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On the unfounded enthusiasm for soft
selective sweeps
Jeffrey D. Jensen1,2

Underlying any understanding of the mode, tempo and relative importance of the adaptive

process in the evolution of natural populations is the notion of whether adaptation is mutation

limited. Two very different population genetic models have recently been proposed in which

the rate of adaptation is not strongly limited by the rate at which newly arising beneficial

mutations enter the population. However, empirical and experimental evidence to date

challenges the recent enthusiasm for invoking these models to explain observed patterns of

variation in humans and Drosophila.

I
dentifying the action of positive selection from genomic patterns of variation has remained as
a central focus in population genetics. This owes both to the importance of specific
applications in fields ranging from ecology to medicine, but also to the desire to address more

general evolutionary questions concerning the mode and tempo of adaptation. In this vein,
the notion of a soft selective sweep has grown in popularity in the recent literature, and with
this increasing usage the definition of the term itself has grown increasingly vague. A soft
sweep does not reference a particular population genetic model per se, but rather a set of very
different models that may result in similar genomic patterns of variation. Further, it is a
term commonly used in juxtaposition with the notion of a hard selective sweep, the classic model
in which a single novel beneficial mutation arises in a population and rises in frequency
quickly to fixation. Patterns expected under the hard sweep model have been well described
in the literature (see reviews of refs 1,2; Box 1), and consist of a reduction in variation
surrounding the beneficial mutation owing to the fixation of the single haplotype carrying
the beneficial, with resulting well-described skews in the frequency spectrum3–5 and in
patterns of linkage disequilibrium6–8. Indeed, a part of the recent popularity of soft sweeps
comes from the seeming rarity of these expected hard sweep patterns in many natural
populations (for example, see refs 9–11).

In terms of patterns of variation, the primary difference between soft and hard selective
sweeps lies in the expected number of different haplotypes carrying the beneficial mutation or
mutations, and thus in the expected number of haplotypes that hitchhike to appreciable
frequency during the selective sweep, and which remain in the population at the time of fixation.
This key difference results in different expectations in both the site frequency spectrum and in
linkage disequilibrium, and thus in the many test statistics based on these patterns (see Box 1).
Owing to this ambiguous definition, a number of models have been associated with producing a
soft sweep pattern—including selection acting on previously segregating mutations, and multiple
beneficials arising via mutation in quick succession (see review ref. 11 and Box 1).
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However, apart from shared expected patterns of variation,
these two population genetic models are very different. Selection
on standing variation requires that the beneficial mutation
segregate at appreciable frequency in the preselection environ-
ment, whereas the multiple beneficial model requires a high
mutation rate to the beneficial genotype. One important point
that will be returned to throughout is the distinction between the
relevance of these models themselves and the likelihood of these
models resulting in a hard (that is, single haplotype) versus a soft
(that is, multiple haplotype) selective sweep at the time of
fixation. Below, I will discuss what is known from theory
regarding these models, and what is known from experimental
evolution and empirical population genetic studies regarding the
values of the key parameters dictating their relevance. I conclude
by arguing that the recent enthusiasm for invoking soft sweeps to

explain observed patterns of variation is likely to be largely
unfounded in many cases.

Selection on standing variation
As described in Box 2, understanding the likelihood of a model of
selection on standing variation requires knowing the frequency
and fitness of beneficial mutations segregating in the population
before becoming beneficial. Below, I will briefly review what is
known from both experimental and empirical studies regarding
these parameters in the handful of instances in which we have
good inference.

Rare standing variants appear to contribute to adaptation. Orr
and Betancourt12 previously considered a model of selection on

Box 1 | Overview of two soft selective sweep models.

Selection on a
single new mutation
(hard selective sweep)

Selection on a
pre-existing variant
(soft selective sweep)

Selection on multiple
new mutations 
(soft selective sweep)
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In contrast to a classic hard selective sweep (that is, selection on a single newly arising or rare beneficial mutation, (a)) I here discuss two models
associated with soft selective sweeps. The first of these models, popularized by Hermisson and Pennings13, is one in which a given beneficial mutation
previously segregated in the population neutrally (or at an appreciable frequency under mutation–selection balance), and thus existed on multiple
haplotypes at the time of the selective shift in which the mutation became beneficial (b). In this way, a single beneficial mutation may carry multiple
haplotypes to intermediate frequency, while itself becoming fixed. Though Hermisson and Pennings13 associated this model with the term ‘soft sweep’,
the model of selection on standing variation has been long considered in the literature. Orr and Betancourt12 considered the model in some detail as will
be discussed below, as did Innan and Kim85. Indeed, Haldane86 also discussed the possibility of selection acting on previously deleterious mutants
segregating in the population.

A second commonly invoked model associated with soft selective sweeps, also popularized by Pennings and Hermisson87, is one in which multiple
beneficial mutations independently arise in short succession of one another—such that a second copy arises via mutation before the selective fixation
of the first copy (c). While this model was first envisioned as consisting of multiple identical beneficial mutations (that is, the identical change occurring
at the same site), it has since been considerably expanded to include any mutation which produces an identical selective effect (for example, if all loss-
of-function mutations produce an equivalent selective advantage, a large number of possible mutations may be considered as being identically
beneficial88). The similarity to the standing variation model described above, and thus their shared association with the notion of a soft sweep, is simply
that these multiple beneficial mutations may arise on different haplotypes, and thus also sweep different genetic backgrounds to intermediate
frequency.

In the cartoon above, the first row represents the time of the origin of the beneficial(s), in which five sampled chromosomes are shown with blue
lines, each of which carries neutral mutations (black dashes) and some of which carry the beneficial mutation (given by the green start, with the blue
start representing a second independently arising beneficial in the ‘multiple new mutation’ model). The second row represents the time of fixation of the
beneficial mutation. In the hard sweep model (a), the beneficial mutation as well as closely linked neutral variation has been brought to fixation, while
more distant sites may only be brought to intermediate frequency owing to recombination. In the pre-existing variant model (b), the beneficial mutation
may carry the haplotypes on which it was segregating before the shift in selective pressure each to some intermediate frequency. In the multiple new
mutation model (c), each independent beneficial mutation may carry to intermediate frequency the haplotype on which it arose. Thus, the models b and
c produce a qualitatively similar end result.
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standing variation and reached a similar result as Hermisson and
Pennings13—namely, a soft sweep from standing variation only
becomes feasible when the mutation has a non-zero probability of
segregating at an appreciable frequency at the time of the selective
shift (that is, the beneficial mutation was previously neutral or
slightly deleterious and segregating under drift at relatively high
frequency, it was maintained at appreciable frequency by
balancing selection before the selective shift and so on). Indeed,
they provide a direct calculation for the probability that multiple
copies of the beneficial allele (X) exist, conditional on fixation of
the beneficial mutation:

Pr X ¼ i jX40ð Þ ¼ e� 4Nusb=sd

1� e� 4Nusb=sd

ð4Nusb=sdÞi

i !
ð1Þ

where sd is the selection coefficient before the shift, sb is the
selection coefficient after the shift, and Nu is the population
mutation rate.

With this, Orr and Betancourt made a notable observation that
even if selection is acting on standing variation instead of a new
mutation, a single copy is nonetheless surprisingly likely to sweep
to fixation (that is, producing a hard, rather than a soft, sweep
from standing variation). Indeed, they demonstrate that multiple-
copy fixations become more likely than single-copy fixations from
standing variation only when 4Nusb/sd41. For reasonable
parameter estimates, they calculate that the allele must be present
in many copies in the population before obtaining an appreciable
probability of sweeping multiple copies of the beneficial mutation
to fixation. For example, from Orr and Betancourt, for
N¼ 1� 104, sd¼ 0.05, sb¼ 0.01, u¼ 10� 5 and h¼ 0.2, 96% of
the time a single copy will fix in the population, despite 20 copies
segregating at mutation–selection balance before the shift in
selection pressure. For these parameters, the population size must
be in excess of N¼ 1.5� 105 (thus more than 300 copies
segregating at mutation–selection balance) before multiple copies
are more likely on fixation than a single copy.

Revisiting this model, Przeworski et al.14 more explicitly
examined the frequency at which a mutation must be segregating
before the shift in selection pressure, before multiple haplotypes
would likely be involved in the selective sweep. They found that a
hard sweep is likely when xo1/2Nesb (consistent with the
simulated exampled from Orr and Betancourt above). Thus,
taking the mutation–selection balance frequency given above, we
may conclude that a hard sweep (that is, involving a single
haplotype) is likely from standing variation when Ym/2h0ado1/
2Nesb (see Fig. 1). An important distinction is again necessary
here. While the parameter requirement mentioned above
concerns the likelihood of a soft sweep from standing variation,
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Figure 1 | The conditions under which a soft sweep from standing

variation becomes possible. The y axis represents the selection coefficient

before the selective shift (that is, given by negative selection coefficients)

and the x axis is the selection coefficient after the shift in selective

pressure (that is, given by positive selection coefficients). The area under

each line represents the parameter space for which such a soft sweep is

feasible for two different effective population sizes—one human like (104,

given by pink shading) and one Drosophila like (106, given by vertical blue

lines). As shown, the effect before the selective shift must be nearly

neutral or weakly deleterious in order for the allele to segregate at an

appreciable frequency, and the effect post selective shift must be strongly

beneficial. As described in the text, this inference rests on the argument

that Ym/2h0ad must be greater than 1/2Nesb for a soft selective sweep from

standing variation to become likely, where here Ym¼ 10�8 and h0 ¼ 1.

Box 2 | Expectations and assumptions of a model of selection on
standing variation.

A good deal is known from the theory literature regarding the likelihood
of selection on standing variation, and the parameter space of relevance
for this model. Kimura’s89 diffusion approximation gave the fixation
probability of an allele (A) segregating in the population at frequency (x)
with selective advantage (sb):

�xðab; hÞ �
R x

0 exp � ab 2hyþ 1� 2hð Þy2ð Þ½ �dyR 1
0 exp � ab 2hyþ 1� 2hð Þy2ð Þ½ �dy

where h is the dominance coefficient and ab¼ 2Nesb (where Ne is the
effective population size). Following Hermisson and Pennings13, if
selection on the heterozygote is sufficiently strong (that is,
2habc(1� 2 h) /2 h), this may be approximated as:

�xðhabÞ �
1� exp 2habx½ �
1� exp 2hab½ �

where for a new mutation (that is, x¼ 1/2N), we find Haldane’s90 result
that the fixation probability is approximately twice the heterozygote
advantage (P1/2N)E2hsb(Ne)/(N).

Comparing this result with the situation in which the beneficial allele
was previously segregating neutrally (that is, x41/2N), Hermisson and
Pennings13 obtained the following approximation:

�seg hab;Neð Þ � ln 2habð Þ
ln 2Neð Þ

demonstrating that the fixation probability is much greater for
beneficials that already begin at an appreciable frequency (because of
their lower probability of being lost by drift)—though this condition may
be misleading, as the segregation of a neutral allele at intermediate
frequency is indeed already an unlikely event (which could be
considered by integrating over the distribution of neutral variant
frequencies). They further approximate the probability that the
population adapts from standing variation (sgv) as:

Psgv hab; h0ad ;Ym
� �

¼ 1� exp �Ymln 1þRa½ �
� �

where Ra¼ 2hab/(2h0adþ 1) measures the selective advantage of the
allele in the new relative to the old environment (where ab is the
selective effect in the new environment and ad in the previous
environment, and h and h0 are the dominance coefficients in the new
and previous environments, respectively), and Ym is the population
mutation rate. Thus, for an allele at mutation–selection balance (that is,
x¼Ym/2h0ad), this probability is simply E1� exp(�Ymhab/h0ad).

Thus, the key parameters for understanding the likelihood of a model
of selection on standing variation involves knowing the preselection
fitness of beneficial mutations (that is, before becoming beneficial), and
relatedly the preselection frequency of beneficial mutations (again,
before becoming beneficial).
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it further suggests that we are unlikely to have statistical
resolution when attempting to distinguish between a hard
sweep on a new mutation versus a hard sweep on a rare
previously standing variant.

As an empirical example of the above point, one of the most
widely cited and discussed examples of selection on standing
variation surrounds the Eda locus in Sticklebacks15. With
evidence for selection reducing armour plating in freshwater
populations compared with the ancestral heavily plated marine
populations, the authors sequenced marine individuals to
estimate the allele frequency of the freshwater adaptive low
plate morphs, with estimates ranging from 0.2 to 3.8%. While the
low plate morph is likely deleterious in marine populations
(potentially suggesting that it is at mutation–selection balance),
migration from the marine environment may indeed serve as an
important source of variation for local freshwater hard sweeps.
However, as noted by the authors, it is difficult to separate this
hypothesis from that of local freshwater adaptation on new
mutations, followed by back migration of locally adapted alleles
into the marine population. Similarly, related arguments have
been made for rare standing variation being responsible for the
quick and persistent response of phenotypic traits to selection in
the quantitative genetics literature (for a helpful review, see
ref. 16). However, as with the above example, distinguishing rare
standing ancestral variation from newly accumulating mutations
has also been a topic of note17. Regardless of these caveats, hard
sweeps from rare standing variants segregating at mutation–
selection balance in ancestral populations, rather than on de novo
mutations alone, appear to be an important and viable model of
adaptation.

Quantifying the cost of beneficial mutations. On the basis
of the simple and enlightening result of Orr and Betancourt,
it is reasonable to ask, for cases in which we have reasonably
strong functional evidence of adaptation, what we know about the
value of 4Nusb/sd, as this will dictate the likelihood of a hard
versus a soft sweep from standing variation. There are
two fields from which we may obtain insights—experimental-
evolution studies in which the selective effects of mutations may
be precisely measured under controlled environmental conditions
and empirical population genetic studies in which inference can
be drawn about the selective effect of functionally validated
mutations in the presence and absence of a given selective
pressure.

First, there is a rich literature in experimental evolution from
which we can draw. In a recent evaluation of the distribution of
fitness effects (DFE) in both the presence and absence of
antibiotic in the bacterium Pseudomonas fluorescens, Kassen and
Bataillon18 found that of the 665 resistance mutations isolated,
greater than 95% were deleterious in the absence of the antibiotic
treatment. In populations of yeast raised in both standard and
challenging environments (in this case, high temperature and
high salinity), Hietpas et al.19 identified a handful of beneficial
mutations in each of the challenge environments, all of which
were deleterious under standard conditions, with some even
being lethal in the absence of the selective pressure. Foll et al.20 in
investigating the evolution of oseltamivir resistance mutations in
the influenza A virus, identified 11 candidate resistance
mutations, with the one functionally validated mutation
(H274Y) having been demonstrated to be deleterious in the
absence of drug pressure (see also refs 21,22).

Second, there are a small but increasing number of examples
from natural populations where we have both a functionally
validated beneficial mutation for which we understand the
genotype–phenotype connection, as well as inference on the

selection coefficient both in the presence and absence of a given
selective pressure. One such example is the evolution of cryptic
colouration in wild populations of deer mice23. In the Nebraska
Sand Hills population, population genetic and functional
evidence has been found for positive selection acting on a small
number of mutations modifying different aspects of the cryptic
phenotype, all contained within the Agouti gene region24. Three
lines of population genetic evidence suggest that selection began
acting on these mutations when they arose (that is, selection on a
de novo mutation): (1) the beneficial mutations appear to be
carried on single haplotypes (though, as discussed above,
selection on standing variation may indeed often only result in
a single haplotype fixation), (2) the beneficial mutations have not
been sampled off of the Sand Hills region (that is, the mutation is
unlikely to have been segregating at appreciable frequency in the
ancestral population before the formation of the Sand Hills) and
(3) using an approximate Bayesian approach, the age of the
selected mutation has been inferred to be younger than the
geological age of the Sand Hills23. In addition, ecological
information pertaining to this phenotype exists as well.
Performing a predation experiment with clay models, Linnen
et al.24 demonstrated a strong selective advantage of crypsis—
with conspicuous models being subject to avian predation
significantly more than cryptic models. This result suggests that
if the beneficial phenotype currently present in the Sand Hills was
indeed present in the ancestral population, it was likely to be
strongly deleterious.

Other notable examples exist in the empirical literature as well.
For example, Agren and Schemske25 mapped quantitative trait
loci for 398 recombinant inbred lines of Arabidopsis derived from
crossing locally adapted lines from Sweden and Italy. Their results
suggest a small number of locally adaptive genomic regions, and
that in many cases the locally adaptive change was deleterious in
the alternate environment. Performing a meta-analysis on a wide
range of antibiotic-resistance mutations in pathogenic microbial
populations, Melnyk et al.26 found that across eight species and
15 drug treatments, resistance mutations were widely found to be
deleterious in the absence of treatment (that is, in 19/21 examined
studies). At the Ace locus of D. melanogaster, four described
variants conferring varying degrees of pesticide resistance have
been described, all of which are strongly deleterious in the
absence of this pressure (with deleterious selection coefficients
ranging from � 5 to � 20%; see ref. 27).

Thus, given the required preselection frequency necessary to
result in a soft rather than a hard sweep, it is fair to say that this
combination of results provides poor support for the relevance of
soft sweeps from standing variation in the populations examined.
However, it is worth noting that such studies likely represent an
ascertainment bias towards traits that strongly affect the
phenotype, thus making them amenable for ecological and
laboratory study. Assuming a relationship between the observed
phenotypic and underlying selective effects, it may well be that
beneficial mutations of small effects (which are more difficult to
study and thus under-represented in the literature) may be those
more likely to have only weakly deleterious effects in the absence
of a given selective pressure.

Multiple competing beneficials
Box 3 describes the key parameters for understanding the
likelihood of a model of competing beneficials—namely, the
mutation rate to the beneficial genotype and the size of
the mutational target available for creating an identical beneficial
mutation. Below, I will briefly review what is known from both
experimental and empirical studies regarding these parameters in
the handful of instances in which we have good inference.
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On the proportion of beneficial mutations. To understand the
beneficial mutation rate is fundamentally to understand the DFE—
that is, the proportions of newly arising mutations that are bene-
ficial, neutral and deleterious. Characterizing this distribution has
spawned a long and rich literature among both theoreticians and
experimentalists. Fisher28 had already considered the probability
that a random mutation of a given phenotypic size would be
beneficial, concluding that adaptations must consist primarily of
small-effect mutations. Kimura29 recognized one difficulty with this
conclusion, noting that while small-effect mutations may be more
likely to be adaptive, large-effect mutations have a higher
probability of fixation. Thus, Kimura argued that, in fact, the
intermediate-effect mutations may be most common in the
adaptive process. Orr30 gained an important additional insight—
given any distribution of mutational effects, the distribution of
factors fixed during an adaptive walk (that is, the sequential
accumulation of beneficial mutations) is roughly exponential. An
important by-product of this result is the notion that the first step
of an adaptive walk may indeed be quite large (in agreement with
Fisher’s Geometric Model).

Efforts to quantify the shape of the DFE and characterize the
beneficial mutation rate have come largely from the experimental

evolution literature. One common feature amongst this work is
the use of extreme value theory (see review ref. 31). Because the
DFE of new mutations is generally considered to be bimodal32—
consisting of a strongly deleterious mode and a nearly neutral
mode—beneficial mutations represent the extreme tail of the
mode centred around neutrality. One particular type of extreme
value distribution—the Gumbel type (which contains a number
of common distributions including normal, lognormal, gamma,
and exponential)—has been of particular focus beginning with
Gillespie33.

Recently, experimental efforts have begun to better characterize
the shape of the true underlying distribution in lab populations
experiencing adaptive challenges (see review ref. 34). Though the
fraction of beneficial mutations relative to the total mutation rate
is indeed small, providing good support for the assumptions of
extreme value theory, the exact shape of the beneficial
distribution varies by study. Sanjuan et al.35 found support for
a gamma distribution using site-directed mutagenesis in vesicular
stomatitis virus. Kassen and Bataillon18 found support for an
exponential distribution assessing antibiotic-resistance mutations
in Pseudomonas. Rokyta et al.36 found support not for the
Gumbel domain but rather for a distribution with a right-
truncated tail (that is, suggesting that there is an upper bound on
potential fitness effects), using two viral populations. MacLean
and Buckling37, again using Pseudomonas, argued that an
exponential distribution well explained the data when the
population was near optimum, but not when the population
was far from optimum, owing to a long tail of strongly beneficial
mutations. Schoustra et al.38, working on the fungus Aspergillus,
demonstrated that adaptive walks tend to be short, and
characterized by an ever-decreasing number of available
beneficial mutations with each mutational step taken. One
important caveat in such experiments, however, is that they
commonly begin from homogenous populations. Thus, while
providing a good deal of insight into the underlying DFE, they are
far from direct assessments of the relative role of single de novo
beneficial mutations in adaptation.

Whole-genome time-sampled sequencing is also shedding light
on the fraction of adaptive mutations. Examining resistance
mutations in the influenza virus both in the presence and absence
of oseltamivir (a common drug treatment), Foll et al.20 identified
the single and previously described resistance mutation (that is,
H274Y (ref. 39)) as well as 10 additional putatively beneficial
mutations based on duplicated experiments and population
sequencing, suggesting a fraction of 11/13,588 potentially
beneficial genomic sites in the presence of drug treatment, or
0.08% of the genome. But perhaps the most specific information
currently available regarding beneficial mutation rates comes
from experiments in which all mutations may be generated
individually (as opposed to mutation-accumulation studies) and
directly evaluated across different environmental conditions (see
refs 19,40). Within this framework, Bank et al.41 recently
evaluated all possible 560 individual mutations in a subregion
of a yeast heat shock protein across six different environmental
conditions (standard, as well as temperature and salinity
variants), identifying few beneficials in the standard
environment, and multiple beneficials associated with high
salinity. To quantify this shift, the authors fit a Generalized
Pareto Distribution, using the shape parameter (K) to summarize
the changing DFE—with the Weibull domain fitting the less-
challenging environments (that is, demonstrating that the DFE is
right-bounded, suggesting that the populations are near
optimum), and the Frechet domain fitting the challenging
environment (that is, a heavy-tailed distribution owing to the
presence of strongly beneficial mutations, potentially suggesting
that the population is more distant from optimum).

Box 3 | Expectations and assumptions of a model of multiple
competing beneficial mutations.

As opposed to the standing variation model described in Box 2 in which
there was a single mutational origin of the beneficial mutation, this
model posits multiple beneficial mutations of independent origin arising
in quick succession of one another. Importantly, these independent
beneficial mutations must necessarily arise on different haplotypes. If
the second independently arising identical beneficial mutation arises on
the same background as the first, the resulting pattern would simply be
that of a hard sweep as they would be impossible to distinguish (that is,
a single haplotype would be swept).

Thus, the expected number of haplotypes and their frequency
distributions is a necessary consideration. This expectation is given by
Ewens’ sampling formula (see ref. 91) for the case of no recombination.
Given a mutation rate of Yb to the B allele, the probability to find k
haplotypes occurring n1, n2, ynk times in a sample of size n is given as:

Pr n1 . . . nk jn;Ybð Þ ¼ n !

k ! n1 . . . nk

Yk
b

Yb Yb þ 1ð Þ . . . Ybþ n� 1ð Þ
For k¼ 1 and n1¼ 1, Pennings and Hermisson87 thus wrote the upper
bound for the probability of such a soft sweep as:

Psoft;n � 1� Pr n jn;Ybð Þ ¼ 1�
Yn� 1

i¼1

i
iþYb

Hence, the probability of a soft sweep from multiple competing
beneficials is naturally dependent on the beneficial population mutation
rate. As they describe, the beneficial mutation rate must be extremely
large before this model becomes likely (with Yb40.04 before even two
haplotypes would be swept with an appreciable probability, for
a¼ 10,000). In other words, within the relatively fast sojourn time of
a beneficial mutation (TfixE4Nelog(a)/a), multiple identical beneficial
mutations must arise on separate haplotypes, escape drift (where, once
again, the probability of fixation of each new independent mutation is
given as 2hsb(Ne)/(N)) and ultimately fix in multiple copies.

Thus, the key parameter for understanding the likelihood of a model
of competing beneficials involves knowing the mutation rate to the
beneficial genotype. This latter clarification gives rise to an additional
parameter—namely, the size of the mutational target available for
creating an identical beneficial mutation. If only a single mutational
change is possible, the target size is 1 bp. If, as given as an example in
the Introduction, any loss-of-function mutation within a coding region
produces an identical selective effect, the target size may be dozens of
base pairs or more.
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Thus, despite some small but important differences between
these conclusions, there is general support for a model in which
newly arising mutations take a bimodal distribution, with the
extreme right tail of this distribution representing putatively
beneficial mutations. In other words, the beneficial mutation rate
is likely a very small fraction of the total mutation rate. Given the
requirements of the multiple competing beneficials model (that is,
Yb40.04), this would seemingly make the model only of
relevance to populations of extremely large Nem, as in perhaps
certain viral populations (see ref. 42). Indeed, in an attempt to
argue for the relevance of these models in Drosophila, Karasov
et al.27 claim an effective population size in Drosophila that is
orders of magnitude larger than commonly believed (that is,
Ne4108), despite the great majority of empirical evidence to the
contrary (see review ref. 43).

Small adaptive target size in natural populations. However,
despite the above conclusion, if the mutational target size is not a
single site, but rather a large collection of sites, this value may
become more attainable for a wider array of species. As with the
above section, the most abundant and reliably validated infor-
mation comes from experimental evolution. However, this data is
of course imperfect, as these studies do not necessarily reflect all
potential available beneficial solutions (that is, mutation-accu-
mulation studies can only draw inference on the mutations which
happen to occur during the course of the experiment, and studies
using direct-mutagenesis have thus far only evaluated sub-geno-
mic regions). Returning to the examples given in the section
above, we may ask what are the functional requirements of the
identified beneficial mutations. In studying adaptation to the
antibiotic rifampicin in the pathogen Pseudomonas, MacLean and
Buckling37 demonstrated that the beneficial mutations identified
are consistent with known molecular interactions between
rifampicin and RNA polymerase—as the antibiotic binds to a
small pocket of the b-subunit of RNA polymerase, in which only
12 amino acid residues are involved in direct interaction. Wong
et al.44 investigated the genetics of adaptation to cystic fibrosis-
like conditions in Psuedomonas both in the presence and absence
of fluoroquinolone antibiotics, describing a small number of
stereotypical resistance mutations in DNA gyrase. Examining the
evolution of oseltamivir resistance in the influenza A virus, Foll
et al.20 described a similar story, in which a small handful of
putatively beneficial resistance mutations are concentrated in
haemagglutinin and neuraminidase, with the single-characterized
resistance mutation being shown to alter the hydrophobic pocket
of the neuraminidase active site, thus reducing affinity for drug.

Again considering the natural populations for which we have
solid genotype–phenotype information and about which we
understand something about the nature of adaptation acting on
these mutations, let us consider a few examples. Describing wide-
spread parallel evolution on armour plating in wild threespine
sticklebacks, Colosimo et al.15 demonstrated the Ectodysplasin
signalling pathways to be repeatedly targeted for modifications to
this phenotype with a high degree of site-specific parallel
evolution. Looking across 14 insect species that feed on
cardenolide-producing plants, Zhen et al.45 also noted repeated
bouts of parallel evolution for dealing with this toxicity not only
confined to the same alpha subunit of the sodium pump (ATPa),
but in the great majority of cases to the same two amino acid
positions. Examining adaptation to pesticide resistance in
Drosophila, four specific point mutations in the Ace gene have
been identified, which result in resistance to organophosphates
and carbonates (see ref. 27). Cryptic colouration has also been a
fruitful area, with specific mutations in the Mc1r and Aguoti gene
regions having been described as the underlying cause of

adaptation for crypsis in mice of the Arizona/New Mexico lava
flows46, Nebraska Sand Hills23 and the Atlantic coast47, as well as
in organisms ranging from the Siberian mammoth48 to multiple
species of lizards on the White Sands of New Mexico49,50 (and see
review ref. 51 for further examples).

Thus, for the handful of convincing genotype-to-phenotype
examples in the literature, the adaptive mutational target size
appears small, a result which would appear to be biologically
quite reasonable.

The effects of selection on linked sites. However, even if the
mutational target size is sufficiently large such that a model of
competing beneficials becomes feasible, it becomes necessary to
consider interference between these segregating selected sites. It is
helpful to consider three relevant areas of the parameter space:
(a) beneficial mutations of identical selective effects arising in a
low recombination rate region, potentially allowing for a soft
sweep; (b) beneficial mutations of differing selective effects arising
in a low recombination rate region, where the most strongly
beneficial likely outcompetes the others producing a hard sweep;
or (c) multiple beneficial mutations occurring in a high recom-
bination rate region, allowing for a hard sweep of the most
beneficial haplotype (that is, the recombinant carrying the most
beneficial mutations).

Hill and Robertson52 explicitly considered the probability of
fixation for two segregating beneficial mutations. Confirming the
arguments of Fisher28, they demonstrated that selection at one
locus indeed interferes with selection at the alternate locus,
reducing the probability of fixation at both sites—with the
conclusion being that simultaneous selection at more than one
site reduces the overall efficacy of selection (see also refs 53,54).

This effect is clearly a function of the amount of recombination
between the selected sites. If the sites are independent there is no
such effect, and if they are tightly linked the effect will be very
strong (Fig. 2). While it is difficult to generalize this information,
for the current empirical data available discussed above, it
appears both likely and biologically reasonable to consider that
mutations conferring identical selective effects may indeed be
occurring within a narrow genomic region (for example,
mutations within the drug-binding pocket haemagglutinin in
influenza virus in response to drug, within RNA polymerase in
Pseudomonas in response to antibiotic, at the Agouti/Mc1r locus
in vertebrates for colour modifications, at the Ace locus of
Drosophila for pesticide resistance, at the Eda locus in Stickle-
backs for armour modifications and so on).

Examining the extent of this effect by simulation, Comeron
et al.55 found that the effect becomes stronger as (1) the sites
become more weakly beneficial, (2) the recombination rate is
decreased and (3) the number of selected sites increases
(consistent with the results of refs 56,57). However, as long as
there is linkage between the sites, the probability of fixation
decreases rapidly as the number of selected sites grows, even for
very strong selection. Examining the effect of two competing
beneficial mutations in the presence of recombination
analytically, Yu and Etheridge58 further demonstrate the
relative likelihood of an ultimate single haplotype fixation.

Thus, while a large mutational target size may, in principle,
increase the relevance of this model, it results in a scenario still
requiring a large beneficial mutation rate, necessitates that these
beneficial mutations escape initial stochastic loss and finally,
owing to interference, results in a decreased probability of fixation
for each competing beneficial relative to independence. Again
invoking results from experimental evolution, in a highly
informative recent study by Lee and Marx59, the authors
demonstrate the strong effects of clonal interference in
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replicated populations of Methylobacterium extorquens—
identifying as many as 17 simultaneous beneficial mutations
existing in a population which may rise in frequency initially,
only to be lost owing to competition with an alternate and
ultimately successful single beneficial mutation, in what they
termed repeated ‘failed soft sweeps.’

As a natural population example, Hedrick60 discusses the
multiple identified malaria resistance variants identified in
humans, and makes the case that in the continued presence of
malaria, single variants are highly likely to ultimately fix at the
cost of losing other competing and currently segregating
beneficial resistance mutations, owing to measured selection
differentials. Similarly, at the previously discussed Ace locus of D.
melanogaster, a single of the four identified resistance mutations
was found to confer 75% resistance to pesticide, two mutations
confer 80% resistance and three mutations confer full resistance—
again suggesting that a single haplotype carrying multiple
beneficial mutations will likely ultimately result in a hard
selective sweep. Both of these observations, along with the
results of Lee and Marx59, suggest that multiple competing
beneficial mutations may indeed be a likely model, but a soft
sweep from multiple beneficials is unlikely owing to non-
equivalent selective effects between the mutations (or the
haplotypes carrying these mutations). Thus, as with the model

of selection on standing variation above—the model of competing
beneficial mutations itself has good empirical and experimental
support for being relevant, but a hard sweep rather than a soft
sweep appears as the more likely outcome given our current
understanding of the parameters of relevance.

Perspective and future directions
Apart from the considerations discussed in the sections above,
and conditional on the unsubstantiated assumption that adaptive
fixations are common, the absence of hard sweep patterns in
many natural populations has led some to conclude that soft
sweeps must be the primary mechanism of adaptation, with a
recent popularity for invoking these models in the human and
Drosophila literature. However, as argued above, this assumption
is poorly supported, and theoretical and experimental insights to
date suggest that soft sweeps from standing variation or from
multiple beneficial mutations for populations of this size are
unlikely. This argument itself is of course somewhat circular, as
quantifying the fraction of adaptively fixed mutations, and the
proportion of newly arising beneficial mutations, is indeed one of
the central focal points of population genetics, and is far from
resolved as discussed. Thus, assuming a very large fraction of
adaptive fixations to quantify the fraction of adaptive fixations is
rather self-defeating.

A quite separate point has also been neglected in this literature.
Namely, the power of existing tests of hard selective sweeps to
identify these patterns within demographically complex popula-
tions (a category that certainly includes humans and Drosophila).
Biswas and Akey61 examined the consistency between methods
used for conducting genomic scans for beneficial mutations in
humans. Results differed dramatically, ranging from 1,799 genes
identified by Wang et al.62 to 27 genes identified by Altshuler
et al.63 Perhaps even more striking, of the six studies examined,
there was virtually no overlap in the genes identified. For example,
of the 1,799 genes identified by Wang et al.62, 125 overlap with the
scan of Voight et al.64, 47 from Carlson et al.65, 5 from Altshuler
et al.62, 4 from Nielsen et al.66 and 40 from Bustamante et al.67 In
addition, the recent review by Crisci et al.2, summarizing estimates
of the rate of adaptive fixation in Drosophila, noted that the
inferred genomic rate differs by two orders of magnitude between
studies (from l¼ 1.0E� 12 (ref. 68) to l¼ 1.0E� 11 (refs 69,70)
to l¼ 1.0E� 10 (ref. 71)—where 2Nel is the rate of beneficial
fixation per base pair per 2Ne generations).

Evaluating the performance of these statistics has thus
remained an important question, and over the past decade
numerous researchers have demonstrated low power under a
wide range of neutral non-equilibrium models72–76. More
recently, Crisci et al.77 specifically evaluated the ability of the
most widely used and sophisticated tests of selection via
simulation (Sweepfinder66, SweeD76 and OmegaPlus78), to
identify both complete and incomplete hard selective sweeps
under a variety of demographic models of relevance for human
and Drosophila populations. The results are troubling, with the
true positive rate rarely exceeding 50% even under equilibrium
models, and being considerably worse for models of moderate
and severe population size reductions (Fig. 3). Furthermore, the
false positive rate was often in excess of power, particularly for
models of population bottlenecks. Though not conclusive, this
indeed suggests a troubling potential interpretation for the lack of
overlap between the above mentioned genomic scan studies.

If nothing else, these results demonstrate that the absence of
evidence is not evidence of absence for the hard sweep model—
implying that we only have minimal power to detect even very
recent and very strong hard selective sweeps in these populations,
and essentially no power for the great majority of the parameter
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space. However, concerning these results may be, it is important
that the field has made the effort to quantify the performance of
the test statistics designed for detecting hard sweeps—defining
Type-I and Type-II error and examining performance in
demographic models both with and without selection. This
scrutiny has yet to be brought to soft sweep expectations and
statistics. Before these models can be reasonably invoked as
explanations for observations in natural populations, we need to
similarly understand the ability of neutral demographic models to
replicate soft sweep patterns, quantify our ability to identify soft
sweeps from standing variation and from multiple beneficial
mutations in non-equilibrium populations and understand the
effects of relaxing current assumptions involving linkage and
epistasis (that is, for selection on standing variation, the
assumption is made that a single beneficial mutation will have
the same selective effects on all genetic backgrounds, and the
multiple beneficial model assumes that there are no epistatic
interactions between co-segregating mutations). Early efforts have
been made in some of these areas, with recent work examining
basic expectations of these models under fluctuating effective
population sizes, resulting in a further description of how
population size changes may result in the ultimate fixation of a
single beneficial mutation79.

In conclusion, the wide array of genomic patterns of variation
that may be accounted for by models associated with soft selective
sweeps has allowed adaptive explanations to proliferate in the
literature, and be invoked for a larger subset of genomic data.
However appealing this may be, these models in fact carry
with them very specific and well-understood parameter require-
ments. Further, the ability of alternate models to produce these
patterns needs to be more carefully weighed in future studies,

particularly given preliminary findings concerning similar
patterns produced under both neutral demographic models77

and models of background selection80. Indeed, alternative models
of positive selection have also been suggested to produce
qualitatively similar patterns—including hard selective sweeps
in subdivided populations exchanging migrants81–83 and
polygenic adaptation84.

Finally, while examples in the literature are accumulating in
support of the models themselves (for example, selection on
standing variation at the Eda locus of Sticklebacks or selection on
multiple beneficials at the Ace locus of Drosophila), there is very
little evidence of soft sweep fixations, with the best empirical and
experimental examples to date almost universally pointing to
hard sweep fixations under these models. This appears to
primarily be owing to the low preselection allele frequency of
the standing variants (which are seemingly often deleterious
before the shift in selective pressure), and to the selective
differential between competing beneficial mutations (or between
the haplotypes carrying the beneficial mutations) resulting in the
ultimate fixation of only a single haplotype. Thus, while the
models themselves certainly deserve further attention, theoretical,
empirical and experimental results to date suggest that the field
ought to take greater caution when invoking soft sweep fixations,
as hard sweep fixations (be it from models of selection on new
mutations, standing variation or competing beneficial mutations)
seem to remain as the most likely outcome across a wide
parameter space relevant for many current populations of
interest.
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