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Developing tools to accurately predict the clinical prevalence of drug-
resistant mutations is a key step toward generating more effective
therapeutics. Here we describe a high-throughput CRISPR-Cas9–based
saturated mutagenesis approach to generate comprehensive libraries
of point mutations at a defined genomic location and systematically
study their effect on cell growth. As proof of concept, wemutagenized
a selected region within the leukemic oncogene BCR-ABL1. Using bulk
competitions with a deep-sequencing readout, we analyzed hundreds
of mutations under multiple drug conditions and found that the ef-
fects of mutations on growth in the presence or absence of drug were
critical for predicting clinically relevant resistant mutations, many of
which were cancer adaptive in the absence of drug pressure. Using
this approach, we identified all clinically isolated BCR-ABL1 mutations
and achieved a prediction score that correlated highly with their clin-
ical prevalence. The strategy described here can be broadly applied to
a variety of oncogenes to predict patient mutations and evaluate re-
sistance susceptibility in the development of new therapeutics.

BCR-ABL | CRISPR-Cas9–based genome editing | drug resistance | saturated
mutagenesis | tyrosine kinase inhibitors

The development of drug resistance limits the effectiveness of
many therapeutic strategies and has a tremendous impact on

disease progression and outcomes in patients (1, 2). Drug re-
sistance has been challenging to address, in part because it is dif-
ficult to predict the mutations that will contribute to patient health.
Therefore, the development of tools and strategies to predict the
clinical prevalence of drug-resistant mutations in patients holds
great promise for improving our ability to generate effective
therapeutics with reduced susceptibility to resistance.
High-throughput random mutagenesis screens represent a

promising approach for identifying mutations that lead to drug
resistance. However, they have often identified many more re-
sistant mutations than are observed in patients (3, 4), raising the
question of the clinical significance of their findings. In addition,
substantial variation has been observed between independent
measurements in mutagenesis screens in mammalian cells, pre-
sumably due to gene expression variation caused by random viral
integration, thus requiring multiple independent measurements
to reliably distinguish signal from noise (5).
To improve the consistency and efficiency of in vitro mam-

malian screens, we revised our previously developed saturated
mutational scanning approach called exceedingly meticulous and
parallel investigation of randomized individual codons (EM-
PIRIC) (6, 7), a method that systematically generates and studies
the impact of individual amino acid changes, which are often
highly relevant to mammalian genetic disorders, including cancer.

We sought to improve EMPIRIC by: (i) reducing variation by
targeting mutations to a defined genomic location using
CRISPR-Cas9–based genome editing, and (ii) facilitating mul-
tiple independent measurements for each amino acid change by
utilizing a barcoding strategy; the use of multiple barcodes for
each amino acid variant provides internal independent mea-
surements within each experimental replicate. Here we de-
scribe this improved method, which we refer to as barcoded
introns in the genome (BIG) EMPIRIC, and validate its ap-
plication by mutagenizing a selected region within the leukemic
oncogene BCR-ABL1.

Significance

Many therapeutic strategies are hampered by the development of
drug resistance. High-throughput random mutagenesis screens
represent a promising approach for identifyingmutations that lead
to drug resistance, but have often identified more resistant mu-
tations than are observed in patients, raising questions of their
clinical significance. We developed an improved high-throughput
mutagenesis screening approach that uses CRISPR-Cas9–based ge-
nome editing to generate comprehensive libraries of point muta-
tions at a defined genomic location and systematically study their
effect on cell growth. As proof-of-concept, we show our approach
accurately predicts the clinical prevalence of drug-resistant muta-
tions in the oncogene BCR-ABL. Our approach can be broadly ap-
plied to a variety of oncogenes and represents a new strategy for
evaluating resistance susceptibility during drug development.

Author contributions: L.M., J.I.B., S.A.W., M.R.G., and D.N.B. designed research; L.M., J.I.B.,
J.P., C.A.S., and D.N.B. performed research; L.M., J.I.B., C.A.E., G.E., R.D.P., B.J.D., S.B., and
D.N.B. contributed new reagents/analytic tools; L.M., J.I.B., S.M., J.O., L.J.Z., J.D.J., M.R.G.,
and D.N.B. analyzed data; L.M., J.I.B., M.R.G., and D.N.B. wrote the paper; J.I.B. generated
the mutant library and performed deep-sequencing; J.P. performed structure simulation;
C.A.E. provided BCR-ABL mutation information in CML samples; G.E. provided BCR-ABL
mutation information in CML samples; R.D.P. provided BCR-ABL mutation information in
CML samples; B.J.D. provided BCR-ABL mutation information in CML samples; S.B.
provided BCR-ABL mutation information in CML samples; and C.A.S. performed
structure simulation.

Reviewers: Y.B., Rutgers University; and M.T., University of Toronto.

The authors declare no conflict of interest.

Published under the PNAS license.
1Present address: Center for Evolution and Medicine, School of Life Sciences, Arizona
State University, Tempe, AZ 85281.

2To whom correspondence may be addressed. Email: Michael.Green@umassmed.edu or
Dan.Bolon@umassmed.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1708268114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1708268114 PNAS | October 31, 2017 | vol. 114 | no. 44 | 11751–11756

M
ED

IC
A
L
SC

IE
N
CE

S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1708268114&domain=pdf
http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:Michael.Green@umassmed.edu
mailto:Dan.Bolon@umassmed.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708268114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708268114/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1708268114


Results
An Optimized CRISPR-Cas9–Based Strategy Efficiently Integrates Barcoded
Bcr-Abl1 Libraries into a Consistent Genomic Location. We carried out
proof-of-principle studies of our mutagenesis screening strategy on
BCR-ABL1 because: (i) clinical resistance to tyrosine kinase inhib-
itors (TKIs) is frequently associated with mutations in BCR-ABL1
(8, 9) and (ii) the clinical drug-resistant mutation spectrum for BCR-
ABL1 is well known, allowing us to evaluate the power of this ap-
proach (10, 11). The majority of TKI-resistant BCR-ABL1 muta-
tions are observed within the kinase domain (8), leading us to select
this region for targeted saturation mutagenesis.
We first stably transduced a nonfunctional BCR-ABL1 mutant

lacking the kinase domain (BCR-ABL1ΔKD) into murine Ba/
F3 cells, which are conditionally dependent on BCR-ABL1 function
in the absence of interleukin 3 (IL-3) (12). Site-specific introduction
of a wild-type ABL1 kinase domain (ABL1KD) using CRISPR-
Cas9 generates full-length BCR-ABL1, promotes IL-3–independent
growth, and induces expression of a GFP reporter, allowing us to
screen a library of ABL1KD variants (Fig. 1A and SI Appendix,
Fig. S1). To systematically sample hundreds of BCR-ABL1 mu-
tations in the same experiment, we extensively optimized the
CRISPR-Cas9 integration strategy using flow cytometry with a
donor template containing DsRed in place of the ABL1KD (SI
Appendix, SI Materials and Methods and Fig. S2). The efficiency of
homology-directed repair (HDR) was increased from initial levels
by sequential optimization of the sequences of synthetic guide RNAs

(sgRNAs) and donor templates (step 1), homology arm length (step
2), clonal cell line (step 3), and amount of sgRNA and donor tem-
plate (step 4) (SI Appendix, SI Materials and Methods and Fig. S2D),
to achieve an HDR efficiency of ∼8% (Fig. 1B), representing the
successful genetic modification of 1–2 × 105 cells per reaction. For
10-fold coverage of mutant libraries, this efficiency is sufficient to
screen up to 20,000 mutations in a single reaction. As part of the
HDR optimization process, we identified a clone possessing the
highest HDR activity (SI Appendix, Fig. S2D). When rescued with
wild-type ABL1KD, the clone produced a TKI treatment response
that resembled that of human BCR-ABL+ cells (SI Appendix, Fig.
S3A). In this clone, we observed that BCR-ABL1ΔKD was in-
tegrated at a single genomic locus within transcriptionally active
chromatin (SI Appendix, SI Materials and Methods and Fig. S3B).
This clone was used in all subsequent experiments.
We first generated a saturated mutagenesis library at the so-called

gatekeeper position (T315), whose mutation to isoleucine is known
to confer resistance to the first generation TKI imatinib (9). To
facilitate multiple independent measurements of each amino acid
change in the ABL1KD mutant libraries, we introduced a barcoded
intron into the constant region downstream of the ABL1KD, with
an average of 25 barcodes associated with each mutant (Fig. 1A and
SI Appendix, Fig. S4A). We designed the barcodes to avoid se-
quences that would disturb intron splicing and protein expression
(SI Appendix, SI Materials and Methods and Fig. S4). The frequency
of mutations that we observed integrated into the genome closely
matched the frequency in the donor library at both the amino acid
and codon levels (Fig. 1 C and D), indicating that integration was
neither strongly biased by the mutations nor a bottleneck.

Fitness of T315X Mutations Under Various Selection Pressures. Cells
transfected with the T315X library were grown in the presence of
IL-3 for the first 3 d, then washed and expanded in IL-3–free
medium for 3 additional days. On day 6, cells were treated with or
without imatinib for an additional 3 d in the absence of IL-3 (Fig.
2A). Based on deep sequencing of barcodes, we determined the
frequency of each amino acid at position 315 before IL-3 with-
drawal (day 3) and at the end of the experiment (day 9); mutations
that compromise cell growth will be underrepresented at the later
time points, whereas mutations that enhance cell growth will be
relatively overrepresented.
We first determined the effects of mutations on growth in the

absence of IL-3 and imatinib (i.e., growth effects). Most amino acid
changes at position 315 caused a growth defect, whereas five mu-
tations (L, M, I, V, and E) increased IL-3–independent growth
(Fig. 2B, Top). Supporting these observations, mutations corre-
sponding to T315I and T315M have been reported to increase
kinase activity in c-ABL1 and/or c-Src (13). In replicate growth
competitions, we observed a strong correlation (R2 = 0.91) be-
tween estimates of BCR-ABL1 function (Fig. 2C).
Similar to traditional IC50 measurements, the relative growth of

mutants in the presence or absence of imatinib was compared to
estimate the effects of mutations on drug binding (i.e., inhibitor
effects). Based on this analysis, all mutations at position 315 com-
promised drug binding (Fig. 2B, Middle). Traditional IC50s were
determined for a panel of individual mutations (L, M, I, E, and C;
SI Appendix, Fig. S5A) and demonstrated consistency with our bulk
analyses (Fig. 2D).
In principle, the combined effects of mutations on BCR-

ABL1 function and drug binding will be under selection in patients.
In our experiments, we observed strong combined effects for six
amino acid changes (L, M, I, V, Q, and E) (Fig. 2B, Bottom). Five
of them (L, M, I, Q, and E) exhibited increasingly adaptive re-
sponses with elevated imatinib concentration (Fig. 3A, Top).
We also examined selection in the presence of two additional

TKIs, dasatinib (SI Appendix, Fig. S5B) and ponatinib (Fig. 3A,
Bottom), the latter of which was designed to counteract the T315I
mutation (14). Consistent with its design, ponatinib inhibited
T315I. However, the four remaining mutations at position 315
(L, M, Q, and E) appeared increasingly adaptive with higher pona-
tinib concentrations. Again, traditional IC50s for a panel of individual

Fig. 1. An optimized CRISPR-Cas9–based strategy efficiently integrates bar-
coded BCR-ABL1 libraries into a consistent genomic location. (A) Schematic of
the CRISPR-Cas9–based strategy to introduce barcoded libraries of ABL1KD
mutations into the genome. (B) HDR efficiency following optimization of the
sgRNA and donor template sequences (step 1), homology arm length (step 2),
clonal cell line (step 3), and the amount of guide RNA and donor template (step
4). The initial HDR efficiency before optimization is shown. Error bars represent
the SD of three independent experiments. (C and D) Correlation of amino acid
(C) and codon (D) frequencies of the library of T315X mutants between the
donor library and those integrated into the genome. The plots show all
20 amino acids (including wild type) and stop codon (C), and all 64 codons (D).
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mutations (L, M, I, E, and C) demonstrated consistency with our bulk
analyses (SI Appendix, Fig. S5C).
To explore how these amino acid changes might evolve, we

examined the number of nucleotide substitutions required to
achieve the mutation and the potential single base substitution
pathways (Fig. 3B). Of the six amino acid changes at position
315 that are adaptive to imatinib (L, M, I, V, Q, and E), only T315I
is accessible by a single base substitution, the most accessible type
of mutation (15). In principle, the prevalence of T315I in patient
isolates (11) could be due to mutational accessibility and/or
adaptive potential. Our data indicate similar adaptive potential to
imatinib for L, M, I, and E, with L, M, and E having slightly greater
adaptive potential than I at high imatinib concentrations (Fig. 3A,
Top). These observations suggest that mutational accessibility has a
strong influence on the evolution of drug resistance in BCR-ABL1.
At high concentrations of imatinib or ponatinib, T315M and
T315E were the most adaptive (Fig. 3A and SI Appendix, Fig. S5C).
T315M is accessible by a fitness-increasing path, while T315E
cannot be accessed by single nucleotide substitutions without going
through a maladaptive intermediate (Fig. 3B). The observed ad-
vantage of T315M relative to T315I is greater under ponatinib
treatment compared with imatinib (Fig. 3A), indicating that a
mutational pathway from T to I to M may be likely in patients who
have transitioned from imatinib to ponatinib therapy. Consistent
with this hypothesis, T315M has recently been reported to evolve
from T315I during ponatinib treatment of a patient who previously
failed imatinib therapy (16).

Evolutionary Adaptation of BCR-ABL1 Mutations. Based on this pre-
dictive potential, we examined a larger region that flanks the
gatekeeper residue, positions 311–319 of BCR-ABL1. While most
mutations were deleterious, a number of mutations at positions 311,
315, 317, and 319 increased adaptive potential of BCR-ABL1 (Fig.
4A). To assess the reliability of this higher-throughput experiment,
we compared independent replicates (Fig. 4B) and also compared
the results for position 315 within the 311–319X library to the single
position T315X experiment (Fig. 4C). The positive correlation
between these experiments (R2 = 0.66 and R2 = 0.95, respectively)
indicates that both experiments provide accurate measurements
of selection pressures acting on these mutations, although re-
producibility varied for individual positions (SI Appendix, Fig. S6).
The growth effect analysis of Fig. 4A revealed that different

positions exhibited strikingly distinct patterns of functional sen-
sitivity to mutation. For instance, at position 316 every amino
acid substitution caused a strong growth defect, whereas at po-
sition 319 all amino acid changes exhibited minimal impacts on
function. These sensitivities were generally consistent with in-
ferences from structure. For example, E316, which is sensitive to
amino acid changes, makes multiple hydrogen bonds with Q300 and
K378 (SI Appendix, Fig. S7A); notably, E316 and K378 are highly
conserved across 94 tyrosine kinases (SI Appendix, Fig. S7 B and C).
By contrast, the side chain of T319 is oriented toward solvent such
that amino acid changes can be tolerated without directly disrupting
structure (SI Appendix, Fig. S7A).

Fig. 2. Fitness of T315 mutations under various selection pressures. (A) Flowchart showing the experimental pipeline for analysis of mutant enrichment
following various growth/inhibitor selection conditions. (B) Enrichment analysis of T315X mutants for growth effect [day 9 (−IL-3, DMSO) versus day 3 (+IL-3)],
inhibitor effect [day 9 (−IL-3, imatinib) versus day 9 (−IL-3, DMSO)] and combined effect [day 9 (−IL-3, imatinib) versus day 3 (+IL-3)]. Mutations that are
accessible through one, two, or three base changes are indicated. Error bars represent SE from three independent experiments. (C) Correlation of growth
effect of all amino acid mutants between two replicates of the T315X library. (D) IC50 values of selected T315X mutants for imatinib.
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BIG EMPIRIC Accurately Predicts Clinical Prevalence of BCR-ABL1
Mutations. We sought to explore whether BIG EMPIRIC is capa-
ble of predicting the clinical prevalence of each mutation as assessed
from a collection of BCR-ABLmutations in∼1,400 imatinib-resistant
patient samples (Fig. 5A and SI Appendix, Table S1). The mutations
with the strongest combined effects were located at position 315 (Fig.
5B), which is consistent with mutations at this position evolving as the
most commonly observed imatinib-resistant mutations in clin-
ical samples (11).
Encouraged by this observation, we investigated whether the

combined effects together with mutational probabilities could
accurately predict clinical observations of imatinib resistance.
Indeed, single nucleotide mutations with the greatest combined
effects in our screen were also observed with the highest fre-
quency in clinical samples (Fig. 5 C and D). For these single
nucleotide mutations, we calculated a prediction score based on
the observed combined effects and mutational probabilities,
which correlated very well with their observed prevalence in
patients (Fig. 5E). Although the strength of this correlation was
primarily influenced by the two most clinically prevalent muta-
tions (T315I and T317L), it is encouraging that the prediction
score accurately estimates the frequency of all clinically observed
mutations analyzed in the 311–319 region. Furthermore, the
combined effects provided more accurate predictions of clinical
prevalence than either growth effect or inhibitor effect alone (SI
Appendix, Fig. S8 A and B), indicating that both properties
contribute to the evolution of drug resistance.
Protein folding stability can be a dominant force in evolution (17),

and we therefore investigated whether the estimated impacts of
mutations on protein folding stability, calculated using FoldX (18),
might correlate with the experimental impacts of mutations in BCR-
ABL1. The analysis revealed weak correlations (R2 < 0.1) between

estimates of folding stability in either the active or inactive states of
BCR-ABL1 and our measurements of the combined effects (SI
Appendix, Fig. S8 C and D). Despite the poor correlation with
combined effects, we also examined whether protein folding stability
estimates combined with mutational probabilities might predict
clinical prevalence. Predictions based on active and inactive con-
formations also correlated weakly (R2 < 0.2) with clinical prevalence
(SI Appendix, Fig. S8 E and F). Thus, simple estimates of the im-
pacts of mutations on BCR-ABL1 folding stability were unable to
accurately predict the experimental or clinical impacts of drug re-
sistance mutations. Molecular dynamic simulations of a handful of
individual mutants (SI Appendix, Fig. S8G) also suggest that gross
structural perturbations fail to explain their observed function.

Discussion
In this report, we have described an improved saturation muta-
genesis method with high reproducibility, called BIG EMPIRIC,
and demonstrated its capability of quickly interpreting the
functional consequence of hundreds of mutations. BIG EMPIRIC
has several advantages over previously developed high-throughput
mutagenesis methods (3, 4, 19–21). First, BIG EMPIRIC sys-
tematically generates all point mutations at similar frequencies, in
contrast to random mutagenesis, which tends to generate an un-
balanced library that can leave out mutations (3, 4, 19, 20). Sec-
ond, in BIG EMPIRIC, mutations are analyzed at a single
genomic location, which should produce consistent expression
compared with approaches utilizing random lentiviral integration
of mutant genes. Third, BIG EMPIRIC is a flexible strategy that
can be easily adapted to many other oncogenes, without the lim-
itation of conducting screens at unique endogenous genetic con-
texts, such as short exons or splicing junctions (21). Fourth, the
intron-based barcoding strategy of BIG EMPIRIC can facili-
tate analyses of larger regions of genes in the same experiment
and provides many internal reproducibility checks for quality-
control purposes.
Like many other technologies, however, BIG EMPIRIC is not

without its limitations. First, the saturated library is limited to a
10 amino acid window. However, this shortcoming could be
circumvented by combining a few libraries for each reaction

Fig. 3. Increased adaptation to TKI therapy accessible by single base sub-
stitution. (A) Enrichment analysis of T315X mutants for combined effect at in-
creasing concentrations of imatinib (Top) or ponatinib (Bottom). (B) Single base
mutational pathway from Thr to Met or Glu. Mutations with increased fitness
are marked in green, decreased fitness in red, near neutral mutations in black.

Fig. 4. Evolutionary adaptation of BCR-ABL1mutations. (A) Growth effect of all
possible mutations at each amino acid position in the 311–319 region. Each group
comprises 20 dots, representing all possible amino acid variants; the wild-type
amino acid was set to 0. (B) Correlation of growth effect of all amino acid mu-
tations between two replicates of the 311–319X library. (C) Correlation of growth
effect of all T315X mutants between the T315X library and 311–319X library.
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without surpassing the screening capacity, and multiple reactions
could be performed to cover an entire ORF. Second, finding a
suitable clone with ideal HDR potential can be laborious. Of
note, the efficient genomic locus that we identified here may
work well in future screens of other oncogenes in Ba/F3 cells.
We used BIG EMPIRIC to generate a prediction score that

correlated highly with the clinical prevalence of identified BCR-
ABL1 mutations, suggesting that it would be a useful method for
predicting clinical drug-resistant mutations in other less well-
studied drug targets. Notably, the observation that only a few
types of T315 mutations have been clinically observed (16) in-
dicates that identifying mutants with altered drug binding alone
may be misleading with regard to clinical relevance. Accordingly,
our analysis revealed that an accurate assessment of the drug
response of each mutant together with its adaptive potential lead
to better prediction of its clinical relevance. Our observations
highlight the utility of observing growth effects to understand the
evolution of drug resistance in cancer.
In this study, we focused on amino acid changes accessible by

single nucleotide mutations, as they are by far the most frequently
observed in drug resistant cancers (15). In addition, all of the
clinically observed imatinib-resistant amino acid changes in the
regions of BCR-ABL1 that we explored experimentally (Fig. 5E)
are accessible by single nucleotide mutations. In our experiments,

single nucleotide mutations (Fig. 5C) had similar combined effects
as multiple nucleotide mutations (SI Appendix, Fig. S8 H and I).
One explanation for the prevalence of single nucleotide mutations
in imatinib-resistant cancer is that double nucleotide mutations do
not provide a further benefit. By contrast, multiple nucleotide
substitutions appear important for the evolution of ponatinib re-
sistance in BCR-ABL1 (16). However, there is insufficient clinical
data at this time to examine the potential accuracy of mutational
pathway predictions involving multiple base substitutions.
The responses of different cancers to targeted therapy can

vary tremendously with regard to mechanism and timescale (2,
22). Our results suggest that differences in emergence of resistance
are likely due to differences in readily available mutational path-
ways, as well as the impacts of potential mutants on growth and
drug binding. In this regard, BIG EMPIRIC provides a promising
approach to help tease these factors apart for different oncogenes.
The mutations observed to cause resistance in patients are often

not clear until drugs are utilized clinically. Research on resistance
mechanisms has the capability to inform drug development (23),
especially when all of the relevant structures are not known. Within
the conventional drug development paradigm, it could take up to
10 y before gathering enough information to judge the clinical
efficacy of a drug and its sensitivity to mutations (24, 25). BIG
EMPIRIC offers an alternative strategy to improve drug design

Fig. 5. BIG EMPIRIC accurately predicts clinical prevalence of BCR-ABL1 mutations. (A) Lollipop plot showing the distribution of all clinically identified BCR-
ABL mutations from a collation of ∼1,400 imatinib-resistant patient samples. Mutations that are accessible through one, two, or three base changes are
indicated. Data were collated from the Branford laboratory (10), COSMIC database, and Oregon Health & Science University. (B) Combined effects of all
possible mutations at each amino acid position in the 311–319 region. Each group comprises 20 dots, representing all possible amino acid variants; the wild-
type amino acid was set to 0. (C) Ranking of the combined effect scores for amino acid substitutions achievable through a single-base change within the 311–
319 region. (D) Clinically identified amino acid mutations in the 311–319 region. The asterisk indicates a previously unreported mutation with confirmed
imatinib resistance in the current study. The SE of the proportion of each amino acid change observed in the clinical samples is shown. (E) Correlation be-
tween prediction score (based on the observed combined effects and mutational probabilities) and clinical prevalence for four mutations.
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through multiple rounds of predicted clinical response within months
at early drug development stage, which potentially helps avoid clinical
resistance later (SI Appendix, Fig. S9).

Materials and Methods
Cell Lines and Cell Culture. Ba/F3 reporter cell line generation, including reporter
plasmid construction, HDR optimization, and verification of integration of the
reporter, is described in SI Appendix, SI Materials and Methods. All Ba/F3 cell
lines were maintained in RPMI medium 1640 containing 10% FBS, 4 mM
L-glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin. Parental Ba/
F3 cell culture was supplemented with 10 ng/mL IL-3, and clonal Ba/F3 cells
containing doxycycline-inducible BCR-ABL1 were supplemented with 1 μg/mL
of doxycycline (cat. no. D9891; Sigma) unless otherwise stated.

Library Introduction and Drug Treatment. Construction of the T315X and 311–
319X donor libraries are described in SI Appendix, SI Materials and Methods.
Before transfection of the library, on day −4, 1 × 106 Ba/F3 reporter cells were
cultured initially in a T75 flask for 3 d in the presence of IL-3 but without
doxycycline. At day −1, cells were collected, pelleted, and resuspended in 15mL
of IL-3–containing fresh medium for every 1 × 107 cells, then cultured for an
additional 24 h. At day 0, cells were collected for electroporation and trans-
fected with the library using the optimal parameters defined in the HDR op-
timization section (SI Appendix, SI Materials and Methods).

On day 1, cells were transferred from a 12-well plate into a T25 flask with
fresh IL-3–containing medium, and doxycycline (1 μg/mL) was added. On day
3, cells were pelleted and washed twice in IL-3–free medium. An aliquot of
cells (∼1–2 × 106) was saved to serve as a control sample. The remaining cells
were cultured in IL-3–free and doxycycline-containing medium in a T75 flask
for an additional 3 d, unless otherwise stated. On day 6, cells were collected
and split, and half were treated with DMSO and the other half with a TKI
[2.5 μM imatinib (cat. no. CT-IM001, ChemieTek), 20 nM dasatinib (cat. no.
CT-DS001, ChemieTek), or 10 nM ponatinib (cat. no. P-7022, LC Labs)] and
grown for an additional 3 d in the absence of IL-3. On day 9, all cells were
pelleted and frozen at −80 °C for future genomic DNA extraction and nested
PCR, as described in SI Appendix, SI Materials and Methods.

Fitness and Drug Resistance Analysis. Deep sequencing results were processed
by custom perl scripts. First, sequences with Phred scores >10 containing the
constant region of the PCR products were extracted from the fastq file.
Extracted sequences were then parsed based on the sample ID added in the
second round of PCR; IDs correspond to the growth condition the PCR product
was generated from. Next, counts for each unique barcode were generated for

each condition/sample ID. Barcodes were then decoded using the subassembly
file described in the “T315X and T311-319X HDR Donor Library Construction”
section (SI Appendix, SI Materials and Methods). Finally, counts for barcodes
corresponding to the same codon or amino acid mutation were merged.

The mutation frequencies for each condition were analyzed in three ways.
First, the ratio of the amino acid frequency at “day 9, −IL-3, DMSO” versus
“day 3, +IL-3” was log2 transformed and normalized to the wild-type syn-
onyms; this analysis, termed the “growth effect,” highlights the effect each
mutation has solely on cell growth in the absence of inhibitor. Second, the
ratio of the amino acid frequency at “day 9, −IL-3, inhibitor” versus “day 9, −IL-3,
DMSO” was log2 transformed and normalized to wild-type synonyms; this
analysis, termed the “inhibitor effect,” looks at the effect each mutation has on
inhibitor resistance. Third, the ratio of the amino acid frequency at “day 9, −IL-3,
inhibitor” versus “day 3, +IL-3” was log2 transformed and normalized to the
wild-type synonyms; we refer to this analysis as the “combined effects” because
influences of mutations on both growth without drug as well as the affinity of
inhibitor contribute to this ratio. The combined effects are static for each pair of
amino acids.

Togenerate a prediction score for the natural evolutionofmutations,weused
our experimental data for amino acid changes to estimate combined effects
together with previously determined mutational probabilities. For a specific
amino acid change, we considered the parental codon and all single base mu-
tations to the target amino acid. For example for the change of ATA (Ile) to Leu,
there are two available single basemutations (to TTA, or CTA), andwe estimated
the net probability as the sum of these two paths. The prediction score for each
amino acid change in Fig. 5E was calculated using the following equation:

Xn

1
Score  of  combined  effect  for  amino  acid  subsitution

× single  nucleotide  sustitution  rate

where n = number of single base mutational paths for each amino acid pair;
score of combined effect for amino acid substitution is defined as the ratio of
the “day 9, −IL-3, inhibitor” to the “day 3, +IL-3,” which is log2 transformed
and normalized to wild-type synonyms; and nucleotide substitution rate is
defined as the rate for a single nucleotide substitution at a particular codon
position that leads to the corresponding amino acid change (26).
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