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Abstract

Estimating the age and strength of beneficial alleles is central to understanding how

adaptation proceeds in response to changing environmental conditions. Several haplo-

type-based estimators exist for inferring the age of segregating beneficial mutations.

Here, we develop an approximate Bayesian-based approach that rather estimates these

parameters for fixed beneficial mutations in single populations. We integrate a range

of existing diversity, site frequency spectrum, haplotype- and linkage disequilibrium-

based summary statistics. We show that for strong selective sweeps on de novo muta-

tions the method can estimate allele age and selection strength even in nonequilibrium

demographic scenarios. We extend our approach to models of selection on standing

variation, and co-infer the frequency at which selection began to act upon the muta-

tion. Finally, we apply our method to estimate the age and selection strength of a pre-

viously identified mutation underpinning cryptic colour adaptation in a wild deer

mouse population, and compare our findings with previously published estimates as

well as with geological data pertaining to the presumed shift in selective pressure.

Keywords: adaptation, ecological genetics, population genetics – empirical, population genetics

– theoretical

Received 8 May 2015; revision received 14 October 2015; accepted 9 November 2015

Introduction

Selective sweeps are believed to have played a role in

shaping genomic patterns of variation across a wide

range of species. Estimating the parameters underlying

this process, including the beneficial allele age and asso-

ciated selection strength, can provide deeper insights

into the mode and tempo of adaptation. With regard to

allele age in particular, one question that has remained

of particular focus is whether specifically identified ben-

eficial mutations correspond with the timing of an envi-

ronmental change experienced by the population in

question – be it the colonization of a novel habitat or a

sudden geological event. This question is often posed in

the context of whether adaptive events more commonly

draw on new or standing genetic variation – and

indeed, significant debate remains around this topic

(Jensen 2014). Adaptation from new mutations may be

said to be ‘mutation limited’, in that the appropriate

mutation would need to occur after the shift in selective

pressure. Thus, the ability to accurately infer the age

and the starting frequency at the onset of selection of

identified beneficial mutations relative to known envi-

ronmental shifts will be key for advancing this debate.

Many tests have been designed to identify the action

of selection in the genome from patterns of polymor-

phism (see review of Thornton et al. (2007); Bank et al.

(2014)). These rely on frequency changes in linked neu-

tral sites induced by a selective sweep, a process known

as ‘genetic hitchhiking’ (Kaplan et al. 1989). Polymor-

phism-based signals are relatively fleeting and are typi-

cally visible only on a timescale of 0.1 Ne generations or

less, for an effective population size Ne (Przeworski

2003). Yet the majority of approaches are intended to

only identify beneficial fixations, and comparatively few

approaches exist for inferring the age of these variants.

Over the last few years, method development has lar-

gely focused on time-sampled data sets, and much pro-

gress has been made in this area (e.g. McVean 2002;
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Malaspinas et al. 2012; Mathieson & McVean 2013; Foll

et al. 2014; Steinr€ucken et al. 2014). However, apart from

experimentally evolved or clinical populations, or the

handful of ancient genomes, the great majority of avail-

able data is collected at a single time point (i.e. present),

and there is thus a compelling incentive to improve

single time point methods.

Despite the fast transit time characterizing beneficial

fixations, the majority of single time point methods to

date have aimed to estimate these parameters for segre-

gating, rather than fixed, beneficial mutations using

haplotype structure (e.g. Slatkin 2008; Peter et al. 2012;

Chen & Slatkin 2013; Chen et al. 2015). Most recently,

Chen et al. (2015) used a hidden Markov model to

explore haplotype structure and developed a likelihood

estimation approach assuming strong selection (and

thus a deterministic allele trajectory) for currently segre-

gating beneficial mutations. For fixed mutations, the

state-of-the-art approach was proposed by Przeworski

(2003) to estimate the age of a fixed beneficial mutation

in an approximate Bayesian (ABC) framework based on

a combination of diversity, site frequency spectrum

(SFS) and haplotype statistics. We continue this focus to

develop an improved estimator for the age of fixed ben-

eficial mutations using the past decade of statistical

method development, and utilize the Przeworski (2003)

estimator as a performance benchmark.

Most notably, the characteristic pattern of linkage dis-

equilibrium (LD) generated by a complete selective

sweep suggests the opportunity to utilize this in an

ABC framework. Simulation and theoretical studies

(e.g. Stephan et al. 2006; Jensen et al. 2007; McVean

2007; Pavlidis et al. 2010) have described strong LD at

linked sites on either side of the beneficial fixation, but

not spanning the selected site. In addition, there is a

reduction in LD across the target of selection. Kim &

Nielsen (2004) designed a statistic xmax that captures

this complex pattern, with Jensen et al. (2007) subse-

quently demonstrating that xmax exhibits different den-

sity distributions under selective sweep models in both

equilibrium and nonequilibrium populations.

Here, we explore the combination of frequency spec-

trum- and linkage disequilibrium-based expectations as

an approach to improve our ability to estimate the age

of a fixed beneficial mutation based on observed pat-

terns of polymorphism. We develop an ABC-based

method that is demonstrated to outperform existing

approaches. This approach is not intended to identify

loci under selection from genomewide scans: rather, it is

applicable to previously identified loci. We extend this

approach to co-estimate allele age and selection strength

assuming that selection acts on a de novo mutation.

Next, we relax the assumption of selection on a de novo

mutation to co-estimate the starting frequency of the

segregating allele with allele age and selection strength.

Finally, we apply these developed methodologies to

explore the selective history of cryptic coloration in a

wild deer mouse population, and compare our newly

developed estimates with previous published inference.

Methods

We present three sets of methods. First, we infer allele

age T (the time since the allele fixed) alone assuming

that the selection coefficient s is known and that a

model of selection on de novo mutations applies. Sec-

ondly, s and T are co-estimated while continuing to

assume a model of selection from de novo mutation.

Thirdly, we co-infer the starting frequency f at which

the previously neutral allele was segregating in the

population at the onset of selection s and the age at

which selection begins Ts. Although the underlying

assumption is that a test of selection has been applied

using other tools, we demonstrate that this approach

has power to correctly infer neutrality as well.

Approximate Bayesian Computation (ABC)

A standard ABC approach was applied following

Tavar�e et al. (1997) and Beaumont et al. (2002). We used

the R package abc (Csillery et al. 2012) and implemented

the method in the following series of steps:

Simulations. For each scenario considered, 5 9 105 sim-

ulations were generated using the program MSMS (Ewing

& Hermisson 2010). Briefly, neutral genealogies are

traced backwards in time for a random sample of alle-

les using standard coalescent theory, incorporating

recombination and demographic changes where appli-

cable. Selection is modelled at a single predetermined

locus by applying forward simulations. In this study,

selection is assumed to be additive such that genotypes

that are homozygous and heterozygous for the selected

derived allele have fitness 1 + s and 1 + s/2 respec-

tively, whereas genotypes that are homozygous for the

ancestral allele have fitness 1. For a sample of n chro-

mosomes of length L, and assuming an effective diploid

population size N = 10 000, a coalescent history was

constructed assuming a population-scaled mutation rate

h = 4NeLl with mutation rate l = 10�7 per base pair

per generation, and a population-scaled recombination

rate q = 4NeLr with recombination rate r = 10�7 per

base pair per generation. Unless a model of selection

from standing variation is stipulated, simulations are

designed to model selective sweeps from de novo

mutations arising on a single chromosome in the popu-

lation, which have ultimately fixed. The strength of

selective sweeps is determined using the population-
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scaled parameter a = 2Nes. Unless specified otherwise,

simulations were run using L = 20 kb for the inference

of T alone and using L = 10 kb for the co-estimation of

s and T, and the selected mutation is positioned in the

centre of the region. These lengths were chosen to cap-

ture the full signature of the selective sweep for the

parameters used, based on theoretical results demon-

strating an effect over L = 0.01 9 s/r = 10 kb for a selec-

tive sweep of coefficient s = 0.1 and recombination rate

r = 10�7 crossovers per base pair per generation

(Kaplan et al. 1989).

Equilibrium populations are modelled as panmictic

diploid populations of constant size Ne = 10 000. Allele

age T is taken to be the time since the allele fixed, using

the –SF option in MSMS simulations. For equilibrium

demographic scenarios, the prior distributions for s and

T were log10(s) ~ U(�4, �0.5) and log10(T) ~ U(�4,

�0.5) where U is a uniform distribution. T is reported

in units of 4Ne generations in keeping with standard

coalescent theory. These distributions were chosen in

order to span different orders of magnitude from neu-

trality (where Nes ≤ 1) to strong selection (s = 0.3), and

from very recent to distant ages of the selected allele.

Przeworski (2002) have shown that T = 0.1 9 4Ne is

approximately the upper limit for detecting selective

sweeps, after which the signature in polymorphism

data becomes rapidly obscured by subsequent mutation,

recombination, and genetic drift.

Choice of summary statistics. We used the program

MSSTATS (Thornton 2003) to calculate a panel of 21 fre-

quently used summary statistics (see Table S1, Support-

ing information for details of statistics) from the

standard MSMS single nucleotide polymorphism (SNP)

output simulated in step 1 above. Figure S1 (Supporting

information) shows the correlation of a range of infor-

mative diversity, SFS- and LD-based statistics with s for

recent sweeps (T = 0.01 9 4Ne generations). For older

sweeps (T = 0.1 9 4Ne generations), we find that the

signature of selection becomes rapidly obscured (data

not shown). Following Wegmann et al. (2009), we

employ a partial least squares method (PLS) to incorpo-

rate the most informative statistics into our method.

PLS is similar to principal component analysis, but

determines orthogonal components from a high dimen-

sional set of statistics by maximizing the covariance

between the statistics and the variables. Applying PLS

has been shown to improve the performance of ABC

methods, partly by reducing the dimensionality of the

set of summary statistics and partly by removing noise

from uninformative statistics (Joyce & Marjoram 2008).

Wegmann et al. (2009) have shown that incorporating a

large number of noninformative summary statistics

may bias the resulting posteriors. The pls package in R

(Bjorn-Helge & Wehrens 2007) was used to calculate

PLS components based on a subset of size 104 out of

the total 5 9 105 simulations. Prior to implementing

PLS, we apply a Box–Cox transformation (Box & Cox

1964) to normalize the statistics. We adapted a script

available through ABC TOOLBOX for this purpose (Weg-

mann et al. 2010). Incorporating PLS into our ABC

method was shown to reduce relative bias and root

mean square error (RMSE), and was therefore used in

all ABC calculations.

ABC inference of s and T. To evaluate the performance of

our ABC method, we selected values of T only, or of s

and T over different orders of magnitude, and ran 100

simulations for each selected pair of values that we con-

sidered as pseudo-observables. Summary statistics were

calculated from the SNP output using msstats and trans-

formed into PLS components using the same loadings

as in step 2 above.

Posterior distributions for the parameters were gener-

ated using an ABC rejection algorithm and a tolerance

level of 0.005, which was found to be optimal. A total

of 2500 simulations were therefore retained out of the

total number of simulations of 5 9 105. Using local lin-

ear or ridge regression ABC methods did not signifi-

cantly improve results (data not shown).

Point estimates for s and T were calculated from the

mode of the joint density posterior distribution using

the two-dimensional kernel density function in the

MASS package in R (Venables & Ripley 2002). For esti-

mating allele age alone, the mode of the posterior distri-

bution for T was calculated to give a point estimate.

Relative bias and RMSEs were calculated between

these predicted values and the true pseudo-observable

values for s and T (Tables S2 and S3, Supporting infor-

mation). Relative bias is defined as the mean difference

between the predicted value y and the true pseudo-

observable yt divided by the value of the true pseudo-

observable yt. RMSE is defined as the square root of the

squared difference between the predicted value y and

the true pseudo-observable yt divided by the number of

observations n:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1ðy� ytÞ2
n

s
:

Nonequilibrium demographic scenarios

For nonequilibrium populations, allele age is taken to be

the time since the onset of selection (Ts) by applying the

–SI option in MSMS. It is not possible in the current ver-

sion of MSMS (or in other simulation programs) to model

the time since the allele fixed T under changing demo-

graphic parameters, but only to model the time Ts since
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the onset of selection. To ensure that the selected allele

fixes in simulations, the –SFC option is used to prevent

loss owing to genetic drift, and the –oTrace switch is

applied to track the frequency of the selected allele in

the population through time using a python script. Only

simulations where the frequency of the selected muta-

tion is above 0.99 at the time of sampling are retained.

The demographic models are assumed to have been

inferred using other methods (e.g. dadi (Gutenkunst

et al. 2009), fastsimcoal (Excoffier et al. 2013)), and are

incorporated in the simulations in step 1 above to run

5 9 105 simulations. The selection coefficient s is drawn

from a log uniform prior as for equilibrium scenarios:

log10(s) ~ U(�4, �0.5), and the prior for allele age Ts is

adjusted to account for the allele’s sojourn time and to

ensure that the selected mutation has sufficient time to

fix. Based on the analytical derivation of the sojourn

time Tsoj provided by Stephan et al. (1992)

Tsoj ¼ 2 lnð2NeÞ
s

;

we adjust the prior for Ts to log10(T) ~ U(log10(Tsoj),

log10(0.3 + Tsoj)). Tsoj as calculated here represents the

expected sojourn time under equilibrium demography

and is therefore an approximation of the sojourn time

under nonequilibrium demography.

Two scenarios were chosen to model size-change

events. In both cases, bottlenecks are assumed to occur

relatively recently at 0.01 9 4Ne in the past. First, we

model a shallow and long bottleneck of length

0.02 9 4Ne with a 95% reduction in population size,

and second, we model a narrow and severe bottleneck

of length 0.002 9 4Ne with a 99.8% reduction in popula-

tion size. These parameters were chosen to be consistent

with other studies (Pavlidis et al. 2010). In addition, a

growth scenario was modelled assuming exponential

growth following a bottleneck at 0.01 9 4Ne pastward

which reduced the population size to 1% of its current

size, with a calculated a = 460.5. This last scenario was

chosen for its similarity to the demographic parameters

inferred for Peromyscus maniculatus deer mice in the

Nebraska Sand Hills for the data application presented

here (Linnen et al. 2013).

Co-estimating allele starting frequency f

The previous sections assume a model of selection acting

on a de novo mutation. In the third part of our method,

we relax this assumption and extend our approach to co-

infer the allele frequency f when selection begins, along

with Ts and s. The same steps as for the joint inference of

s and Ts in nonequilibrium scenarios described above

were applied, but with the additional specification of f.

The software msms allows for f to be input using the –SI

switch. In simulated samples, s is drawn from a log uni-

form prior log10(s) ~ U(�4, �0.5), and the prior for Ts is

adjusted to take account of sojourn time, to log10(Ts) ~ U

(log10(Tsoj), log10(0.3 + Tsoj)), to give the selected allele

sufficient time to fix in the population, as before. The

starting frequency f is drawn from a log uniform prior

log10(f) ~ U(�4, �0.5) spanning the case of selection on a

de novo mutation (with Ne = 104) to selection on a previ-

ously neutral segregating mutation with a frequency of

30%. Point estimates for s, Ts and f were calculated using

the three-dimensional kernel density estimate of the joint

posterior mode in the MISC3D package (Feng & Tierney

2015).

xmax-ABC methodology

In addition to the MSSTATS-based ABC methodology

described above, we also derived a methodology to

incorporate the statistic xmax. The same steps as for

MSSTATS-ABC were implemented with the adjustments

detailed in this section.

As described in the introduction, xmax was designed

by Kim & Nielsen (2004) to capture the specific LD pat-

tern associated with selective sweeps, and in particular,

the reduction in LD that occurs across the selected site

after a sweep. The statistic x is defined as

x ¼
l
2

� �
þ S� l

2

� �� ��1

ðPi;j�L r
2
ij þ

P
i;j�R r2ijÞ

ð1=lðS� lÞÞPi�L;j�R r2ij
:

At each site l of S polymorphic sites, the statistic

splits sites into two groups, from the first to the lth

polymorphic site to the left, and from (l + 1)th to S poly-

morphic sites to the right. Within each group, single-

tons are excluded and the correlation coefficient r2ij is

calculated between the ith and jth sites. The value of l

that maximizes x (xmax) can also be obtained.

Under equilibrium demography, and assuming

T = 0.01 9 4Ne, simulations for different selection coef-

ficients generate limited differences in distributions of

xmax overall, but do produce a skewed distribution for

the top 5% values in selection scenarios compared to

neutral simulations (Fig. S2, Supporting information).

This observation holds over different sequence lengths

(L = 104, 5 9 104 and 105 bps). This result is consistent

with the findings of Jensen et al. (2007), who demon-

strated via simulation that for large sample sizes

(n = 50, as in our simulation study) in equilibrium pop-

ulations, xmax distributions are characterized by a tail of

large values in selection scenarios, which increases with

the size of selection coefficients.

To incorporate xmax into an ABC framework, 100 sim-

ulations were generated in msms for each pair of values
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of s and T drawn from the priors, but only the top 5%

by value of xmax were retained; these were combined

with the MSSTATS statistics calculated for those simula-

tions. Taking the top 5% of simulations by value of xmax

for both the prior and for pseudo-observables replicates

the ascertainment process (i.e. significant P-values). Not

correcting for such ascertainment in multilocus genome

scans has been shown to generate a high rate of false

positives (Thornton & Jensen 2007). The approach of

retaining the top 5% simulations by value of xmax is

consistent with the idea of an outlier approach where

100 loci are scanned, as done here, and only extreme

values in the tails of distributions are retained as possi-

ble candidates for sites under selection.

Values of x and xmax for each simulation were calcu-

lated using OMEGAPLUS (Pavlidis et al. 2010).

Application to data on cryptic colour adaptation in
deer mice

Data on 91 Peromyscus maniculatus deer mice were

obtained from a previous study by Linnen et al. (2013).

Briefly, mutations associated with traits underpinning

cryptic colour adaptation to a light phenotype have

been identified in mice living in the Nebraska Sand

Hills. A serine deletion at position 128150 on exon 2 has

been shown to be associated with several potentially

adaptive traits, with a previously estimated selection

coefficient of 0.126. Enrichment, sequencing and geno-

typing are described in Linnen et al. (2013). The

sequence data were partitioned according to phenotype,

and alleles with the serine deletion were extracted from

the data set. The data were adjusted to cover a region

of 20 kb on either side of the deletion. Of the 100 alleles

with the serine deletion, 36 were discarded based on a

threshold of more than 15% unknown sites. Of the

remaining 64 alleles, all cases where the site was

unknown for at least one individual were removed. The

filtered data contained 418 segregating sites in the 40-kb

region surrounding the deletion. We explored the

impact of changing the filtering to 25% or 10% of indi-

viduals with more than 25% unknown sites, but this

did not markedly change the results. We applied the

ABC method described above for estimating s and T

conditioning on the number of segregating sites S as

well as h and q. PLS was used to generate components

to drive the inference procedure from the MSSTATS statis-

tics after excluding S and any invariant statistics. We

verified the accuracy of our ABC estimator using simu-

lations with the mouse parameters. Point estimates for

T and s were calculated from the mode of the joint

density posterior distribution as before. A point estimate

for T alone (assuming the previously published estimate

of s = 0.126) was also derived for comparison purposes.

We then explicitly incorporate into our simulations the

previously inferred demographic scenario – a bottleneck

2900 years ago that reduced the population to 0.004 of

its original size, followed by an exponential recovery to

65% of its original size (Linnen et al. 2013) and estimate

s and the time of the onset of selection Ts. Finally, we

co-estimate the starting frequency f of the serine deletion

with s and Ts. We analysed the data over one additional

length, 80 kb, with the selected mutation positioned

centrally. We obtained a slightly lower sample sizes

after applying the filtering process described above

of 48 alleles for the 80 kb region. Simulations for

the ABC calculation were run assuming Ne = 53 080, a

mutation rate l = 3.62 9 10�8 and a recombination rate

r = 0.62 9 10�8 per base pair per generation (all

assumptions are from Linnen et al. (2013).

Code for implementing the method is available

through http://jensenlab.epfl.ch/.

Results

Inference of allele age (T) alone

Initially, we fixed the selection coefficient s to be 0.1

(strong selection), 0.01 (moderately strong selection) or

0.001 (weak selection) and we replicated previous

results for the inference of allele age only using three

statistics (the number of segregating sites S, Tajima’s D

(Tajima 1989) and the number of haplotypes), following

Przeworski (2003). We sought to improve on these

using the statistics available through MSSTATS (MSSTATS-

ABC) and by incorporating the xmax statistic (xmax -

ABC). All ages T are in units of 4Ne generations. The

choice of whether xmax–ABC or MSSTATS-ABC is used

will depend on how the location of the mutation has

been established, and therefore whether a method that

corrects for ascertainment (xmax–ABC) or one that does

not correct for ascertainment (msstats-ABC) is appropri-

ate (see Discussion). Figure 1A shows the results of

inferring allele age T for 6 cases (T = 0.001, 0.01, 0.05,

0.1, 0.2 and 0.3) assuming strong selection (s = 0.1) and

a sequence of 20 kb. Boxplots represent the distribution

of point estimates, which are the modes of posterior

distributions. Both MSSTATS-ABC and xmax-ABC differen-

tiate age well for 3 orders of magnitude, for T = 0.001,

T = 0.01 and T = 0.1, and outperform the previously

implemented summary statistics in (Przeworski 2003).

Above T = 0.05, the age of sweeps is inferred with high

accuracy. Relative bias and RMSE estimates support

this conclusion (Table S2, Supporting information). The

age of very young sweeps (T = 0.001) is underesti-

mated, presumably because the signature of the selec-

tive sweeps is not yet apparent in all of the statistics

utilized.
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For moderate selection (s = 0.01), both msstats-ABC

and xmax-ABC differentiate T well between two orders

of magnitude rather than three, effectively separating

old sweeps (T ≥ 0.1) from young sweeps (T < 0.01)

(Fig. 1B). In this case, the estimators significantly

improve performance over the statistics employed by

Przeworski (2003). In contrast, for weak selection

(s = 0.001), we find that the estimators perform poorly

and identify all sweeps as very young (Fig. S3, Support-

ing information). Thus, the estimator for T alone works

well only for strong and moderately strong selection.

We additionally explored the impact of choosing dif-

ferent window sizes surrounding a selected mutation

(L = 20, 40 and 80 kb) (Fig. S4, Supporting information).

We find that window sizes of 10 kb or 20 kb provide

the best estimates for the parameter ranges investigated

here, and that larger window sizes slightly underesti-

mate allele age, due to a dilution of the statistics. This

result is in line with theoretical results estimating the

size of a swept region subject to a reduction of diversity

as L = 0.01 9 s/r (Kaplan et al. 1989).

Joint inference of s and T under equilibrium
demography

Here, we extended our approach to jointly infer s and T

for fixed mutations using a simple and computationally

efficient approach. Simulations demonstrate that for

young sweeps (T = 0.01) and old sweeps (T = 0.1), neu-

tral scenarios (where Nes ≤ 1, i.e. s = 0.0001 and s = 0)

can be readily differentiated from selection scenarios, for

both young and old sweeps, using either MSSTATS-ABC

(Figs 2C,D and S5, Supporting information) or xmax–
ABC (Figs S6 and S7, Supporting information). Addi-

tionally, we can infer strong and moderately strong

selection (s = 0.1 and s = 0.01) well (Figs 2A,B and S5–

S9, Supporting information) using either methodology.

One of the weaknesses of both methods is that weak

selection (s = 0.001), whether for old or young sweeps,

can be misinferred as stronger, older selection (s = 0.01

or s = 0.1) (Figs 2C and S5C, Supporting information).

This limitation owes to the fact that the patterns of poly-

morphism for weak sweeps resemble that of older,

stronger sweeps. We find that xmax–ABC is a more accu-

rate estimator of weak selection than msstats-ABC

(Table S3 and Fig. S9, Supporting information).

With regard to allele age, both methods are able to

differentiate old sweeps (T = 0.1) from young sweeps

(T = 0.01). We find that the methods do not have the

power to accurately infer the age of young sweeps but

only to establish whether sweeps are either T = 0.01 or

younger. Results of inference for very young sweeps

(T = 0.001) are similar to the results of inference for

moderately young sweeps (T = 0.01) (data not shown).

In contrast, for older sweeps, the additional time may

enable different statistics to be impacted at different

rates, and for a subset of these statistics to return

towards equilibrium. Simulation studies have shown

that statistics reliant on intermediate frequency alleles

such as Fay and Wu’s H (Fay & Wu 2000) decay rapidly

after a selective sweep and retain very little signal at

0.1 9 4Ne, whereas statistics reliant on singletons such

as Tajima’s D retain a signal longer (Przeworski 2002).

The decay of both of these types of statistics at different

rates most likely underpins the accuracy of both estima-

tors to infer T and s for sweeps of T = 0.1.

If a model of de novo mutation is assumed (f = 1/2Ne),

a pseudo-observable of selection from a rare mutation

(f ≤ 0.01) will have an inferred allele age as the time at

which selection starts to act on that mutation. In contrast,

inference from a pseudo-observable of selection from

high levels of standing variation (f > 0.01) will be erro-

(A) (B) Fig. 1 Inference of allele age T alone.

Boxplots compare results from msstats-

ABC (marked M) and xmax –ABC

(marked O) with the Przeworski 2003

ABC method (marked P). Boxplots repre-

sent the modes of posterior distributions

for inferring T alone for 100 pseudo-

observables. The value of s is assumed to

be known: (A) s = 0.1 (a = 2Nes = 2000)

and (B) s = 0.01 (a = 2Nes = 200). T is

drawn from a log uniform prior:

log10(T) ~ U(�4, �0.5). Other parameters

are as described in methods, with

L = 20 kb. Red diamonds indicate the

true values for each case (T = 0.001, 0.05,

0.01, 0.1, 0.2, 0.3).
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neous and usually indicate an older age (data not

shown).

Co-estimating allele starting frequency f under
equilibrium demography

In this section, we relax the assumption that selection

proceeds from de novo mutation, and allow the fre-

quency of the selected allele to be co-inferred along

with the time at which selection starts Ts (in contrast to

the previous section, in which the time T since fixation

is inferred), and the selection coefficient s. Analytical

derivations by Stephan et al. (1992) predict that if f < 1/

2Nes and selection is strong, the reduction in linked

neutral diversity associated with selection from rare

mutations should resemble that from selection on de

novo mutations. Subsequent analysis has shown that

selection from either a de novo mutation or from a rare

mutation results in a classical ‘hard sweep’ pattern

where a single copy of the mutation is swept to fixation

(Orr & Betancourt 2001; Hermisson & Pennings 2005).

In contrast, selection from high levels of standing varia-
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Fig. 2 Joint inference of s and T in equi-

librium populations for old sweeps

(T = 0.1) (MSSTATS-ABC). Figures show the

cumulative joint posterior density plots

for 100 pseudo-observable simulations

over different orders of magnitude of the

selection coefficient s, for old sweeps

(T = 0.1) and (A) s = 0.1 (a = Nes = 103);

(B) s = 0.01(a = Nes = 102); (C) s = 0.001

(a = Nes = 10). The bottom two panels

represent neutral scenarios with (D)

s = 0.0001 (a = Nes = 1); and (E) s = 0.

The white, yellow and red colours mark

areas of high, moderate and low joint

density respectively. Black crosses indi-

cate the true values of pseudo-observa-

bles. s and T are drawn from log

uniform priors: log10(s) ~ U(�4, �0.5)

and log10(T) ~ U(�4, �0.5). Other param-

eters are as described in Methods.
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tion (f � 1/2Nes) results in the fixation of multiple hap-

lotypes in a ‘soft sweep’ pattern (the other common def-

inition of a soft sweep, in which haplotype diversity is

the result of multiple beneficial, is not considered here).

In line with theoretical expectations, simulations by

Przeworski et al. (2005) showed similar patterns of

reduction in diversity for f = 1/2Ne, f = 0.001 and

f = 0.01 (where Ne = 104 and s = 0.05), but almost no

reduction in diversity for selection from high levels of

standing variation (f = 0.05 and f = 0.20). Here, we

show results that are consistent with these previous

findings. For strong and moderately strong selection

(s = 0.1 and s = 0.01) in equilibrium populations, we

find that the ABC estimator performs well for inferring

f, s and Ts as long as the pseudo-observable satisfies the

condition f < 1/2Nes, (i.e. the cases where f = 1/2Ne,

f = 0.001, f = 0.01) (Figs 3 and S10, Supporting informa-

tion). We find marginally better inference for s = 0.1

than for s = 0.01 right up to f = 0.01, which appears to

be the cut-off for accurate inference. For weak selection

(s = 0.001), Ts and s are well inferred but f is not

(Fig. S10D, Supporting information).

In contrast, when the pseudo-observable sweep is

characterized by f � 1/Nes, we generally identify that

f � 1/2Nes – but with the drawback that s and Ts are

poorly co-estimated. As levels of standing variation

increase, rising haplotype diversity means the method

infers older, weaker sweeps than are the case for the

pseudo-observables.

Robustness to nonequilibrium demography

Nonequilibrium demography can mimic signatures of

selection (e.g. Przeworski 2002; Jensen et al. 2005) and

compromise inference. However, an advantage of the

ABC approach is that demographic parameters can be

explicitly modelled in simulations, and therefore,

demography can be taken into account in the inference

method. We explored the robustness of the method for

inferring first, s and Ts, and second s, Ts and f under

three nonequilibrium scenarios where demographic

parameters are explicitly known and modelled: (i) a

shallow and long bottleneck of length 0.02 9 4Ne with a

95% reduction in population size, (ii) a narrow and sev-

ere bottleneck of length 0.002 with a 99.8% reduction in

population size, and (iii) an exponential growth scenario

following a sharp 99% reduction in population size with

a = 460.5. The bottlenecks are modelled to occur at

T = 0.01 9 4Ne. Our results are described for MSSTATS-

ABC, but similar results were obtained for xmax–ABC.

In the case of inferring s and Ts, Figs 4 and S13

(Supporting information) show the results for the third

scenario of a bottleneck followed by exponential

growth. We find that for old (Figs 4A and S11A, Sup-

porting information), young (Figs 4B and S11B, Sup-

porting information) and very young (Figs 4C and

S11C, Supporting information) sweeps, both Ts and s

are well inferred. We note that it is difficult to distin-

guish weak sweeps, where s = 0.001 (Fig. S11D,E, Sup-

porting information), from neutral scenarios (Figs 4D

Fig. 3 Joint inference of s, Ts and f in

equilibrium populations. Figures show

the predicted values for 100 pseudo-

observables for the example of s = 0.01,

Ts=0.060 and f = 0.0001, 0.001, 0.01, 0.05,

0.1. Estimates of s, Ts and f were obtained

from the mode of the joint posterior den-

sity. Red lines indicate the known values

of the pseudo-observables. Ts represents

the time since selection began acting on

the allele (calculated using Ts = time to

fixation (T = 0.01) + sojourn time Tsoj).

© 2015 John Wiley & Sons Ltd
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and S11F, Supporting information). Similar results

were obtained for the two bottlenecks scenarios (data

not shown). One of the reasons for the estimator’s

strong results in nonequilibrium populations – and

indeed its limitation – is that Ts rather than T is

inferred. In our methodology, the prior for Ts is set as

a function of s using an estimate of sojourn time Tsoj

in equilibrium populations. This analytical derivation

most likely overestimates Tsoj for alleles fixing in bot-

tlenecked populations, and therefore, the full potential

parameter space for Ts is not covered by our adjusted

prior. This shortcoming could be corrected using

another set of simulations, rather than the analytical

derivation of Stephan et al. 1992, to estimate the mini-

mum Tsoj under a specific demographic scenario for a

mutation of strength s. This would give a broader and

more accurate prior from which to draw Ts.

When co-inferring f with Ts and s, we find the perfor-

mance of the estimator deteriorates under nonequilib-

rium demography (Fig. S12, Supporting information).

For both young and old sweeps, inference is only reli-

able if the method correctly identifies a de novo or very

rare mutation (f ≤ 0.001). It is difficult to correctly infer

f and therefore to establish whether co-estimates of Ts

and s are robust. As for equilibrium populations, a high

level of standing variation is inferred as an older,

weaker sweep than is the case for the pseudo-observa-

ble, due to high levels of diversity.

Data application: mouse coat colour evolution

We applied our methods to a previously published

data set for 91 P. maniculatus deer mice living in the

recently formed Nebraska Sand Hills (estimated age
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Fig. 4 Joint inference of s and Ts in demographic model for a strong bottleneck followed by exponential growth (demographic model

3) using MSSTATS-ABC. Figures show the cumulative joint posterior density plots for 100 pseudo-observable simulations. s is drawn

from a log uniform prior: log10(s) ~ U(�4, �0.5) and Ts from an adjusted log uniform prior: log10(Ts) ~ U(log10(Tsoj), log10(0.3 + Tsoj)).

For the pseudo-observables, Ts is calculated from Ts = T + Tsoj where T is the time since fixation and the sojourn time Tsoj = (2ln

(2Ne)/s)/4Ne. The white, yellow and red colours mark areas of high, moderate and low joint density respectively. Black crosses indi-

cate the true values of pseudo-observables. (A) Inference for a moderately strong, old sweep with pseudo-observable values s = 0.01

and Ts=0.15 (calculated from Ts = T + Tsoj where T = 0.1). (B) Inference of a strong, very recent sweep with pseudo-observable values

s = 0.01, Ts = 0.006 (calculated from Ts = T + Tsoj where T = 0.001) (C) Inference of a strong, very recent sweep with pseudo-observa-

ble values s = 0.01, Ts = 0.006 (calculated from Ts = T + Tsoj where T = 0.001). (D) Results of inference where no selected mutation

was included in simulations.
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8000 years) (Linnen et al. 2013). The data set was

adjusted to cover SNPs over 20 kb on either side of a

serine deletion on exon 2 which has been implicated

in several traits associated with cryptic colour adapta-

tion to a light phenotype for predator avoidance. After

filtering for the serine deletion and genotyping quality,

we retain SNP data from 64 alleles for analysis, and

remove any further unknown sites. First, our aim was

to co-estimate s and T assuming an equilibrium popu-

lation of 53 080. Second, we estimate allele age T alone

assuming a previously published estimate of s = 0.126

(Linnen et al. 2013). Third, we explicitly model the

demographic scenario that had been previously

inferred in our simulations (of a bottleneck 2900 years

ago which reduced the population to 0.04% followed

by an exponential recovery to 0.65% of the original

population size). Lastly, we co-estimate f with s and

Ts. We used msstats-ABC as this is consistent with the

initial identification of the selected site described in

Linnen et al. (2013). We simulated pseudo-observables

with the specific mouse parameters to establish how

well our methods work before applying these to the

data set.

Assuming an equilibrium population, the joint inference

of s and T showed a young, moderately strong selective

sweep, with an inferred s of 8.7 9 10�3 (1.1 9 10�4 –
3.3 9 10�2) and T ≤ 0.01 (Fig. 5A), using a window size of

80 kb to ensure that diversity patterns are fully captured.

Applying a window of 40 kb reduced the signal of the

sweep (Fig. S13A, Supporting information). If s is assumed

to be 0.126, as estimated in Linnen et al. (2013), the infer-

ence of allele age alone gives the same result of a young or

very young sweep with T ≤ 0.01 (Fig. S14, Supporting

information).
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Fig. 5 Joint inference of allele age, selection coefficient and starting frequency for Peromyscus maniculatus. The joint density plots in A

and B represent the results of the joint inference for the serine deletion at position 128,150 on exon 2, in (A) for s and T assuming an

equilibrium population with Ne = 53,080 and in (B) for s and Ts with the demographic scenario inferred in (Linnen et al. 2013) explic-

itly included in simulations. In (C) f is co-inferred with Ts and s also assuming the demographic scenario inferred in (Linnen et al.

2013); histograms represent the posterior distributions from the ABC inference, with the red lines indicating the mode of the joint

posterior density for the three parameters. The density plots are shown for L = 80 kb, with the mutation positioned centrally

(x = 0.5). Other parameters for deer mice simulations are as described in methods. For (A), the mode of the joint density occurs at

s = 8.7 9 10�3(1.1 9 10�4 – 3.4 9 10�2) and T = 7.7 9 10�4 (1.2 9 10�4 – 1.0 9 10�1). For (B), the mode occurs at s = 1.7 9

10�1(1.5 9 10�4 – 3.0 9 10�1) and Ts = 1.1 9 10�3(5.8 9 10�4 – 8.8 9 10�1). For (C), the mode occurs at s = 8.6 9 10�2(1.5 9 10�4 –
2.9 9 10�1), Ts=2.1 9 10�3(7.5 9 10�4 – 9.0 9 10�1) and f = 2.6 9 10�5(1.1 9 10�5 – 1.9 9 10�1).
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If the demography inferred in Linnen et al. (2013) is

explicitly included in the simulations for the ABC calcu-

lation, simulations using pseudo-observables show that

signals from selective sweeps with Ts coincident with or

older than the bottleneck are usually quenched, leading

to the inference of neutral scenarios (data not shown).

In contrast, s and Ts for strong sweeps that are younger

than the bottleneck (of the order of Ts = 0.005) are accu-

rately inferred. This result illustrates the importance of

using simulations to establish the limits of inference for

specific scenarios. In applying our method to the mouse

data, we infer a strong, recent sweep, with

s = 1.7 9 10�1 (1.5 9 10�4 – 3.0 9 10�1) and Ts =
1.1 9 10�3 (5.8 9 10�4 – 8.8 9 10�1) (Fig. 5B). These

results are consistent with those obtained under equilib-

rium demography but with a stronger estimate of s.

Using a length of 40 kb, we find the qualitatively simi-

lar result of a strong recent sweep (Fig. S13B, Support-

ing information). We also find that simulated pseudo-

observable sweeps that are either coincident or older

than the mouse bottleneck are sometimes correctly

inferred over this length, which is an improvement over

the 80 kb length (data not shown), but are mostly

inferred as neutral.

Our method is subject to the limitation that an esti-

mate of sojourn time under equilibrium demography is

used to set the prior for Ts, under the assumption that

the mutation fixes. In our simulations, very recent val-

ues of Ts are therefore only associated with strong s.

Here, we have checked with simulations that sojourn

time is longer than under the equilibrium scenario, and

therefore that the prior for Ts is broader than required,

to reduce this source of error.

Co-inferring f, s and Ts jointly supports a recent,

strong sweep acting on a de novo or rare mutation

(s = 8.6 9 10�2(1.5 9 10�4 – 2.9 9 10�1), Ts = 2.1 9

10�3(7.5 9 10�4 – 9.0 9 10�1) and f = 2.6 9 10�5

(1.1 9 10�5 – 1.9 9 10�1)) (Fig. 5C). Simulations under-

pinning this estimate incorporate the demographic sce-

nario from Linnen et al. (2013). In comparison with the

age of the Sand Hills (i.e. 0.075 in units of 4Ne genera-

tions, assuming one generation every 6 months), these

results support previous claims of selection acting on a

young de novo mutation subsequent to the environ-

mental change.

Discussion

We present ABC methods that estimate allele age, selec-

tion strength and starting frequency for fixed mutations

using single population, single time point data sets. We

demonstrate that it is possible to distinguish between

different orders of magnitude of the selection coefficient

s, between old and young sweeps, and between de

novo/rare and common starting frequencies. There are

significant differences between the ABC method that

integrates xmax and the MSSTATS-ABC, which undermine

a direct comparison between the two methods. Namely,

one takes account of ascertainment bias while the other

does not. The xmax approach was designed to be consis-

tent with an approach for identifying sites under selec-

tion using the top xmax values. Our simulations show

that xmax marginally outperforms a simple MSSTATS-ABC

approach, particularly in estimating parameters for

weak sweeps, as it is able to leverage a statistic that

captures the specific LD pattern existing immediately

after a selective fixation, but this is conditional on it

being the appropriate method for the data analysed.

One of the major advantages of an ABC approach is

that demography can be explicitly accounted for in sim-

ulations, which removes a source of error in estimating

the strength of selective sweeps. Here, we illustrate this

by explicitly including the previously estimated demo-

graphic model for our ABC estimation of s and T in

deer mice. We find results that are consistent with those

obtained under the assumption of an equilibrium popu-

lation, but with slightly stronger estimates of selection.

We also find that we can distinguish cases of selection

on de novo and rare mutations from selection on com-

mon standing variation resulting in soft sweeps, and in

the first case, we are able to co-infer Ts and s to within

an order of magnitude, assuming equilibrium demogra-

phy. Here, we find the most likely model to be one of

selection on de novo or rare mutation. This is consistent

with our estimates of allele age and provides support

for the previously published notion of mutation-limited

adaptation underpinning cryptic coloration in deer mice

(Linnen et al. 2009, 2013; Poh et al. 2014).

Many haplotype methods such as iHS rely on a com-

parison between haplotype lengths for ancestral and

derived alleles, and therefore have power to detect

selected mutations at low or intermediate frequencies

(Voight et al. 2006). Beyond this frequency level, power

declines because these methods depend on a compar-

ison with alternative allele haplotype structure. For

example, the method published by Chen et al. (2015)

applies to alleles under strong selection that are not yet

fixed. Peter et al. (2012) use a range of haplotype- and

SFS-based statistics including EHH and iHS to estimate

allele age and selection coefficients for segregating

mutations in models of de novo mutation and standing

variation. The importance sampling method developed

by Slatkin (2008) is specifically designed to identify s

and T for low frequency alleles such as the A-allele of

G6PD in Africa. In contrast to these methods predicated

mainly on haplotype structure, our methods use SFS-

based statistics that are sensitive to different parts of

the SFS, as well as LD- and haplotype-based statistics

© 2015 John Wiley & Sons Ltd
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that recover to equilibrium at different rates. Our meth-

ods thus fit an important niche, and may be utilized to

infer the relative age, strength and frequency of fixed

beneficial mutations relative to the timing of environ-

mental shifts – in order to quantify, for example, the

age of variants conferring cryptic coloration following

the last ice age, as seen here in the mouse example and

in the Laurent, Pfeifer et al. example in lizard popula-

tions also appearing in this issue.
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