PCR or sequencing

will most likely be rare, the possibility of random errors occurring

$8 times and occurring in .50% of reads is low. Thus, a lower

percentage of errors are included in the interhost polymorphism

data then the intrahost variant data.

Measurement of positive selection in intrahost
populations

The genome wide intrahost variant data was analyzed using the

program SweepFinder (http://people.binf.ku.dk/rasmus/webpage/

sf.html), which implements the methods of Nielsen et al. [54] and

outputs the position, selection coefficient and composite likelihood

ratios (CLRs) of genomic regions. CLRs are measures of the

probability of a selective sweep within a genomic region. To

determine the significance of the data, 1000 simulations were

performed under a standard neutral model using the ms program

[70]. A set of simulations was run for each clinical sample

population, in which the number of segregating sites and value of

h (Watterson estimator) of the simulation equaled the corresponding

values calculated from the clinical samples. The simulation was then

processed with SweepFinder, and output from this analysis (Figure

Genome Wide Variability of HCMV
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S8) was used to determine p values by comparing the clinical value to

the simulated outputs.

Clonal Sanger sequencing
ORFs were chosen for clonal Sanger sequence by selecting

candidate ORFs from each patient sample that displayed high

intrahost variability. All clonally sequenced regions were between

500–700 bp, such that variability data could be generated in a

single Sanger sequencing reaction. The regions were amplified

with the appropriate primers using the PCR protocol described

above, A-tailed with Kleno exo- and dATP (NEB), and cloned into

the Strataclone cloning vector (Stratagene). For each ORF, 20

clones were selected at random and sequenced. As a control, a

500 bp region of Toledo-BAC was amplified and clonally

sequenced in the same manner. These data were then analyzed

in DnaSP [71] to determine nucleotide diversity (p) and genotype

distribution.

Statistical analyses
For analysis of the association of ORF function or kinetics with

intrahost nucleotide diversity or interhost dN/dS, a 1-factor

ANOVA analysis was performed. A Bonferroni correction for

multiple testing was carried out, where a significant p-value was

considered ,.05/K where K is the number of tests run per

dataset. A G-test was performed on the interhost dN/dS values

with the null hypothesis set as dN/dS = 1. The McDonald-

Kreitman test was done using the web portal as described in [72],

which performs the analysis using a Jukes-Cantor correction for

divergence and the statistical analysis based on a 262 contingency

table. A neutral model was rejected if p,0.05. A Z-test was used to

determine the significance of the proportions of the mean diversity

of non-coding and coding variants. The distribution of variant

frequencies was analyzed by a two-tailed Mann-Whitney test.

Availability of data
Raw sequencing reads from Illumina sequencing are deposited

in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/

Traces/sra/sra.cgi). Major genome types generated from this

study are deposited in Genbank (http://www.ncbi.nlm.nih.gov/

genbank/index.html).

Supporting Information

Figure S1 Coverage of HCMV genome in previous sequencing

studies. The HCMV genome is depicted as a grey bar, with the

subdivisions of the genome shown above as black bars. The

coverage of the genome from previous sequencing studies is

depicted with blue bars, with each blue bar representing a

sequence study and the width of the bar being proportional to the

length of the sequenced region. Although some regions have been

sequenced in multiple studies (for example, UL55 (gB)), for the

purposes of this figure, we show the data from the study that

sequenced the largest region. The data used to construct this figure

are from [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], which are listed

in Text S1.

Found at: doi:10.1371/journal.ppat.1001344.s001 (0.04 MB TIF)

Figure S2 Single nucleotide variant counts and frequencies as a

result of filtering. Variants were called from BAC resequencing or

clinical sequencing alignments normalized to an average depth of

250. A. Variants of all frequencies called from the two datasets

without filtering. B. Variants of all frequencies called from the two

datasets after filtering with the variant caller algorithm. C. Same as

A except that only variant frequencies from 0–0.2 are displayed.

D. Same as B except that only variant frequencies from 0–0.2 are

displayed.

Found at: doi:10.1371/journal.ppat.1001344.s002 (0.69 MB TIF)

Figure S3 Coverage map of HCMV genomes sequenced

directly from urine samples. HCMV was sequenced from urine

samples U01, U04 and U33 and the predicted coverage of the

genomes was calculated. The black bars show a one dimensional

representation of the genome, while the blue curve above is

indicative of both the coverage and quality of sequence data across

the genome. The presence of a blue curve indicates coverage of a

base and the height of the blue curve is proportional to the quality.

The major divisions of the HCMV genome are shown below the

graph.

Found at: doi:10.1371/journal.ppat.1001344.s003 (0.15 MB

TIF)

Figure S4 Flowchart of genome type calling and detection of

intrahost variants. Alignment of the high throughput sequence

data begins by using the HCMV reference sequence (Merlin, Ref

Seq ID: NC_006273). Mismatches between the reference

sequence and high throughput sequence reads are identified from

the alignment and data about all mismatches (depicted as C or T

in the figure) are outputted into a pileup file. The pileup files is

processed with a variant filter protocol that uses threshold values

for basecall quality, mapping quality, depth, mismatch frequency,

and the number of mismatch occurrences. Mismatches with

characteristics above these threshold values are outputted by the

variant filter. Mismatches from this filtering are either high

frequency (frequency .0.5, Red C) or low frequency (frequency

,0.5, Black T). The high frequency mismatches are interpreted to

be sample specific polymorphisms, and are incorporated into the

sample specific genome type. Additionally, unaligned reads are

used to build contiguous sequences (contigs) and are incorporated

into the sample specific genome type if showing homology to the

sample specific genome type. The sample specific genome type is

then used as the reference sequence for additional rounds of

alignment of the sequence reads. Again, high frequency polymor-

phisms are incorporated into the genome type, and contigs are

built and assembled onto the genome type. This process is

repeated until no additional high throughput sequence reads align

to the genome type. The genome type is exported to create the

final sample specific genome type (Blue line with incorporated C

polymorphism). Lastly, the high throughput sequence reads are

aligned to final genome type and variants are called to define the

intrahost variants of the viral population. For example, the black T

would be identified as an intrahost variant.

Found at: doi:10.1371/journal.ppat.1001344.s004 (1.16 MB TIF)

Figure S5 Scatter plot of ORF depth vs measured nucleotide

diversity. For all ORFs, the depth from high throughput sequence

data is compared to the calculated nucleotide diversity. The red

line represents the linear regression through the data. Equation for

linear regression: y = (1.15361025)x+0.1872. A. The plot is shown

for all depth values on a logarithmic scale B. Same plot as in A but

only showing depth values between 15–1200, which are the values

selected for downstream analysis because the effect of depth on

calculated nucleotide diversity is ,.01%.

Found at: doi:10.1371/journal.ppat.1001344.s005 (0.45 MB TIF)

Figure S6 HCMV intrahost nucleotide diversity by ORF

expression kinetics. Intrahost nucleotide diversity was calculated

for each ORF of the HCMV genome. The ORFs were then

grouped by expression kinetics and average nucleotide diversity

was calculated across all three patients. Error bars represent the

95% confidence interval for the calculated mean. 1-factor
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ANOVA test for significance: p = 0.0105 (not significant after

Bonferroni correction).

Found at: doi:10.1371/journal.ppat.1001344.s006 (2.34 MB TIF)

Figure S7 Unrooted phylogenetic trees of clonal Sanger

sequencing of HCMV populations. 3 ORFs per patient sample

were selected for clonal Sanger sequencing. The Sanger dataset

was then used to generate unrooted phylogenetic trees, using a

Jukes-Cantor model of substitution and a neighbor joining

method. Scale bars represent substitutions per site. Branch tips

are unlabeled except for those representing sequences from the

other patient samples, which are highlighted with red text.

Found at: doi:10.1371/journal.ppat.1001344.s007 (0.35 MB TIF)

Figure S8 Neutral simulations of HCMV populations. 1000

simulations of 3 populations using a standard neutral model were

generated via the ms program [24]. Theta and the number of

segregating sites in each simulation were matched to the

corresponding values from the clinical samples U01, U04 and

U33. The simulations were then analyzed using the Sweepfinder

program [25] and Composite Likelihood Ratios (CLRs) were

generated. The CLRs from the simulations were used to calculate

significance thresholds. The 5% significance thresholds for each

simulation set are shown as red, dotted lines.

Found at: doi:10.1371/journal.ppat.1001344.s008 (0.19 MB TIF)

Figure S9 HCMV interhost dN/dS by ORF expression kinetics.

Interhost dN/dS values were calculated for each ORF of the

HCMV genome. The ORFs were then grouped by expression

kinetics and average nucleotide diversity was calculated across all

three patients. Error bars represent the 95% confidence interval

for the calculated mean. 1-factor ANOVA test for significance:

p = 0.1108.

Found at: doi:10.1371/journal.ppat.1001344.s009 (2.23 MB TIF)

Table S1 Mixed Population Modeling

Found at: doi:10.1371/journal.ppat.1001344.s010 (0.04 MB

DOC)

Table S2 Polymorphism Error Rate for BAC resequencing

Found at: doi:10.1371/journal.ppat.1001344.s011 (0.04 MB

DOC)

Table S3 Whole genome intrahost diversity data from clinical

samples

Found at: doi:10.1371/journal.ppat.1001344.s012 (0.44 MB PDF)

Table S4 Intrahost Nucleotide Diversity Select RNA Viruses

Found at: doi:10.1371/journal.ppat.1001344.s013 (0.08 MB

DOC)

Table S5 ORFs that overlap selective sweeps in the HCMV

genome

Found at: doi:10.1371/journal.ppat.1001344.s014 (0.06 MB PDF)

Table S6 Whole genome interhost polymorphism data from

patient samples

Found at: doi:10.1371/journal.ppat.1001344.s015 (0.27 MB PDF)

Table S7 Genome Wide McDonald-Kreitman Test

Found at: doi:10.1371/journal.ppat.1001344.s016 (0.19 MB

DOC)

Table S8 Primers used in this study to amplify HCMV Genome

Found at: doi:10.1371/journal.ppat.1001344.s017 (0.15 MB

DOC)

Table S9 Assay for Quantitative Capabilities of High Through-

put Sequencing Methodology

Found at: doi:10.1371/journal.ppat.1001344.s018 (0.05 MB

DOC)

Text S1 Supporting Figure Legends and References

Found at: doi:10.1371/journal.ppat.1001344.s019 (0.16 MB

DOC)
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