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ABSTRACT
In 2002 Kim and Stephan proposed a promising composite-likelihood method for localizing and estimat-

ing the fitness advantage of a recently fixed beneficial mutation. Here, we demonstrate that their composite-
likelihood-ratio (CLR) test comparing selective and neutral hypotheses is not robust to undetected popula-
tion structure or a recent bottleneck, with some parameter combinations resulting in a false positive rate
of nearly 90%. We also propose a goodness-of-fit test for discriminating rejections due to directional
selection (true positive) from those due to population and demographic forces (false positives) and
demonstrate that the new method has high sensitivity to differentiate the two classes of rejections.

THE substitution of a strongly selected advantageous deleterious mutation can also lead to an excess of rare
mutation is expected to alter the frequencies of alleles when effective population sizes are small (e.g.,

linked neutral variation (Maynard-Smith and Haigh Charlesworth et al. 1993). More recently, Fay and
1974; Kaplan et al. 1989; Stephan et al. 1992). Several Wu (2000) suggested that an excess of high-frequency-
statistical tests have been proposed for inferring such a derived alleles in a sample is more likely due to hitchhik-
“selective sweep” event based on predicted effects rela- ing than to other scenarios. However, they also pointed
tive to the standard neutral model. These include (1) out that if there are many fixed differences between
a depression of expected heterozygosity relative to diver- populations that exchange rare migrants, polymor-
gence at the target of selection (Hudson et al. 1987), phisms in the population would tend to be at very low
(2) an excess of rare alleles compared to the standard or high frequencies. Furthermore, Przeworski (2002)
neutral model (Tajima 1989; Braverman et al. 1995; demonstrated that a variety of demographic models
Fu 1997), (3) an excess of high-frequency-derived alleles have the same effect on Fay and Wu’s H -statistic as a
(Fay and Wu 2000), and (4) increased linkage disequi- selective sweep. Recent bottlenecks and metapopulation
librium (Przeworski 2002; Kim and Nielsen 2004). structures (Wakeley and Alicar 2001) were also shown
Since these signatures are localized to regions adjacent to result in high-frequency-derived alleles more often
to the targets of selection, it seems reasonable to attempt than would be expected under the standard neutral
to identify loci subject to recent directional selection model. Despite these clear effects of nonselective forces,
by analyzing genomic patterns of presumably neutral many have argued that one may still distinguish selective
polymorphism (e.g., Harr et al. 2002; Kim and Stephan sweeps from demography, since the former generates
2002; Vigouroux et al. 2002). a localized signature around the target of selection while

A potential problem in this endeavor, however, is the latter affects the entire genome equally. However,
the low power to discriminate patterns expected under in the absence of selective sweeps, we may still observe
hitchhiking from similar patterns produced by chance local fluctuations of variation along a sequence, which
under nonequilibrium conditions in the absence of se- are likely to be amplified by demographic forces and
lection. For example, recovery from a recent population recombination that resemble the expected pattern of a
bottleneck may result in an excess of rare alleles (Tajima selective sweep. Thus, while the pattern of variation
1989a,b) as can population expansion (Fu and Li 1993). along a chromosome produced by hitchhiking is quite
More troubling is the fact that selection against linked predictable, it is often difficult to be certain that a given

departure from neutrality is due to hitchhiking and not
some stochastic effects manifested in the single realiza-
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DNA sequences is drawn from a randomly mating popu- L S(�, X |Data) � P(Data|�, X) � �
L

i�1

P(Yi � y i |�, X)
lation of constant size. They demonstrate that their
method has considerable power to detect a recent selec-

and P(Yi |�, X) is given by Equation 5 of Kim and Ste-tive sweep and yields unbiased estimates of the location
phan (2002), using ε � (2�)�1. Throughout it is as-and strength of the beneficial mutation. Here, we exam-
sumed that the neutral mutation rate for the region � �ine the extent to which bottlenecks and undetected
4N� (where N is the effective population size and � ispopulation structure affect the type I error of their com-
the mutation rate per locus per generation) and recom-posite-likelihood-ratio (CLR) test. The CLR test was
bination rate between sites i and X are known. In prac-studied for two main reasons. First, it has been shown
tice, Watterson’s (1975) estimate of � is substitutedto have high power, indicating that it may be useful
in for the population mutation rate (i.e., correspondingfor whole-genome scans for adaptively evolving genes.
to “test B” of Kim and Stephan 2002).Second, the test statistic (as is discussed below) is the

To discriminate between hypotheses HS and HN, theratio of the likelihood of the data given a recently com-
maximum composite likelihood of data under thepleted selective sweep vs. an equilibrium neutral model.
model of a selective sweep, L S(�̂, X̂ |Data), is comparedTherefore, one might predict that population processes
to the composite likelihood of the data under a neutralthat create large deviations from the latter model may
equilibrium model, LN(Data). The latter quantity de-lead to the spurious rejection of the null hypothesis of
pends only on the mutation rate, which again is assumedneutrality and thus to the erroneous inference of a re-
known. The composite-likelihood-ratio test statistic em-cent selective sweep. Using coalescent simulations, we
ployed is � KS � log L S(�̂, X̂ |Data)/LN(Data). The nulldemonstrate that the CLR test as proposed by Kim and
distribution of � KS is obtained by applying the CLRStephan (2002) is not robust to the assumption of con-
test to data sets obtained from simulations under thestant population size and random mating. However,
standard neutral model (Hudson 2002) with fixed �.through the use of the proposed goodness-of-fit test, it
The neutral model is rejected at level � when the ob-may be possible to distinguish data sets rejecting neutral-
served � KS is greater than the 100(1 � �) percentile ofity due to directional selection from those due to nonse-
the null distribution (unless otherwise noted, we use alective effects.
level of 5% for all tests in this study).

Neutral simulations and test of robustness: A poten-
tial problem of the method outlined above is that theMETHODS
selective sweep hypothesis is compared to a null hypoth-

Composite-likelihood analysis: Kim and Stephan’s
esis in which the population is randomly mating and of

(2002) CLR test uses the spatial distribution of mutation
constant size. Since the assumptions of this null hypothe-frequencies among a population sample of n DNA se-
sis are frequently violated in natural populations, it isquences to test for evidence of a selective sweep. Briefly,
imperative to understand the robustness of the test tothe method compares the ratio of the composite likeli-
these assumptions. To quantify robustness, we simulatedhood of the data under a null hypothesis (HN) of con-
data under various neutral demographic scenarios thatstant population size, neutral evolution, and random
violate the panmixia and/or constant-size assumptionsmating against an alternative hypothesis (HS) of a com-
of equilibrium models and applied the CLR test. Theplete selective sweep. It is assumed that the beneficial
proportion of neutral data sets that reject neutrality formutation arose on a single chromosome in a population
each parameter combination is the realized type I errorof constant size, drifted to frequency ε, changed deter-
of the test.ministically to frequency 1 � ε, and then drifted to

Specifically, we simulated neutral data under bottle-fixation. Formally, consider a stretch of DNA of length
neck scenarios of varying intensity as well as under anL in which S nucleotides are observed to be variable
island model of population subdivision using Hudson’samong a random sample of n sequences. Let y i for i �
(2002) ms program. We simulated a sample of 10-kb-1, . . . , L denote the observed count of the derived
long sequences with a scaled mutation rate of � � 75 andnucleotide at the ith site with corresponding random
4Nr � 1000, where r is the probability per generation ofvariable, Yi � {0, 1, . . . , n � 1} (note that sites fixed
crossover for the entire simulated region, values roughlyfor derived alleles are folded into the invariant class).
corresponding to a typical Drosophila melanogaster dataLet �̂ and X̂ be the maximum-composite-likelihood esti-
set. Bottlenecks are modeled in the following way: amates (MCLEs) of the strength of selection parameter
population of constant size N is reduced to size �N at(2Ns) and target of selection, respectively. These param-
time t b (in units of 4N generations) in the past and theneter estimates are found via maximization of the com-
exponentially increases back to the same size. The rateposite-likelihood function of Kim and Stephan (2002),
of exponential growth is given by log �/t b . Populationso that
bottlenecks are simulated for various times since the

{�̂, X̂} � arg max
�,X�	

L S(�, X |Data), reduction in units of 4N generations (t b � 0.0025,
0.0125, 0.025, 0.05, 0.125, 0.200, and 0.250) and severity
(� � 0.01, 0.1, 0.2, and 0.5).where
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Simulations of population subdivision under an is-
P(Data|HA) � �

L

i�1

P(Y � y i |HA) � �
L

i�1
�nyi

�pyii (1 � pi)n�yi,land model are performed with two subpopulations and
scaled migration rate, M � 4Nm, where m is the fraction

where y i is the number of sequences that carry the de-of migrants in each subpopulation in each generation.
rived allele and pi is the unknown population frequencyThe sampling scheme is denoted by n � {n 1, n 2 }, where
of the mutation at site i. The composite-maximum-likeli-n 1 and n 2 refer to the numbers of chromosomes sampled
hood estimates of pi can easily be shown to be the empiri-from the first and second subpopulations, respectively.
cal frequency p̂i � y i/n.To distinguish from bottlenecks and subdivisions, we

The goodness-of-fit test statistic, �GOF , is defined asrefer to the model of neutral evolution under random
the ratio of the maximum probability of the data undermating and constant size as the “standard” neutral
the two hypotheses:model.

Next, we conduct the CLR test using the simulated
�GOF � log

max P(Data|HA)
max P(Data|H0)

.data and evaluate the type I error. Simulated data sets
contain variable numbers of segregating sites (S), with
Watterson’s estimates of � ranging from 2.8 to 100.9 Calculating max log P(Data|HA) is straightforward, as p̂i
per 10-kb region. For computational tractability, we use is the same for all sites that have the same frequency.
an approximate method to determine the cutoff values Therefore,
for rejecting the null hypothesis under the CLR test. We
simulated 1000 replicate data sets under the standard log max P(Data|HA ) � �

n�1

j�1

x j �log�nj � 
 j log j
neutral model for 20 values of � ranging from 10 to 200
per region, denoted by �1–�20 . For each �i , we obtained 
 (n � j)log(n � j) � n log n� ,
the corresponding cutoff value, c i , for � KS (95th percen-
tile of the distribution). We use Watterson’s estimate of

where x j is the number of sites that have sample fre-
�, �̂W, for each simulated data set to find the correspond-

quency j out of n. Calculating max log P(Data|H0)
ing critical value that is interpolated by ci . amounts to substituting in the maximum-composite-

Composite-likelihood goodness-of-fit test: In this sec-
likelihood estimates of the location of the sweep and

tion we derive a composite-likelihood goodness-of-fit
strength of selection in the Kim and Stephan (2002)

(GOF) test for the Kim and Stephan (2002) inference
composite-likelihood function: max P(Data|H0) � L S(�̂,

scheme. A GOF test is employed to test if a random X̂ |Data).
sample of data is drawn from a specific distribution of

Let �(0)
GOF be the test statistic calculated from the ob-

interest. In our case, the null hypothesis H 0 is that the
served data set. A large value of �(0)

GOF will lead to the
data are drawn from the Kim and Stephan (2002)

rejection of H0. To evaluate the significance of �(0)
GOF, we

model and the alternative hypothesis HA is that the data
need the distribution of this test statistic under the null

are not drawn from the Kim and Stephan model. To
model. An empirical distribution of �(0)

GOF can be ob-
decide between H0 and HA, we compare the ratio of the

tained from M replicate data sets that are generated by
probability of the data given the null, P(Data|H0), to the

selective sweep simulations under the Kim and Stephan
probability of the data given the alternative, P(Data|HA).

(2002) model (see below) with parameters � � �̂ and
Following Kim and Stephan (2002), we employ a com- X � X̂. Let �(i )

GOF be the test statistic calculated for the
posite-likelihood scheme to approximate these proba- ith replicate data set. Then, we obtain the Monte Carlo
bilities on the basis of the site-frequency spectrum and

estimate of the P-value:
then simulate under the null hypothesis to find the criti-
cal value of our composite-likelihood-ratio goodness-of-fit

P(�GOF � �(0)
GOF|H0) � �M

i�1I(�(i)
GOF � �(0)

GOF)
M

.statistic.
We calculate P(Data|H0) using the composite-likeli-

(Note that since the mutation rate is a nuisance parame-hood function of Kim and Stephan (2002). For the
ter that must be estimated from the data, but is not partalternative hypothesis, we model the number of se-
of the testing procedure, we simulate all data condi-quences at each DNA site that carry the derived nucleo-
tional on S, the total number of segregating sites in thetide as a binomially distributed random variable with
observed data.) The C program used to calculate �GOFunique unknown probability of success. Thus, as op-
is available at http://www.mbg.cornell.edu/Aquadro_posed to testing a specific demographic model, this
Lab.cfm.approach is more general in that it posits that the data

Simulations with selection: We simulated selectivehave been shaped by unidentified evolutionary and pop-
sweeps using a modification of the coalescent-with-ulation processes that have affected the entire region
recombination algorithm of Kim and Stephan (2002).under investigation. In this way, the issue of how well
The ancestral history of n chromosomes of L nucleotidesthe data truly fit a selection model may be more directly
is constructed into an ancestral recombination graphaddressed without having great concern regarding the
(Griffiths and Marjoram 1996a,b), from which mar-appropriateness of the null. The likelihood function for

the alternative model is ginal trees (coalescent trees corresponding to individual
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in the past while stronger (e.g., � � 0.01) bottlenecks
have a greater effect when they occur more recently.
For very recent bottlenecks (t b � 0.01) of strong effect
(99%), close to 90% of the data sets reject the neutral
model in favor of a model with a selective sweep. These
results demonstrate that bottlenecks can frequently lead
to spurious inference of a recent selective sweep, in the
absence of further verification such as a goodness-of-fit
test (discussed below). Our results are in general agree-
ment with other studies that have demonstrated that
many polymorphism-based tests of the equilibrium, neu-
tral model have power to detect bottleneck events (Taj-Figure 1.—Proportion of bottleneck simulations that re-

jected neutrality in favor of selection using the CLR test. The ima 1989; Fu and Li 1993; Fay and Wu 2000; Wakeley
various lines (solid, dashed, etc.) denote the reduction in and Alicar 2001; Przeworski 2002; Wakeley 2003).
population size at the time of the bottleneck for the different In Figure 2, we plot measures of variation and sum-
scenarios considered. All simulations, unless otherwise speci-

mary statistics of the frequency spectrum across fourfied, have fixed parameters n � 15, � � 75, and 4Nr � 1000,
simulated 10-kb regions that reject the CLR test. Oneas specified in methods.
can see from the sliding-window plots that all three
estimators of � [� (nucleotide diversity), �̂W (Watter-

nucleotide sites) are extracted. Selective sweeps occur son 1975), and �̂H (Fay and Wu 2000)] show large
in a panmictic, constant-sized population. The fixation fluctuations along the sequence. Figure 2 also demon-
of the beneficial mutation occurs at the time of sampling strates that bottlenecks may produce data sets that reject
(present). The construction of the graph depends on neutrality via the CLR test and contain spatial patterns
the following parameters: the intensity of selection (� � of nucleotide variation that are similar to those expected
2Ns), the scaled recombination rate (4Nr), and the loca- under a selective sweep. Shortly after a selective sweep,
tion of the beneficial mutation (X). The mutations on Tajima’s D and Fu and Li’s D -test statistics are expected
the genealogy can be mapped, controlling either � (pro- to be negative for a region immediately adjacent to the
portional to branch lengths) or S, the number of segre- target of selection as new mutations begin to accumu-
gating sites in the sample. Simulation with fixed S pro- late. Fay and Wu’s H -statistic (� � �̂H) is also expected
ceeds as follows: assume that the total branch length of to be negative but the deepest “valleys” of this statistic
the marginal tree obtained for site i is bi (i � 1, 2, 3, are expected to flank the target of selection (Fay and
. . . , l). The cumulative total branch length up to site Wu 2000; Kim and Stephan 2002). In these data sets,
i is defined as ci � �i

k �1bk . We choose the smallest inte- the predicted location of the sweep is typically within
ger j that satisfies cj/cL 
 U, where U is a uniform random the deepest valley of Tajima’s D -statistic. In all cases
variable between 0 and 1. Then, a mutation is mapped shown in Figure 2, this region also corresponds to the
on the tree corresponding to site j. The branch of the deepest valley in the sliding window of Fay and Wu’s
tree on which the mutation occurs is similarly chosen H -statistic. Relative to the other statistics, we observe a
proportional to its branch length. Next, another muta- much greater tendency of Fay and Wu’s H to be nega-
tion is placed at a new site using the same procedure tive, indicating that high-frequency-derived alleles
(a new draw of U) except that the previously chosen greatly influence the likelihood of the selective sweep
site(s) is avoided. This is repeated until S mutations are model (LS).
mapped on the genealogy. Interestingly, the average values of Tajima’s D and Fu

and Li’s D for bottleneck data sets that generate sweep-
like patterns are positive across the whole of the 10-kb

RESULTS
sequence, indicating an excess of intermediate-fre-
quency variants even under the most severe bottleneckRobustness analysis: Figure 1 summarizes the propor-

tion of bottleneck data sets that reject neutrality (i.e., scenarios. While this pattern differs from the prediction
of an excess of rare alleles after a simple selective sweep,type I error of the CLR test) for various parameter

combinations. We note that the pattern is complex and it is consistent with previous studies of population bottle-
necks (e.g., Tajima 1989b), which showed that if a fewdepends nonlinearly on both the severity (�) of the

bottleneck and the time since the start of the bottleneck divergent lineages survive the bottleneck, remaining
segregating sites will tend to be in intermediate fre-(t b). Even a modest bottleneck (e.g., � � 0.5) increases

the false positive rate. If the bottleneck is very recent quency immediately after the reduction in population
size. In such a case, the CLR test may falsely reject(t b � 0.0025), it has little effect on the type I error of

the CLR test unless the bottleneck is extremely severe neutrality due to an excess of derived alleles relative to
the neutral expectation. Therefore, bottleneck simula-(e.g., 99% reduction). Weaker bottlenecks (e.g., � �

0.1) have a relatively greater effect if they occur deeper tions that generate false positive signals of a selective
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Figure 2.—Estimates of � and neutrality test statistics across the 10-kb simulated sequence, depicting the frequency spectrum
of variation for bottleneck simulations that rejected neutrality with the CLR test. Windows were 1000 bp long and shifted every
250 bp. Data were simulated under the following conditions and randomly selected: (a) � � 0.01, t b � 0.025; (b) � � 0.01, t b �
0.0125; (c) � � 0.1, t b � 0.125; (d) � � 0.1, t b � 0.05. Each arrow denotes the location of the predicted target of the putative
selective sweep.

sweep may produce positive Tajima’s D and negative all chromosomes from only one subpopulation results
in a higher incidence of false positive signals of selectiveFay and Wu’s H.

Next, we simulated two subpopulations with varying sweeps, as compared to sampling chromosomes from
both subpopulations. Additionally, we observe that therates of symmetric migration between them (M � 0.1,

1, 4, and 10) and various sampling schemes [n � (15, variation in sample size we considered has little effect
on the type I error.0), (10, 5) and (5, 0) and (50, 0)]. Figure 3 summarizes

the type I error of the CLR test for data simulated under Figure 4 shows four randomly chosen data sets that
reject an equilibrium neutral model in favor of a selec-population substructure with two subpopulations. We

note that for all sampling schemes considered, the high- tive sweep model. Plotting the same three estimators of
� used above across the simulated region, we see thatest false positive rate always occurs at the lowest level

of migration. Likewise, the type I error decreases mono- not only does the level of variation fluctuate across the
region, but also, as with bottlenecks, the patterns ex-tonically with increasing migration rate. By comparing

n � (15, 0) and (10, 5), we infer that the sampling of pected to be produced by a selective sweep are repli-
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tion, which is not completely compatible with the selec-
tive sweep model, the replicate GOF test statistics will
be, on average, much smaller than the GOF test statistics
for data generated under a sweep model (and conse-
quently will have a low P-value; Figure 5).

As a positive control of the GOF method, we per-
formed selective sweep simulations with X � 5000, � �
1000. Using � � 0.001, 0.01, and 0.1, the CLR test re-
jected the null hypothesis for 100, 88, and 62% of the
data sets, respectively. We used increasing values of �
given that the calculation of LS assumes � � 0 (Kim and
Stephan 2002) and a failure of this assumption may
lead to the failure of the GOF test. When the GOF test

Figure 3.—The proportion of data sets that rejected neu- was applied to these data sets, the P-values were nearly
trality in favor of selection using the CLR test on data simulated uniform as expected (Figure 6).with subdivision and different levels of migration. The inset

To evaluate the sensitivity of our tests, data sets wererefers to how many alleles were sampled from each of the two
simulated under the models of population bottleneck,subpopulations.
population subdivision, and a recent selective sweep.
Data sets that rejected the null hypothesis in the CLR
test were then analyzed using the proposed goodness-cated in a subdivided population with migration. Fur-

thermore, while Tajima’s D similarly fluctuates between of-fit approach described above. The GOF test per-
formed very well under both demographic modelspositive and negative values across the region as ob-

served under bottleneck scenarios, we continue to ob- considered in detecting false positives of the CLR test
(Figure 6). In cases of population subdivision, nearlyserve the most negative value near the putative target

of selection. This region also corresponds with the most all of the P-values were close to 0. When applied to the
bottleneck simulations, the GOF yielded P-values near 0negative value of Fay and Wu’s H, which tends to be

strongly negative across the entire region (data not in all but a small percentage of parameter combinations
examined (Figure 6). Specifically, for � � 0.1, 18 andshown), indicating once again the heavy influence of

high-frequency-derived alleles on the likelihood of the 28% of data sets had 0.1 � P � 0.5 for t b � 0.025 and
t b � 0.05, respectively. For � � 0.01, 14, 17, and 19%selective sweep model.

Goodness-of-fit test for simulated data: As shown in of data sets had 0.1 � P � 0.5 for t b � 0.0125, t b �
0.025 and t b � 0.05, respectively, while 4 and 12% hadFigures 2 and 4, the CLR test proposed by Kim and

Stephan (2002) to detect selective sweeps is not robust P 
 0.5 for t b � 0.025 and t b � 0.05, respectively. Taking
these results together we note that the proposed GOF,to the effect of a strong, recent bottleneck or population

structure with low rates of migration. We therefore when applied to data sets that rejected neutrality in favor
of selection using the composite-likelihood analysis, maysought to develop a method that might discriminate the

sweep-like pattern caused by a demographic effect from distinguish a selective sweep from other processes gener-
ating “sweep-like” patterns, with the exception of spe-the pattern caused by a “true” selective sweep. The good-

ness-of-fit test proposed is a logical approach to the cific bottleneck scenarios. Namely, very severe bottle-
necks appear to generate an effect very similar to aproblem, since it compares the relative likelihood of

the data under a selective sweep hypothesis to a more selective sweep at a single locus (99% reduction, t b �
0.025–0.05). This result is consistent with other workgeneral model with one parameter per nucleotide site.

Informally, one can reason as follows. A large value showing that a population bottleneck may indeed have
an effect on the genealogy of a population that is indis-of �GOF indicates that the alternative model fits the data

better than the sweep model, while a value of �GOF close tinguishable from a selective sweep (Barton 1998;
Depaulis et al. 2003).to zero indicates a close fit between the selective sweep

hypothesis and the observed data. If a recent selective Application to data: We applied the proposed GOF
test to six published polymorphism data sets that weresweep is the “real” reason a given data set rejects neutral-

ity, the pattern of variation found in replicate data sets argued to contain signatures of recent selective sweeps.
The data sets and test results are listed in Table 1. Wegenerated under the same selective scenario should be

similar to the observed patterns in the original data. In used recombination rates that were either suggested by
the authors or known to be average for the species. Thefact, for data generated under this model, the distribu-

tion of P-values for the GOF test will be uniform by uncertainty in recombination rates appears to affect the
CLR and GOF little, as different values of 4Nr gavedefinition since a P-value is the probability of the data

given the model. If, on the other hand, demography or similar results (see janus/ocnus and sweep regions 1 and
2 in Table 1). Two data sets ( janus/ocnus region in D.other nonselective processes result in the rejection of

the CLR test by generating a sweep-like pattern of varia- simulans and jingwei gene in D. teissieri) show evidence
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Figure 4.—Estimates of � and neutrality test statistics across the 10-kb simulated sequence, depicting the frequency spectrum
of variation for population structure simulations that rejected neutrality with the CLR test. Data for each panel were simulated
with n � (15, 0), M � 0.1. The particular simulation results shown were chosen at random. Note that Fay and Wu’s H -statistic
is strongly negative across these regions, ranging from �25 to �98, and is thus not plotted as it would be off scale. Each asterisk
denotes the position of the most negative window for Fay and Wu’s H -statistic and each arrow shows the predicted location of
the putative sweep.

of partial selective sweeps. In these cases, we took only et al. 2002 and the jingwei gene from Llopart et al.
2002). The four remaining data sets that showed signifi-subsets of sampled chromosomes that exhibit strong

evidence of linkage to the putative beneficial mutation cantly large �KS were subsequently analyzed using the
proposed GOF test. Only the janus/ocnus data yielded(haplotype group I of janus/ocnus and intron-absent

sequences of jingwei). The resulting pattern of polymor- a significantly large �GOF , with P-values between 0.017
and 0.029, thus indicating a poor fit to the selectivephism due to hitchhiking in these subsets should be

identical to that of a complete selective sweep (Meikle- sweep model of Kim and Stephan (2002). However,
these data are not likely to represent a “false positive”john et al. 2004).

We first conducted the CLR test. Of the six data sets, sweep pattern caused by demography or population
structure. Quesada et al. (2003) independently foundtwo failed to reject neutrality (“sweep region 2” of Harr
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as assumed by Kim and Stephan (2002): the haplotype
group I sequences were sampled from many geographic
regions, thus reflecting the complex spread of the bene-
ficial allele across the worldwide population structure
of D. simulans.

The remaining three data sets did not reject the selec-
tive sweep model, although the corresponding P-value
for sweep region 1 falls in a range in which selection
appears to be indistinguishable from certain bottleneck
scenarios (P � 0.081–0.110; Table 1 and Figure 6). The
failure to reject the sweep model for the Duffy locus
and Acp26A may be surprising given that these data sets
are likely to similarly violate the assumptions of the Kim
and Stephan model (population in equilibrium). This
result suggests, however, that the original rejection of
neutrality by the CLR test is more likely to be due to a
selective sweep than to demography alone.

Figure 5.—Plots of the distribution of �GOF for two exam-
DISCUSSIONples: (a) the “empirical” data set rejected the CLR test because

of selection and (b) the empirical data set rejected the CLR Simulations were used to investigate the effects oftest because of population structure with migration. The dot-
population history and structure on the composite-like-ted line denotes the value of the test statistic for the observed
lihood-ratio test proposed by Kim and Stephan (2002)data set. Thus, when the rejection is due to selection, the

observed value falls within the distribution of the test statistic to detect signatures of hitchhiking along a recombining
calculated for the replicate data sets; whereas, when the rejec- chromosome. As with standard tests of neutrality based
tion is not due to selection, the observed value falls outside on the site-frequency spectrum (e.g., Tajima’s D, Fu andof the distribution. The corresponding P-values are given.

Li’s D, Fay and Wu’s H), the CLR test was found to be
sensitive to past and present nonequilibrium demo-
graphies. For example, when sampling is done acrossthe same pattern for a partial selective sweep spanning a

much wider region surrounding the janus/ocnus region. an unknown population structure where rare migrants
are symmetrically exchanged between subpopulations,Thus, we suggest that the large �GOF for these data is

more likely caused by a deviation from the simple model we found that the CLR test rejects neutrality in favor of
the selection alternative nearly 90% of the time. Theof directional selection in a random-mating population

Figure 6.—The results of the
goodness-of-fit approach for data sets
that rejected the CLR test. For the
“empirical” data set taken from selec-
tion simulations (a), equal numbers
of points are taken from data sets sim-
ulated with � � 0.001, 0.01, and 0.1.
For the empirical data sets taken from
migration simulations (b), equal
numbers of points are taken from
data sets simulated with M � 0.1, 1, 4,
and 10. The reduction in population
size at the time of the bottleneck is
indicated as � � 0.1 (c) or � �
0.01 (d).
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TABLE 1

Analysis of published data

Data set 4Nr (per base) �̂ CLR test: �KS (P-value) GOF test: �GOF (P-value)

Acp26Aa 0.04 29.4 7.76 (0.033) 294.5 (0.159)
Duffy locus b 0.0015 90.9 8.84 (0.024) 260.7 (0.602)
janus/ocnus regionc 0.02 109.6 16.60 (0.001) 1107 (0.017)

0.065 446.6 16.61 (�0.001) 1107 (0.022)
0.13 1009.4 16.61 (0.002) 1107 (0.029)

jingwei gene d 0.034 25.3e 3.84 (0.120) e NA
Sweep region 1 f 0.005 129.4 14.00 (0.005) 675.7 (0.081)

0.015 444.4 14.01 (0.003) 675.7 (0.110)
Sweep region 2 f 0.005 22.3 4.24 (0.145) NA

0.015 81.1 4.24 (0.123) NA

P-values are based on 1000 replicates of simulations under null models.
a North Carolina population of Drosophila melanogaster (Aguadé et al. 1992; Kim and Nielsen 2004).
b Human Duffy blood group locus from Hausa population (Hamblin et al. 2002).
c Haplotype group I sequences of janus/ocnus region sequences of D. simulans (Meiklejohn et al. 2004),

analyzed for three different rates of recombination (4Nr).
d Intron-absent sequences of jingwei gene in D. teissieri (Llopart et al. 2002).
e Likelihood is calculated without ancestral/derived allele information (option 2 of Kim and Stephan 2002).
f Sweep regions 1 and 2 of Harr et al. (2002) (D. melanogaster), each analyzed for two different rates of

recombination (4Nr).

test has a similarly high false positive rate for severe an effective population size of 106, would correspond to
t b � 0.015. Sequences simulated with similar parametersbottlenecks.
rejected neutrality in favor of selection with the CLR testAn ideal approach to this problem would be to di-
in the great majority of cases for the strongest bottleneckrectly compare the likelihood of the data given selection
scenario. However, Figure 6 suggests that the GOF testto the likelihoods of the data under various demo-
would successfully distinguish this particular demo-graphic scenarios, in the manner in which selection is
graphic event from a selective sweep.compared with neutrality under the existing method of

Thus, while the proposed GOF test offers some en-Kim and Stephan. However, given the enormous param-
couragement that positive selection may in fact beeter space that would need to be explored to calculate
teased apart from the nonequilibrium effects investi-these likelihoods, the number of models becomes in-
gated, further questions have been raised that will betractable. As an alternative and computationally feasible
the subject of future investigation. Perhaps foremostapproach to this problem, we have proposed a goodness-
among these issues is the desire to consider a widerof-fit test. If a given data set rejects the standard CLR test,
breadth of relevant demographic scenarios. Addition-the maximum-likelihood parameter estimates derived
ally, the performance of both the proposed and existingfrom that analysis, as well as the number of segregating
methods of detecting selection when a sweep has oc-sites in the empirical data set, are then used to simulate
curred in a nonequilibrium population presents a muchreplicates under a selective sweep model. Each of these
more realistic scenario that is yet to be investigated.replicates is subsequently analyzed via a modification of
More importantly, however, the relevant ranges of de-the standard GOF statistic, and the P-value of the ob-
mographic parameters for species of interest need toserved data is estimated via Monte Carlo simulations.
be considered, as this quantification may potentiallyThe utility of methods such as this becomes evident
allow for the rejection of parameter combinations thatwhen considering species such as humans and fruit flies
have been shown to be difficult to distinguish fromfor which there has been interest in detecting positive
selection.selection, yet for which demographic histories are
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Schulz et al., 2002 Identifying genes of agronomic importanceBerlin/Heidelberg, Germany/New York.
in maize by screening microsatellites for evidence of selectionHamblin, M. T., E. E. Thompson and A. Di Rienzo, 2002 Complex
during domestication. Proc. Natl. Acad. Sci. USA 99: 9650–9655.signatures of natural selection at the Duffy blood group locus.

Wakeley, J., 2003 Polymorphism and divergence for island-modelAm. J. Hum. Genet. 70: 369–383. species. Genetics 163: 411–420.Harr, B., M. Kauer and C. Schlötterer, 2002 Hitchhiking map- Wakeley, J., and N. Alicar, 2001 Gene genealogies in a metapopu-
ping: a population-based fine-mapping strategy for adaptive muta- lation. Genetics 159: 893–905.
tions in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99: Watterson, G. A., 1975 On the number of segregating sites in
12949–12954. genetical models without recombination. Theor. Popul. Biol. 7:

Hudson, R. R., 2002 Generating samples under a Wright-Fisher 256–276.
neutral model. Bioinformatics 18: 337–338.
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