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A common approach for identifying loci influenced by positive selection involves scanning large portions of the genome
for regions that are inconsistent with the neutral equilibrium model or represent outliers relative to the empirical
distribution of some aspect of the data. Once identified, partial sequence is generated spanning this more localized region
in order to quantify the site-frequency spectrum and evaluate the data with tests of neutrality and selection. This method
is widely used as partial sequencing is less expensive with regard to both time and money. Here, we demonstrate that this
approach can lead to biased maximum likelihood estimates of selection parameters and reduced rejection rates, with
some parameter combinations resulting in clearly misleading results. Most significantly, for a commonly used sample
size in Drosophila population genetics (i.e., n 5 12), the estimate of the target of selection has a large mean square error
and the strength of selection is severely under estimated when the true selected site has not been sampled. We propose
sequencing approaches that are much more likely to accurately localize the target and estimate the strength of selection.
Additionally, we examine the performance of a commonly used test of selection under a variety of recurrent and single
sweep models.

Introduction

There is considerable interest in using population ge-
netic approaches to identify regions of the genome that un-
derlie population- or species-specific adaptations. These
approaches can also be used to address basic evolutionary
questions such as the relative importance of adaptive and
demographic factors in shaping patterns of genome variabil-
ity. The rapid increase in our ability to survey population
level nucleotide variability for larger sample sizes and for
larger portions of the genome yields increasing statistical
power to distinguish among alternative population genetic
models. At the same time, because more tests are being per-
formed by each study (with more power per test), the chance
of identifying false positives also increases dramatically.

Methods for identifying regions influenced by positive
selection from sequence data rely on the expectation that the
substitution of a strongly selected advantageous mutation
alters the frequencies of linked neutral variation (Maynard
Smith and Haigh 1974; Kaplan et al. 1989; Stephan et al.
1992). These approaches can generally be divided into 2
classes. The first involves a scan in which outlier loci
are identified that are not compatible with neutrality under
some plausible demographic model (e.g., Schlotterer 2002;
Kauer et al. 2003; Storz et al. 2004; Tenaillon et al.
2004; Altshuler et al. 2005; Bauer DuMont and Aquadro
2005; Ometto et al. 2005; Stajich and Hahn 2005; Wright
et al. 2005). A related approach to detect selected loci
has been to summarize the empirical, genome-wide back-
ground site–frequency spectrum from which outliers are
identified (e.g., Nielsen et al. 2005; Williamson et al.
2005), though model-based comparisons are often neces-
sary in order to assess significance. An important addition
to this framework has been the ability to correct for the as-
certainment bias introduced from choosing loci based

on the presence of ‘‘sweep-like’’ characteristics (Thornton
and Jensen 2007).

By identifying markers with skewed distributions or
decreased variation, subsequent sequencing studies may
be directed in order to determine if the observed patterns
are consistent with a sweep hypothesis (e.g., Bauer DuMont
and Aquadro 2005; Beisswanger et al. 2006; Pool et al.
2005; Jensen et al. 2007). Although partial sequencing is
often used to quickly screen these large regions identified
as being near putative selective sweeps and to better local-
ize the target, the optimal way to sample these identified
regions has not been systematically investigated.

We examine both models in which the age of a single
selective sweep is fixed and known, as well as a model of
recurrent selective sweeps. In the case of the former, we
here assume that the departure originally detected, provid-
ing the motivation for regional localization, truly represents
selection. As such, we suggest that these results be used in
combination with the genome scan localization procedure
of Thornton and Jensen (2007). We ask how best to sample
these localized regions in order to obtain accurate estimates
of selection parameters as well as provide available meth-
ods with enough information to reject neutrality. In the case
of the latter, we assume that a randomly selected region has
been sequenced and we determine the power of existing
tests to reject neutrality when there is a background rate
of selective sweeps in which advantageous mutations are
uniformly distributed across a chromosome. We examine
a wide range of parameter combinations, including those
that are relevant for both Drosophila and humans. This anal-
ysis suggests that modifications to current strategies for
sampling regions believed to be shaped by a selective
sweep can lead to a greater accuracy of parameter estimates.

Methods
Modeling Selective Sweeps

We model positive selection using coalescent simula-
tions for a region of M nucleotides, as described in equa-
tions 1–7 of Thornton and Jensen (2007). At time s in the
past (measured in units of 4N generations), a beneficial al-
lele has fixed in the population at position X. For cases
where the selected site is within the region, 1 � X � M.
For models of recurrent sweeps (see below), X may lie out-
side the M nucleotides.
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In addition to what was implemented in Thornton and
Jensen (2007), we also simulate stochastic trajectories of
beneficial alleles, conditioning on their reaching fixation
in the population (Coop and Griffiths 2004; Przeworski
et al. 2005). For a beneficial mutation at frequency x at time
t, x jumps to either

x/lðxÞDt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞDt

p
;

or

x/lðxÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞDt

p
;

with equal probability during the interval Dt. The term l (x)
is the infinitesimal mean change in allele frequency of the
conditional process. For the case of genic selection consid-
ered here and conditional on the ultimate fixation of the
beneficial mutation,

lðxÞ5lþðxÞ52Nsxð1� xÞ=tanhð2NsxÞ;

(Ewens 2004, p.170). In our implementation, we used
Dt5 1

20N, and N 5 106.

Recurrent Selective Sweeps

We also considered a model of selective sweeps occur-
ring in the genome at a rate determined by K, the expected
number of sweeps per recombination unit in the last 4N gen-
erations (Kaplan et al. 1989; Braverman et al. 1995). Our
implementation follows that described in Przeworski
(2002), with 2 modifications. First, the allele frequency tra-
jectory of the selected site is determined stochastically, as
described above. Second, we allow for the selective sweeps
both within the region ofM nucleotides as well as at linked
sites. We do this because we simulate relatively large neu-
tral regions (M 5 104), and the probability of a sweep
within that region may not be negligible for largeK, assum-
ing a constant K across the genome. Similarly, it is impor-
tant to consider sweeps outside of theM nucleotides as they
will impact patterns of variation within the region under in-
vestigation. In this model, the time until the next selective
phase is entered is exponentially distributed with rate
8NsK

�
qbp þMK, where qbp is the scaled recombination

rate between adjacent base pairs. Given that a selective
phase is entered, the selected site is located within the M
nucleotides with probabilityMK

��
8NsK

�
qbp þMK

�
, oth-

erwise it is located at a linked site up to a maximum genetic
distance of 2a on either side of the sampled region (see
Kaplan et al. 1989; Durrett and Schweinsberg 2004, for
details).

We estimated the power to reject the equilibrium
neutral model using 2 sample sizes (n 5 12 and 50)
and 90 parameter combinations generated by considering
all combinations of h 2 f10; 75g,q 2 f10; 50; 100g,
a 2 f100; 500; 1; 000; 2; 500; 5; 000g, and K 2 f10�7;
10�6; 10�5

�
. These parameters cover cases where we ex-

pect hitchhiking effects to be minimal (K 5 10�7, a 5
100) to those where the effect should be substantial (K 5
10�5, a 5 5,000). For these simulations, we used N 5 106.

For each simulated replicate, we also calculated the
power P values for D of Tajima (1989) and H statistics
of Fay and Wu (2000), using 1-tailed tests (of the lower
tail) for both statistics. In order to make the power estimates
of D and H comparable with those from the composite like-
lihood ratio test (CLRT), we assumed that q is known
precisely.

Sampling

In order to evaluate the effects of partial data for the
single sweep data sets, a number of sampling schemes were
evaluated. First, 1,000 replicates of complete 10-kb data
sets were simulated for n 5 50, 2Ns 5 0, 100, 500, and
1,000; qbp 5 0.05 and 0.1; h 5 15 and 75; and s 5 0.001,
0.01, and 0.02. Then, using these data, partial data sets were
parsed in 4 configurations: 5 or 2.5 kb of sequence distrib-
uted across the 10-kb region, including for each a scenario
in which the selected site does and does not fall in a sampled
region (fig. 1). In all cases, the target of selection is at po-
sition X 5 5,000, and there is sequencing on both sides of
the target. These parameters were chosen for their relevance
to a significant portion of the Drosophila melanogaster
genome (e.g., qbp 5 0.05 means a recombination rate of
1.25 � 10�8/base pair/generation over a 10-kb region for
Ne 5 1 � 106, and h 5 75 means l 5 1.87 � 10�8/base

FIG. 1.—The 4 sampling schemes employed in this study; an example of the target of selection being sampled and not sampled for 2.5/10 kb and
5/10 kb. The target is at position X 5 5,000. All partial data are parsed from the complete 10-kb data sets.
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pair/generation over a 10-kb region for Ne 5 1 � 106).
Additionally, the size of the region (10 kb) was chosen
as it encompasses perturbations of the site-frequency spec-
trum produced after a selective sweep, for the values of
2Ns here considered (Kim and Stephan 2002).

In order to replicate a likely empirical approach, we
simulated a second round of sequencing by adding data
around the predicted target and then reanalyzing the data
set. This was done by assuring that the predicted target
had at least 0.5 kb on either side, which, depending on
where the prediction was made relative to the initial seg-
ments, meant adding anywhere between 0.5 and 1 kb of
new data.

Statistics

Let â and X̂ be the maximum likelihood estimates
(MLEs) of the strength of the selection parameter (2Ns)
and target of selection, respectively. These parameter esti-
mates are found via maximization of the composite likeli-
hood function of Kim and Stephan (2002) so that

fâ; X̂g5argmaxa;X2HLSða;XjDataÞ;

where

LSða;XjDataÞ5PðDataja;XÞ5
YL
i51

PðYi5yij a;XÞ;

where L is the length of the sequence, yi (for i 5 1, . . ., L)
denotes the observed count of the derived nucleotide at
the ith site with corresponding random variable Yi 2
f0; 1; . . . ; n� 1g, and PðYija;XÞ is given by equation (5)
of Kim and Stephan (2002), using e 5 (2a)�1.

Two statistics were utilized to evaluate the MLEs of X
and a. First, in order to measure any biases in the predicted
location of selection introduced by partial sampling, rela-

tive bias (RB) was determined from 1,000 replicates, con-
ditional on rejecting neutrality, as:

RB 5 MeanðX̂�XÞ=X:
Second, in order to measure deviations from the ex-

pected values, the relative mean square error (RMSE) was
determined as:

RMSE 5 Mean ðX̂�XÞ2
.
X2:

The RB and RMSEwere also calculated for a in an identical
way.

Results
Rejecting Neutrality in Favor of Selection—Single
Sweep Model

Applying the CLRT to our partial and complete data
sets, we see that with less data the null is rejected less often
(supplementary table 1, Supplementary Material online).
For high recombination (qbp 5 0.1) and h 5 75, with a
complete 10 kb of sequence, the neutral model is rejected
in favor of the sweep model in 95–97% of simulated sweep
data sets when a is very large (�500), and in approximately
77–82% of cases when a 5 100 for very recent sweeps
(s 5 0.001 in units of 4N generations). Predictably, as
s increases, these rejection rates decrease (supplementary
table 2, Supplementary Material online [s 5 0.01] and sup-
plementary table 3, Supplementary Material online [s 5
0.02]). In partially sequenced regions when the target of
selection has been sampled, rates of rejection are nearly
equivalent, except for a 5 100. When the target has not
been sampled, these rejection rates are uniformly lower—
rejecting approximately 92%, 83%, and 19% of the time for
a 5 1,000, 500, and 100, respectively, for the 5-kb data set,
where n 5 50, h 5 75, and s 5 0.001.The primary factor
determining rejection remains whether or not the site of

FIG. 2.—Power of the CLRT and Tajima’s D under recurrent hitchhiking for n 5 50, h 5 75, and (A) a 5 100 and (B) a 5 2,500.
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selection has been sequenced (supplementary tables 1–3,
Supplementary Material online). Thus, although the ability
to detect selection is diminished under all partial sampling
schemes, the effect is simply to make the test more conser-
vative with respect to rejecting neutrality.

Rejecting Neutrality in Favor of Selection—Recurrent
Sweep Model

The simulation results presented above assume a single
selective sweep fixing at time s in the past. For considering
the power of the CLRT when applied to genome scan data,
it is appropriate to consider a model where s is a random
variable determined by K, the rate of sweeps in the genome
(per recombination unit per 4N generations), a 5 2Ns, and
q 5 4Nr.

The parameters of this model have important implica-
tions. If the rate of sweeps is high, then there may be many
recent sweeps across the genome which existing methods
could have power to detect. However, if the rate is this
great, then there is an appreciable probability that sweeps
are occurring on already swept backgrounds. This multiple-
sweep effect will result in very different patterns in the site-
frequency spectrum (Kim 2006). If the rate of sweeps is
low, then many sweeps will be old enough that patterns
of variability will have recovered (Przeworski 2002). As
a consequence, the CLRT has low power to reject the null
model, unless both K and a are large (e.g., fig. 2). Further,
Tajima’s D was observed to be generally more powerful
than the CLRT and the power of Fay andWu’sHwas never
estimated to be greater than 10% (supplementary table 4,
Supplementary Material online). These results are qualita-

tively similar to those of Przeworski (2002). Further, power
was higher in regions of low recombination (fig. 2, supple-
mentary table 4 [Supplementary Material online]) and in-
creased with larger sample size. Parameter combinations
for which a test’s power is observed to exceed 0.5 are noted
in bold on supplementary table 4 (Supplementary Material
online).

Inferring the Target of Selection

Among the single sweep data sets that rejected the
CLRT in favor of selection, we evaluated the accuracy
of target prediction as measured by the RMSE, as well
as the RB in the MLEs of the target of selection (as de-
scribed in the Methods section). When a high recombina-
tion (qbp 5 0.1) region is fully sequenced, h 5 75, and the
sweep is very recent (s 5 0.001), the estimate of the target
is within the correct 1-kb window that encompasses the true
target with probability 0.89, 0.87, and 0.84 for a 5 1,000,
500, and 100 for n 5 12, respectively (representative cases
illustrated in fig. 3). In the 5-kb partially sequenced regions
in which the target has been sampled, these probabilities are
similar except for low a, in which the probability drops to
around 0.65, regardless of the sample size. When the target
has not been sampled, however, the situation is consider-
ably different. For a commonly used sample size (n 5 12),
very large selection coefficients (a 5 500, 1,000), recent
sweeps, and having sequenced regions immediately flank-
ing the true target, the MLE only has a probability of
roughly 1/3 of being within the correct 1-kb window. Fig-
ure 3 visualizes these results for a subsample of our data.
Full results across all parameter combinations are presented

FIG. 3.—Probability of X being placed within a 1-kb window centered around positions 1, 2, 3 kb, etc., for 2 large values of a and common
(n 5 12) and large (n 5 50) sample sizes, for the 5-kb partial data sets in which the target has (black) and has not (gray) been sampled. In all cases,
qbp 5 0.1 and X 5 5,000.
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in supplementary tables 1–3 (Supplementary Material
online).

As the partial data sets are simply subsamples of the
complete data sets, it is possible to examine directly the
benefits of complete versus incomplete sequencing. For ex-
ample, figure 4 summarizes the improvement in the MLE of
the target of selection of a complete, 10-kb data set over a
data set in which only half of the region has been sequenced
(5 kb), but the true target of selection (at position 5 kb) has
not been sampled. Consistent with the RMSEs presented in
supplementary tables 1–3 (Supplementary Material online),
we see a wide range of target predictions when the site of
selection has not been sampled and a relatively small range
in the complete data set. In order to further explore this is-
sue, we selected a small number of scenarios and fixed the
number of segregating sites between the complete and par-
tial data sets in order to determine if the performance is
based simply on the fact that the complete data sets have
approximately twice the number of segregating sites as
the 5/10 kb data sets. Under this scheme, we observed re-
sults that are very similar to our fixed h results presented
above. We note, however, that this example is illustrative
only because fixing S creates the problem that the Pr(S|h)
would be drastically different between the partial and com-

plete data sets. The average number of segregating sites
produced under each set of parameters is given in supple-
mentary tables 1–3 (Supplementary Material online).

Examining the relative bias, we observe no significant
skew in the prediction of the location of the target under any
sampling scenario (supplementary tables 1–3 Supplemen-
tary Material online). In order to evaluate whether the per-
formance in these complete 10-kb data sets was being
maximized by sequencing symmetrically around the target,
we also evaluated otherwise identical data sets with the tar-
get at position 1 kb rather than 5 kb. There were no signif-
icant differences with regards to either RB or RMSE.

In order to better replicate a typical empirical ap-
proach, we examined a sample of the above described
scenarios (n 5 12, qbp 5 0.1, h 5 75, and s 5 0.001)
to determine the extent to which target prediction is im-
proved by ‘‘resequencing’’ around the predicted target
(fig. 5, supplementary table 5 [Supplementary Material on-
line]). For the data sets consisting of five 0.5-kb regions, we
added a sixth fragment encompassing the predicted target
(by taking it from the corresponding 10-kb data set), both
for scenarios in which the true target has, and has not, been
sampled. Note that we simply assure that there is 1 kb of
data surrounding the predicted target, so, depending on
whether this happens to overlap with an existing fragment,
this additional data could represent between 0.5 and 1 kb of
new sequence (see Methods).

There are 3 observations of particular interest. First,
there is a strong correlation between target predictions be-
tween the first and second round of sampling, particularly
when the true target was not originally sampled. This is ow-
ing to the fact that the second sampling does not represent
an independent draw—rather it is simply an addition of
a relatively small amount of data. Second, in data sets in
which the true target was not originally sampled, this addi-
tional sequencing makes a measurable improvement in a
proportion of replicates. This is shown clearly in figure 4
by the horizontal grouping centered around 5 kb, demon-
strating a wide range of primary target predictions and more
accurate secondary MLEs. However, it is worth noting that
the improvement seen by resequencing is scarcely compa-
rable with the accuracy associated with complete sequence,
where the RMSE for X̂ is 0.0548 for the resequenced data
set and 0.0083 for the complete data sets, when a 5 500
(supplementary table 5, Supplementary Material online).
Finally, the MLEs are not investigated under the recurrent
selection model as localization would not be attempted if
the pattern of hitchhiking was not initially detectable. As
shown in the power analysis (supplementary table 4, Sup-
plementary Material online), the probability of rejection un-
der recurrent hitchhiking models rarely exceeds 10% for the
CLRT. In the cases where rejections do occur, the same lim-
itations of partial sequencing for target site estimation are
expected as were described for the single sweep model.

Estimating the Strength of Selection

Evaluating theMLEs for data sets that rejected in favor
of the selection model, we determine the RB in the
estimated strength of selection (supplementary tables 1–3,

FIG. 4.—An example of the advantage of complete over incomplete
sequencing for the MLE of the target of selection for 2 different large
values of a. On the x axis is the distribution of the target prediction for the
complete data set. On the y axis the same distribution for the 5-kb data set
in which the target has not been sampled. X 5 5,000, qbp 5 0.1, and
n 5 12. Note, the partial data set is parsed from the complete data set. On
the parallel is the 5-kb distribution in histogram form (adapted from fig. 3)
for clarity.
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Supplementary Material online). We observe a stark under-
estimate of a under all scenarios of partial sequencing (i.e.,
the RB for â is nearly always negative regardless of re-
combination rate, whether the target has been sampled,
sampling scheme, or sample size). In regions of high re-
combination for the complete 10-kb data sets, we observe
only a small RB in these estimates across all sample sizes
and selection coefficients. As s increases, however, this bias
becomes increasingly more negative, owing to the assump-
tion of the CLRT that the sweep has just ended. However,
the RMSE on these estimates remains large even in the
completely sequenced data sets. We observe similar relative
biases across all partial sequencing scenarios, with rela-
tively little difference between samples in which the target
has and has not been sampled. The variance of the estimate
may be decreased slightly by having a larger sample size
(note that the numerator of the RMSE expression is equiv-
alent to the variance of the estimator, thus a smaller RMSE
implies a smaller variance). As with rates of rejection and
the MLE of X̂, the performance is consistently, though
mildly, worse across all scenarios when the recombination
rate of the region is reduced by half (supplementary tables
1–3, Supplementary Material online).

Application to Data

The challenges associated with target site prediction
are illustrated by 2 recent experimental data sets. First is
the putative sweep around the wapl region of D. mela-
nogaster, which was inferred from partial data (roughly
6 kb of total data distributed in 12 fragments across a
110-kb region for a sample size of n 5 12; Beisswanger
et al. 2006). We evaluated the ability of the MLE to accu-
rately estimate the location of the target of selection by gen-

erating, via parametric bootstrap, 1,000 sweep replicates
using the African parameters given in Beisswanger et al.
(2006) (location of sequenced regions, h, recombination,
the selection coefficient [â], and the target of selection
[X̂]). We found that target prediction is very poor in this
case, with only a 20% chance of the target being placed
within the correct 10-kb window and a 2% chance of being
in the proper 1-kb window. We note that the 95% confi-
dence intervals (constructed using the percentile method)

FIG. 5.—An example of a likely empirical approach, in which the original site of the target prediction is sequenced in a follow-up study. On the top
are data sets in which the target was not originally sampled; on the bottom data sets in which it was. For each of the 4 cases, we show for comparison
the distribution for n 5 12 and n 5 50, as well as a 5 500 and a 5 1,000. In all cases qbp 5 0.1, X 5 5,000, and the original sampling scheme
(x axis) is comprised of 2.5 kb of data in the 10-kb region. The resequencing (y axis) involves ensuring that there is at least 0.5 kb of data on both sides
of X̂ (see Methods). ts 5 target sequenced; tns 5 target not sequenced.

FIG. 6.—The distribution of the MLE of X̂ for 1,000 selection
simulations obtained via parametric bootstrap using the parameters
specified for the Drosophila melanogaster Zimbabwe data (the
population showing the strongest evidence of a sweep) in Beisswanger
et al. (2006). The sweep was simulated as though it had just ended
(s 5 0), a value that allows the test to perform much better than using
their inferred ancestral sweep value. The lines indicate the 95%
confidence interval on their estimate of the target ðX̂549:8 kbÞ. Note
that we have indicated the positions of their sequenced fragments, as well
as the number of segregating sites observed in each region.
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on their estimate of X̂ spans nearly 68 kb for s 5 0 or 65%
of the region (fig. 6). We also see a grouping of target pre-
dictions to fragments where sequence data exist, emphasiz-
ing that there is no information about X where data are
missing. For comparison, we also set the age of the sweep
(s) to its minimum value necessary to be consistent with
their ancestral sweep hypothesis (s 5 0.019 in units of
4N generations, based on Bayesian estimates of the coloni-
zation time presented in Thornton and Andolfatto 2006). In
this case, the 95% confidence intervals span 90 kb or ap-
proximately 81% of the region examined.

The putative sweep downstream of the Notch locus in
D. melanogaster (Bauer DuMont and Aquadro 2005) pro-
vides a second illustrative empirical example, in this case,
determined by a complete sequencing approach. Approxi-
mately 10.5 kb of contiguous sequence was generated for
a sample size of n 5 15 for a USA population sample after
initially identifying the candidate sweep region through
a large-scale microsatellite screen. Using all parameter es-
timates presented in that paper, we see that the target pre-
diction has a 62% chance of being in the proper 1-kb
window and the 95% confidence interval spans approxi-
mately 3 kb, or 28% of the region examined (fig. 7).

Based on these combined results, we propose that
parametric bootstrapping to obtain confidence intervals is
appropriate for quantifying uncertainty in parameter esti-
mates and is informative when presenting and interpreting
results from the CLRT. We note that as the CLRT is widely
used in tandem with a recently proposed goodness-of-fit
test (Jensen et al. 2005), the null simulations from that test
could be used to construct these confidence intervals.

Discussion

Simulations were used to investigate the effects of dif-
ferent sequencing sampling strategies on the ability to detect
signatures of hitchhiking along a recombining chromosome,
particularly using the CLRT proposed by Kim and Stephan
(2002), which allows a prediction of both the target location
and strength of selection. Comparing single sweep versus

recurrent sweep models, we found that Tajima’s D had
much more power to reject neutrality under recurrent hitch-
hiking models than either the CLRT or Fay and Wu’s H
(supplementary table 4, Supplementary Material online).
Further, under the recurrent hitchhiking model, a deficit
of high-frequency derived sites is observed for some param-
eter combinations (Przeworski 2002; Kim 2006), explaining
why we sometimes estimated H to have a power less than
5%, the nominal type I error under the null model (supple-
mentary table 4, Supplementary Material online). Thus, al-
though there is a considerable hitchhiking effect for large K
and a, the signature of selection observable in the data is
a reduction in diversity and an excess of rare alleles, rather
than an excess of high-frequency derived alleles. Only very
recent sweeps appear to be detectable using the CLRT be-
cause for older sweeps, the pattern of variation will have
recovered somewhat, as noted by Przeworski (2002).

The cases where D had high power to reject the null
model were for high rates of strong sweeps in regions of low
recombination. It is useful to consider what the rate of
sweeps must be in order for the power to reject the null
model to be high. For the case of a 5 5,000, K 5 10�5,
and q 5 10 (i.e., very strong and very common), sweeps
are occurring on average every �0.008 time units (4N gen-
erations) for the 10^7 bp region examined here, and Taji-
ma’s D rejects the null model 87.7% of the time (for large
sample sizes in regions of relatively low recombination;
fig. 8). Such frequent and strong sweeps would have
nearly chromosome-wide effects on levels of variability
(Braverman et al. 1995), and it remains to be determined
if such a large mutation rate to strongly selected mutations
is biologically reasonable. A further discussion is found in
Thornton et al. (2007).

FIG. 7.—The distribution of the MLE of X̂ for 1,000 selection
simulations obtained via parametric bootstrap using the parameters
specified from the Drosophila melanogaster Notch region analysis of
Bauer DuMont and Aquadro (2005). The lines indicate the 95%
confidence interval on their estimate of the target ðX̂55; 426Þ. Note that
the entire 10.5-kb region was completely sequenced in all lines (n 5 15)
for this USA population sample, and 147 segregating sites were observed. FIG. 8.—Power of Tajima’s D as a function of the time between

successive hitchhiking events. For the recurrent sweep model considered

here, the expected time between sweeps is given by E
h
tL

i
þ

E
h
tS

i
5� log n

a þ 1

8NsK=qbpþMK
, in units of 4Ne generations. The values

on the x axis are calculated for N 5 106, n 5 1/2N, qbp 5 0.001,

a5f100; 1; 000; 5; 000g, and K 2 f10�7; 10�6; 10�5
�
. The estimates of

power are taken from supplementary table 4 (Supplementary Material
online) for the case n 5 50, h 5 75, and M 5 10 kb.

444 Jensen et al.



For single, recent selective sweeps, we found that the
Kim and Stephan (2002) CLRT was sensitive to the use of
partial sequence data, with the MLEs of the strength and
location of selection being potentially biased and widely
variable for sparsely sampled regions. We also demonstrate
that all aspects of detection are improved in regions of high
recombination, though reducing recombination by half only
does mildly worse.

Additionally, whereas sampling only partial segments
across the region leads to lower rates of rejection and higher
RMSEs for both â and X̂, the principle factor dictating per-
formance remains whether the target has been sampled.
Thus, smaller data sets are shown to be undesirable if
for no other reason than this effectively decreases the prob-
ability of sampling the target. With regard to sample size,
although n 5 12 summarizes the site-frequency spectrum
sufficiently to provide accurate MLEs in a complete
10-kb data set, and does reasonably well in partial data sets
in which the target has been sampled, there is a marked dif-
ference between small and large sample sizes when the tar-
get has not been sequenced. Importantly, it is unwise to
reason that the target has been placed accurately just be-
cause it falls within a sequenced segment.

By adding an additional sequenced fragment encom-
passing the initially predicted target of selection, we exam-
ined the relative benefit of follow-up sequencing aimed at
refining the true targets location. We observe a strong
correlation between primary and secondary predictions,
though we note a marked improvement in a small propor-
tion of the resequenced data sets. Thus, the addition of more
data around the first estimated target, X̂, particularly when
the target was not originally sampled, leads to small im-
provements but is far less reliable than an initial analysis
based on complete sequencing.

Thus, although partial sequencing has oft been em-
ployed for reasons both financial and practical, we demon-
strate that when regions are localized through initial marker
screens, complete sequencing offers far superior results in
terms of the probability of rejecting neutrality in favor of
selection, as well as in estimating the selection coefficient
and target of selection. Although this proposal may seem
sequence intensive, we note that the approach in distant sec-
ond with regard to all of these measures (sequencing half of
the region for n 5 50) represents more than a 2-fold in-
crease in data generation given that complete sequencing
performs well for sample sizes of n 5 12 (e.g., 5 kb for
n 5 50 represents 250 kb of total sequencing vs. 10 kb
for n 5 12 that represents 120 kb).

Supplementary Material

Supplementary tables 1–5 are available at Molecular
Biology Evolution online (http://www.mbe.oxfordjournals.
org/).
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