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The genes of all organisms have been shaped by selective
pressures. The relationship between gene sequence and fitness
has tremendous implications for understanding both evolutionary
processes and functional constraints on the encoded proteins.
Here, we have exploited deep sequencing technology to experi-
mentally determine the fitness of all possible individual point
mutants under controlled conditions for a nine-amino acid region
of Hsp90. Over the past five decades, limited glimpses into the
relationship between gene sequence and function have sparked
a long debate regarding the distribution, relative proportion, and
evolutionary significance of deleterious, neutral, and advanta-
geous mutations. Our systematic experimental measurement of
fitness effects of Hsp90 mutants in yeast, evaluated in the light of
existing population genetic theory, are remarkably consistent with
a nearly neutral model of molecular evolution.

The results of >150 y of biological research has demonstrated
that selection pressures shape the evolution of organisms (1).

The relationship between gene sequence and selective advantage/
disadvantage provides the fundamental link between genotype
and fitness. Until now, it had not been feasible to systematically
measure this relationship because of the challenge of constructing
and monitoring all possible genetic variants. Two classes of
experiments have provided glimpses of the fitness landscape and
inferences into the relationship between gene sequence and fit-
ness: directed evolution (2–4) and microbial experimental evo-
lution (5–7). In both of these approaches, the fitness landscape
can only be inferred—either because the pool of starting mutations
is unknown, or because mutational sampling is limited. Thus, the
question remains:What does the fitness landscape look like for all
possible point mutants?
Determining the fitness landscape of point mutations in a gene

is conceptually simple: Measure the fitness of organisms with each
possible point mutation in a specific gene in an otherwise identical
genetic background. In practice, there are two technical chal-
lenges: generating high-quality systematic mutant libraries and
measuring fitness in high throughput both accurately and with
a large dynamic range. To address these challenges, we developed
an approach that we call “extremely methodical and parallel in-
vestigation of randomized individual codons” (EMPIRIC) fitness
(Fig. 1).

Results
We used the EMPIRIC approach to analyze yeast Hsp90, an
essential chaperone in eukaryotes (8) required for the maturation
of many kinases (9). Of note, analyzing an essential gene max-
imizes the potential fitness range of mutants and the signal of the
analysis. The amino acid sequence of Hsp90 is highly conserved
among eukaryotes with 45% of the amino acids identical between
the human and Saccharomyces cerevisiae proteins. Based on the
sequence and structure (10) of Hsp90, we focused on a nine-
amino acid region that contains a diversity of different amino
acids with positions that vary in both their level of phylogenetic
conservation among diversely related eukaryotes and their phys-
ical environment (solvent exposed and buried) in the structure of
Hsp90 (Fig. 2A). In addition, two solvent-exposed aromatic side
chains (F583 and W585) were structurally intriguing for a chap-
erone based on their potential to bind to hydrophobic regions on
binding partners. The randomization of this nine-amino acid re-

gion resulted in the parallel analyses of 180 amino acid sub-
stitutions and >500 different codon variants—a task that would
be daunting by traditional approaches.
Our analysis method monitors plasmid abundance that we ex-

pect to parallel with cell growth such that selective pressure
begins to impact plasmid abundance at about the same time that it
impacts cell growth. When cells with null rescue plasmids were
switched to nonpermissive conditions, growth began to retard
noticeably after 8 h and was stably slowed after 12 h (Fig. 2B). At
this time we also observed the effects of selective pressure on the
relative abundance of our point mutant plasmid library as moni-
tored by deep sequencing (Fig. 2 C and D). Starting at 12 h, the
relative abundance of wild-type sequence reads starts to increase
consistent with the wild-type sequence having better fitness rel-
ative to the average point mutant (Fig. 2C). Because we generate
our libraries with mixtures of all four nucleotides at each codon
position, stop codons are included in our library and provide an
internal monitor of selection pressure. Stop codons at all of the
positions that we analyzed rapidly decrease in relative abundance
starting at 12 h in selective conditions (Fig. 2D), consistent with
the known requirement of sequences C-terminal to this region for
Hsp90 function (11). From these results, we conclude that our
deep sequencing approach is an effective means to monitor
selective pressure.
The inclusion of wild-type sequences in our libraries serves as

an internal benchmark to calculate the competitive fitness of each
mutant. Under our experimental conditions, the doubling time of
a homogeneous culture of yeast harboring wild-type Hsp90
plasmid was 4 h (Fig. 2B). By measuring the change in the ratio of
a mutant to wild-type sequence reads as a function of this wild-
type generation time (Fig. 2E), we calculate the relative fitness of
the mutant as a selection coefficients (s) (12). Because fitness is
related to the change in abundances as a function of time, it does
not require equal abundance of each variant at the beginning of
the experiment. Thus, biases in the mutational process (i.e., from
oligonucleotide synthesis) did not preclude the analysis of fitness
of any mutants. The selection coefficients represent the differ-
ence in fitness between the mutant and wild type. For yeast, fit-
ness is proportional to the inverse of the doubling time and, by
definition, wild-type fitness is 1. Thus, a selection coefficient of
zero (no change in mutant to wild-type ratio over time) means
that a mutant is as fit as wild-type, a negative selection coefficient
means that a mutant is less fit than wild-type (−1 if a mutant does
not support any proliferation), and a positive selection coefficient
means that a mutant is more fit than wild-type. We calculated
selection coefficients from our EMPIRIC fitness measurements
for each codon mutant in our library (Datasets S1 and S2). For six
mutants, we compared the EMPIRIC measured fitness effects to
those measured by traditional two strain competition using strains
with different colored fluorescent proteins (Fig. S1). EMPIRIC
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and the bistrain competitions both parse WT-like and null-like
mutants similarly, and for strains that persist in the cultures and
that are therefore monitored with higher signal, we observe
a strong positive correlation (R2 = 0.92, P = 0.003 for two-tailed
Student’s t test) between EMPIRIC and biculture fitness meas-
urements. Of note, one advantage of EMPIRIC measurements is
that all mutants experience identical environmental conditions
because they are physically located in the same flask compared
with bistrain fitness competitions where each mutant is grown
in separate flasks. To examine the reproducibility of EMPIRIC
measurements, we repeated the EMPIRIC experiment (Fig.
S1) and observe a strong correlation (R2 = 0.82, P = 10−67 two-
tailed Student’s t test). Thus, the EMPIRIC procedure is very
reproducible.
The average selection coefficient for all codons from our

EMPIRIC analyses was s = −0.42 (P = 10−170 using two-tailed
Student’s t test compared with null hypothesis that the mean
s = 0) indicating that the average mutation in this region is of
deleterious effect. For comparison, the average selection co-
efficient of all stop codons was −0.75. The fitness of stop codons
is greater than a true null (s = −1), indicating that the relative
plasmid abundance of these nonsense mutations falls off rapidly
with time in selective conditions, but that slow plasmid replica-
tion may persist in some fraction of these cells.
We examined selection coefficient differences between syn-

onymous codons, which code for identical protein sequences.

Synonymous codon substitutions among homologous genes are
widely used in population genetic analysis as a measure of the
neutral mutation rate (13) with the underlying assumption that
these substitutions do not impact fitness and their dynamics are
governed by genetic drift. This assumption is imperfect because
species have distinct codon preferences within coding regions,
indicating that selective pressure may in fact distinguish between
synonymous codons (14). Our experimental data enabled us
to analyze the variation in fitness between synonymous sub-
stitutions. We observe increased fitness variability between syn-
onymous substitutions where the average synonym fitness was
null-like (Fig. S2), which is likely caused by sampling noise (due
to the low abundance of these codons in the competing culture).
To minimize this noise, we calculated the variability among se-
lection coefficients for synonymous codons with high fitness (s >
−0.05, n = 151) as a root mean square deviation (rmsd = 0.018
compared with the synonym mean). For comparison we observe
an rmsd of 0.35 when all possible substitutions including those
that result in an amino acid change are considered. Thus, syn-
onymous substitutions caused fitness changes that pale in mag-
nitude to amino acid changing substitutions consistent with the
expectation of neutrality at synonymous sites (15).
We averaged the observed EMPIRIC selection coefficient of

synonymous codons to generate fitness profiles of each amino
acid at each position (Fig. 3A and Fig. S3). The fitness of the
hydrophobic amino acids exhibited less variability within a posi-
tion than polar amino acids (rmsd of selection coefficients for
VILMFYW of 0.15 compared with 0.26 for KRHDENQST).
From a fitness perspective, the specific geometry of hydrophobic
amino acids had a smaller impact compared with the varied
physical properties of polar amino acids. To compare geo-
metrical sensitivity among amino acids with similar physical
properties, we compared selection coefficients at each position
between the following pairs: D/E, K/R, N/Q, V/I, L/M, W/Y. The
three polar pairs differ more than the three hydrophobic pairs
(selection coefficient rmsd of 0.23 and 0.10, respectively), in-
dicating that the fitness of polar amino acids is more sensitive to
geometry than the fitness of hydrophobic amino acids. The rel-
ative insensitivity of amino acid substitutions between hydropho-
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Fig. 1. EMPIRIC approach to experimentally determine fitness landscapes.
Randomized individual codon libraries are introduced into a host cell whose
only other copy of the gene is regulatable. The fitness of each individual
codon mutation is determined by measuring its abundance in the mixed
culture as a function of time under selective conditions.
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Fig. 2. Hsp90 region analyzed and application of selection pressure to point mutants of Hsp90 in yeast. (A) Positions 592–600 are highlighted in yellow in the
dimeric structure of S. cerevisiae Hsp90. (B) Growth of an Hsp90 temperature-sensitive yeast strain at 36 °C is rescued with a wild-type Hsp90 plasmid.
(C and D) Deep sequencing analysis of a library of single-codon mutants of Hsp90 from amino acids 582–590 grown in mixed culture. (C) Relative abundance
of wild-type sequence as a function of time in selective conditions where the only other copy of Hsp90 is inactivated. (D) The ratio of TAG stop codons to wild-
type codons decreases steeply over time in selective conditions. (E) Observed fitness of leucine synonyms at positions 582, 583, and 584.
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bic amino acids is consistent with the finding that hydrophobic
cores of proteins can be efficiently repacked with different hy-
drophobic sequences (16–18). All polar amino acids can form
hydrogen bonds whose thermodynamic energy varies sharply
with distance and angle (19), providing a rationale for the greater
variability of the fitness of polar amino acids.
Based on the distribution of observed fitness effects, we clas-

sified mutants as WT-like if they had a selection coefficient
within 5% of wild-type or better (s > −0.05). We chose this cutoff
value because it is three times the rmsd between synonyms and,
thus, represents a 99% confidence interval. We generated a logo
of amino acids with WT-like fitness to analyze the patterns for
underlying physical requirements for fitness at each position
(Fig. 3B). Two of the nine positions analyzed exhibited a clear
and consistent physical requirement for WT-like fitness: large
hydrophobic side chains for position 585 and a γ-hydroxyl group
for position 586. The physical properties for the preferred amino
acids at these positions enable mechanistic predictions. The fit-
ness preference for large hydrophobic amino acids of varied
geometry (tryptophan, leucine, phenylalanine) at position 585,
which is located on the surface of the Hsp90 structure, is con-
sistent with involvement in loose contacts with hydrophobic
partner molecules. The preference for only serine or threonine
at position 586 indicates that the hydroxyl group common to both
of these amino acids is important for function. In the structure of
Hsp90, this hydroxyl group forms hydrogen bonds to two main-
chain amide groups (Fig. S4). Although many hydrogen bonds
are not important for protein function (20), our fitness meas-
urements indicate that the hydrogen bonds formed at position
586 are critical for the function of Hsp90. Indeed, although

tremendous strides have been made in understanding the re-
lationship between protein structure and stability (17, 21), the
ability to predict from structure the most important stabilizing
contacts remains an unmet challenge. EMPIRIC fitness meas-
urements provide a high-throughput approach to identify these
important interactions experimentally and, hence, a route to
develop and train predictive algorithms with improved accuracy.
Most of the other positions analyzed exhibit a preference for

amino acids with varied physical properties. For example, at po-
sition 584, both glycine (the WT amino acid) and phenylalanine
result in WT-like fitness. These amino acids differ dramatically in
their physical properties: Phenylalanine is large and hydrophobic,
and glycine is the smallest amino acid and imparts flexibility on the
protein main chain. Despite their disparate physical properties,
these two amino acids are clearly distinguished in fitness from all
others. This type of physical plasticity illustrates the degenerate
relationship between physics and biology: Biology is governed by
physical interactions, but biological requirements can have multi-
ple physical solutions.
The observed absence of phenylalanine at position 584 in

a broad phylogenetic alignment (Fig. 3C) is consistent with the
genetic code requiring two base substitutions to make this amino
acid transition and the deleterious fitness effects of any of the
single-base substitutions. Indeed, the fitness landscape combined
with the genetic code may have broad impacts on evolutionary
processes. The EMPIRIC approach provides a long-sought route
(via larger datasets) to accurately examine the influence of the
genetic code on evolution. For example, it makes it possible to
determine whether the dominant genetic code is optimized for
sampling evolutionarily neutral/favorable mutations. To address
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Fig. 3. Amino acid profile in phylogenetic alignment poorly predicts EMPIRIC fitness profile. (A) Heat map representation of the EMPIRIC fitness profile with
the wild-type amino acids outlined in red. Information content logos generated from amino acids with WT-like EMPIRIC fitness (B) and a phylogenetic
alignment of 448 Hsp90 protein sequences (C). (D) The dominant genetic code is optimized for single-base substitutions between codons with WT-like fitness
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this issue in our dataset of the fitness effects of >500 codon
replacements, we counted the number of single-base sub-
stitutions that result in transitions between two codons with WT-
like fitness for the dominant genetic code and for 1,000 randomly
simulated genetic codes (Fig. 3E). We find that the genetic code
is highly optimized (+2.4 σ) to favor single-base substitutions
between codons with WT-like fitness compared with randomly
generated codes as predicted from theoretical considerations of
amino acid similarity (22). Thus, the genetic code generally
permits single-base substitution pathways between codons with
WT-like fitness.
To assess the EMPIRIC fitness profile against the evolutionary

record, we compared our experimental results against the Hsp90
species tree (Fig. 3C). For almost every position, the amino acid
entropy is higher for EMPIRIC fitness (Fig. 3E), indicating that
more amino acid substitutions are compatible with high fitness in
yeast Hsp90 than are observed in the phylogenetic alignment of
Hsp90. Indeed, the relative amino acid entropy from the phy-
logenetic alignment was a poor predictor of the EMPIRIC en-
tropy (Fig. 3F). The number and distribution of substitutions in
the phylogenetic alignment did not accurately indicate the
number of amino acids that would be compatible with high fit-
ness experimentally. Many factors could contribute to this ob-
servation, including distinct fitness profiles under environmental
conditions experienced in natural selection, and fitness differ-
ences beyond our ability to differentiate resulting in meaningful
selection pressures in nature. Importantly, the genes in the phy-
logenetic alignment vary widely in their codon use and, hence,
their nucleotide sequence (Fig. S5), indicating that mutational
sampling occurred in this region and were subject to distinct
evolutionary pressures in different organisms owing to varying
selection intensities and/or effective population sizes.
Although the absence of a substitution in the phylogenetic

alignment was a poor prognosticator of fitness effects, we find
that all 17 amino acid substitutions observed at least twice in the
phylogenetic alignment had WT-like (s > −0.05) experimental
fitness (Fig. 3G). We do note that five amino acid substitutions
that were observed only once in the phylogenetic alignment fall
below this fitness cutoff, but only one is null-like (s < −0.5). In
contrast, of the amino acid substitutions absent from the phy-
logenetic alignment, only 20% had WT-like experimental fitness
(Fig. S6). Thus, the presence of an amino acid in a phylogenetic
alignment was predictive that the corresponding point mutation
in the yeast protein will be biochemically functional and evolu-
tionarily nearly neutral. These observations indicate the impor-
tant role of drift in the fixation of equivalent substitutions, and
highlight the dominant role of purifying selection in suppressing
deleterious fixations (23).

Discussion
The overall distribution of EMPIRIC fitness is bimodal (Fig. 4)
with a clustering of amino acids with fitness similar to wild-type
(s ≈ 0), and a broader distribution of mutations of deleterious
effect. Based on this distribution, we classified the first mode as
“nearly neutral,” and the second as “deleterious.” Evaluating this
directly measured distribution of fitness effects for >500 codon
variants against the rich field of predictions from population
genetics is of tremendous interest. Indeed, understanding this
underlying distribution of selection coefficients has been a cen-
tral focus of evolutionary biology over the past five decades (24).
Contrary to recent inference made in Drosophila favoring models
of frequent recurrent and strongly positive selection (25), but
similar to inferences from genome-wide analyses of polymor-
phisms from S. cerevisiae and S. paradoxus (26), our direct
observations in yeast are remarkably consistent with a nearly
neutral model of molecular evolution (27), in which a large
proportion of new mutations are strongly deleterious and are
eliminated via purifying selection, whereas the great majority of

remaining mutations are nearly neutral, with dynamics largely
dictated by genetic drift (Fig. 4). Importantly, these initial results
pertain to a conserved region of a highly conserved gene under
a single growth condition. Examining and comparing the distri-
bution of fitness effects for regions of variable levels of conser-
vation, and under variable growth conditions, will be of extreme
interest and should be a subject of future investigation.
As with the first techniques of protein electrophoresis allowing

biologists to glimpse the extensive protein-level variation (28, 29)
spurring the development of the neutral (30, 31) and nearly
neutral theories of molecular evolution (27)—as well as the in-
troduction of DNA sequencing technology allowing for inference
to be drawn from nucleotide-level variation (32)—the EMPIRIC
technique provides another layer of understanding, enabling di-
rect measure of the distribution of selection coefficients by
considering each possible point mutation at each site. In doing
so, the EMPIRIC approach exposes a broad range of long-
standing questions in population genetics to experimental ex-
amination including the effects of environmental conditions and
genetic background on fitness landscapes.

Materials and Methods
Library Construction. In EMPIRIC fitness measurements, high-quality single-
codon substitution libraries that avoid multiple mutations are important for
two reasons: enabling fitness changes to be directly attributed to distinct
mutations and providing a library size that can be accurately monitored in
high-throughput. To generate these point mutant libraries, we optimized
a cassette ligation strategy to rapidly generate plasmids containing single
codons fully randomized to generate all 64 possibilities (Fig. S7).

We constructed a plasmid with a self-encoded removable fragment (SERF)
composed of inverted BsaI restriction sites, such that treatment with this
enzyme results in directional sticky ends and removal of the BsaI sites. To
reduce background ligation products, an SphI site, introduced between the
BsaI sites, was also digested in these vectors. We introduced a silent HpaII
restriction site adjacent to the randomized region to facilitate adapter li-
gation required for deep sequencing. We generated the SERF vector by PCR
from a yeast 417 shuttle plasmid containing a KanMX marker and the HSP82
(systematic name of yeast Hsp90) gene driven by a GPD promoter that
expresses Hsp90 to endogenous levels (33). The HSP82 region of the SERF
vector was fully sequenced to ensure the fidelity of the entire gene.
Annealed oligonucleotide cassettes with a single codon randomized as NNN
were ligated into the vector and transformed into Escherichia coli. Trans-
formants were grown in mixed liquid culture from which plasmid DNA
was isolated.
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Growth Competition. We used iG170D S. cerevisiae cells (34) engineered with
a temperature-sensitive chromosomal copy of Hsp90. This yeast strain grows
robustly at the permissive temperature of 25 °C and rapidly slows growing at
the nonpermissive temperature of 36 °C. Growth at the nonpermissive
temperature is rescued with a plasmid bearing wild-type Hsp90 (Fig. 2B).
Plasmid libraries for each randomized position were transformed into yeast
by using the lithium acetate method. Transformants were grown in mixed
liquid culture with G418 selection at 25 °C. After growing to saturation (2 d),
cultures were outgrown overnight at 25 °C and an equal number of cells for
each randomized position combined into a single culture. This culture was
then heated in a water bath to 39 °C for 15 min to rapidly inactivate G170D
Hsp90 and subsequently grown at 36 °C. These cultures were diluted every
8 h to maintain a culture density <107 cells per mL. Samples for analysis
corresponding to ≈2 × 108 cells were harvested at different timepoints. All
yeast growth was performed in synthetic dextrose media with 200 μg/mL
G418 and 50 μg/mL ampicillin. Growth rates were determined for a strain
with a wild-type Hsp90 rescue plasmid under identical conditions (doubling
time of 4 h at 36 °C).

To validate our EMPIRIC approach, we experimentally determined the
fitness effects of six point mutants through binary competition of strains
fluorescently labeled with either CFP or YFP as described (35). Briefly, the CFP
and YFP genes were chromosomally integrated into the iG170D parental
yeast strain used in the EMPIRIC measurements. Plasmids containing either
the wild-type yeast Hsp90 gene or a panel of seven mutants was introduced
into each strain. Individually, CFP-labeled strains with either wild-type or one
of the seven mutants were grown in competition with a YFP-labeled strain
containing wild-type yeast Hsp90 under experiment conditions identical to
the EMPIRIC experiment, and fluorescent measurements were made as a
function of time.

DNA Preparation and Sequencing.Yeast pellets were lysed with zymolyase and
total DNAwas purified by using a silica column. A region containing all of the
randomized codons was PCR amplified with primers that added a 3′ Illumina
sequencing primer binding site. After purifying the PCR product on a silica
column, a sticky end was created adjacent to the randomized region by
digestion with the enzyme HpaII. This sticky end was ligated to an oligo-
nucleotide cassette that included a three-base barcode with a Hamming
distance (36) of two between any two codes (used to distinguish each time-
point sample) and a 5′ Illumina sequencing primer-binding site. The ligation
reactions for each time-point were column purified, combined and amplified
in a single reaction with Illumina genomic sequencing primers. This PCR
product was separated on an agarose gel and purified before 36-base
Illumina sequencing.

Data Analysis. Illumina sequencing resulted in fastq file from which 2.6 × 107

reads were used for time-dependent analysis based on stringent accuracy
requirements (>99% confidence across all 36 bases). The occurrence of each
point mutant at each time-point was tabulated. Ten of the randomized
codon sequences resulted in the formation of internal HpaII sites and were
removed from further analysis. The ratio of each single-codon mutation
relative to the wild-type sequence was calculated for each time point on
a log2 scale. Selection coefficients (s) for each mutation were determined as
the slope of this ratio to time in WT generations. Plots were thoroughly
inspected for nonlinear relationships that would indicate a secondary ge-
netic change during the time-course of the experiment, but none were
observed. Selection coefficients for all stop codons were determined from
the 12, 24, and 36 h time-points. Selection coefficients of mutants within
three SDs of the stop codon mean (s < −0.50) were considered null-like and
analyzed in the same manner. For all other mutations, selection coefficients
were determined from the 12, 24, 36, 48, 60, 72, and 84 h time-points. To
check for systematic influences of codon bias on fitness, we calculated the
fitness difference between a codon and the average for all synonymous
codons and compared this difference to the relative abundance of the codon
in highly expressed yeast genes. For this analysis, we chose the 13 genes with
the highest experimentally observed expression in S. cerevisiae (37). We
averaged over all synonymous codons to calculate amino acid fitness and
used the SD to estimate noise in our system. Amino acids were considered
WT-like if their amino acid selection coefficient was greater than −0.05.
Fitness logos of WT-like amino acids were generated by creating sequences
with an equal number of each WT-like amino acid and the program weblogo
(38). A similar logo was produced for the 448 sequences obtained by using
BLASTP with the full-length yeast Hsp82 protein that aligned fully within
this region.

Simulations of Alternate Genetic Codes. Genetic codes were chosen randomly
for the 20 amino acids plus stop codons with the requirement that each of
these 21 possible classes be encoded by at least one codon. The EMPIRIC
fitness measurements were then searched by using these codes for all single-
base substitutions between codons with WT-like fitness. The simulation was
run for 1,000 iterations and compared with the dominant biological code.
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