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Abstract

With novel developments in sequencing technologies, time-sampled data are becoming more available and

accessible. Naturally, there have been efforts in parallel to infer population genetic parameters from these data

sets. Here, we compare and analyse four recent approaches based on the Wright–Fisher model for inferring

selection coefficients (s) given effective population size (Ne), with simulated temporal data sets. Furthermore, we

demonstrate the advantage of a recently proposed approximate Bayesian computation (ABC)-based method that

is able to correctly infer genomewide average Ne from time-serial data, which is then set as a prior for inferring

per-site selection coefficients accurately and precisely. We implement this ABC method in a new software and

apply it to a classical time-serial data set of the medionigra genotype in the moth Panaxia dominula. We show

that a recessive lethal model is the best explanation for the observed variation in allele frequency by imple-

menting an estimator of the dominance ratio (h).
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Introduction

The study of temporal changes in allele frequency origi-

nated with two of the early founders of population

genetics (Fisher 1922; Wright 1931), in which the fate of

an allele was considered under a variety of models –

including neutrality, positive and negative selection, and

migration. Their celebrated debate on the relative roles

of selection and drift in shaping the course of evolution

also encompassed time-sampled data (Fisher & Ford

1947; Wright 1948), upon the publication of the time-ser-

ies analysis of the medionigra phenotype in the moth Pan-

axia dominula. Following on this, and alternatively taking

an experimental evolution approach, Clegg studied the

dynamics of gene frequency change in Drosophila mela-

nogaster (Clegg et al. 1976; Cavener & Clegg 1978; Clegg

1978). However, owing to the limited availability of

genetic markers, relatively few time-sampled data sets

were available for consideration throughout the remain-

der of the 20th century. Thus, most test statistics for

distinguishing the effects of selection from drift were

focused on single time point data sets – basing inference

on patterns in the site frequency spectrum, linkage dis-

equilibrium and polymorphism/divergence (for a

review, see Crisci et al. 2012).

Recently, sequencing data from multiple time points

has become increasingly common owing to novel

evelopments in sequencing technologies (Schuster 2008)

– coming from the fields of both ancient genomics and

experimental evolution. This additional temporal com-

ponent has the promise of providing improved power

for inferring population genetic parameters compared

with single time point-based analyses, as the trajectory of

the allele itself provides valuable information about the

underlying selection coefficient.

However, there are a limited number of methods cur-

rently available to estimate these parameters from time-

sampled data. Moment-based methods (Kimura & Crow

1963; Pamilo & Varvio-Aho, 1980; Nei & Tajima, 1981;

Waples 1989; Jorde & Ryman, 2007) have been proposed

utilizing the variance of gene frequency changes to infer

effective population size (Ne). In addition, likelihood-

based methods (Williamson & Slatkin, 1999; Anderson

et al. 2000; Berthier et al. 2002; Anderson 2005) have been
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proposed to calculate the probability of a given data

observation given a predefined model. Efforts to incor-

porate selection into these estimation procedures have

only recently begun, and given the rapidly increasing

availability of such sequencing data sets, we now have a

unique opportunity to readdress the puzzle of

distinguishing genetic drift from selection with greater

precision and power.

Thus, we present here new software implementing

and expanding an approximate Bayesian computation

(ABC, Sunn�aker et al. 2013) approach to jointly infer per-

site effective population sizes (Ne) and selection coeffi-

cients (s) from time-sampled data, initially described in

Foll et al. (2014) to search for resistance mutations in

time-sampled data from the influenza virus. Further-

more, we compare this approach with existing likeli-

hood-based methods (Bollback et al. 2008; Malaspinas

et al. 2012; Mathieson & McVean, 2013), in order to

inform future users on the most suitable method to be

applied for any given data set.

Materials and methods

Ne-based ABC method

The data X consist of allele frequency trajectories

measured at L loci: xi (i = 1,. . .,L). The Ne-based ABC

methodology infers both the effective population size Ne

shared by all loci and L locus-specific selection coeffi-

cients si (i = 1,. . .,L). At a particular locus i, we can

approximate the joint posterior distribution as (see Foll

et al. 2014 for details):

PðNe; sijXÞ � PðNejTðXÞÞPðsijNe;UðXiÞÞ

where T(X) = T(X1,. . .,XL) denotes summary statistics

that are a function of all loci together chosen to be infor-

mative about Ne, and U(Xi) denotes locus-specific sum-

mary statistics chosen to be informative about si. A two-

step ABC algorithm as proposed by Bazin et al. (2010) is

used to approximate this posterior:

Step 1. Obtain an approximation of the density

PðNejTðXÞÞ � PðNejXÞ

Step 2. For locus i = 1 to i = L:

1 Simulate K trajectories Xi,k from a Wright–Fisher

model with si randomly sampled from its prior and Ne

from the density obtained in step 1.

2 Compute U(Xi,k) for each simulated trajectory.

3 Retain the simulations with the smallest Euclidian dis-

tance between U(Xi) and U(xi) to obtain a sample from

an approximation to P(si|Ne,Xi)P(Ne|X) = P(Ne,si|X).

In the original algorithm (Bazin et al. 2010), the first

step is also achieved using ABC. In our case, we define T

(X) as a single statistic given by Jorde and Ryman (2007)

Fs0 unbiased estimator of Ne:

Fs0 ¼ 1

t

Fs½1� 1=ð2~nÞ� � 2=~n

ð1þ Fs=4Þ½1� 1=ðnyÞ� withFs ¼ ðx� yÞ2
zð1� zÞ

where x and y are the minor allele frequencies at the two

time points separated by t generations, z = (x+y)/2, and
~n is the harmonic mean of the sample sizes nx and ny at

the two time points expressed in number of chromo-

somes (twice the number of individuals for diploids).

We average Fs0 values over sites and times to obtain a

genomewide estimator of Ne = 1/Fs0 for haploids and

Ne = 1/2Fs0 for diploids (Jorde & Ryman 2007). A Bayes-

ian bootstrap approach (Rubin 1981) is used to obtain a

distribution for P(Ne|T(X)). Please note that we use the

common notation where the effective population size Ne

corresponds to number of individuals, and the

corresponding number of chromosomes for diploids is

2Ne.

In the second step, simulations are performed using a

Wright–Fisher model with an initial allele frequency and

sample sizes matching the observed ones (simulation

code available in the downloadable software package).

At each site, we utilize two summary statistics derived

from Fs0: U(Xi) = (Fsd0i, Fsi0i) with Fsd0 and Fsi0 calcu-

lated, respectively, between pairs of time points where

the allele considered is decreasing and increasing in

frequency, such that at a given site Fs0 = Fsd0 + Fsi0. For
the diploid model, we define the relative fitness as

wAA = 1 + s, wAa = 1 + sh and waa = 1 where h denotes

the dominance ratio (1 = dominant, 0.5 = codominance,

0 = recessive), and as wA = 1 + s and wa = 1 for the

haploid model (Ewens 2004).

We here implement this two-step approach in a

new command line C++ program termed Wright–

Fisher ABC (WFABC). This estimation procedure is

suitable for both haploid and diploid models of selec-

tion. Source code and binary executables for Linux, OS

X and Windows are freely available from the ‘soft-

ware’ page of the Jensen Lab website: http://jensen

lab.epfl.ch/.

Likelihood-based methods

Currently, there are three likelihood-based methods

available for inferring population genetic parameters

from time-serial data (Bollback et al. 2008; Malaspinas

et al. 2012; Mathieson & McVean 2013), based on a hid-

den Markov model (HMM) to model the allele frequency

trajectory.
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Bollback et al. (2008) co-estimate the selection coeffi-

cient (s) and the effective population size (Ne) from a

diffusion process, by approximating the Wright–Fisher

model and computing the maximum likelihood at fixed

intervals. Malaspinas et al. (2012) additionally estimate

the allele age (t0) and further approximate the Wright–

Fisher model through a one-step process. Mathieson

and McVean (2013) estimate only the selection coeffi-

cient (s) assuming that Ne is known, using an expecta-

tion–maximization (EM) algorithm that can be extended

to the case of a structured population. The fitness is

parameterized as with our Ne-based ABC approach.

The likelihood function of the parameters of interest –

h = (c,Ne) for the Bollback et al. (2008) method and

h = (c,Ne,t0) for the Malaspinas et al. (2012) method,

where c = 2Nes – is conditioned over all population alle-

lic frequencies xj1 ; . . .; xjm at sampling times T = (t1,. . .,tm)

and is given as:

lðhÞ ¼
X
j1

. . .

X
jm

pði1; . . .; imjh;T; xj1 ; . . .; xjmÞpðxj1 ; . . .; xjm jh;TÞ

where ik is the frequency of the minor allele at the sam-

pling time k, and jk is the true minor allele frequency at

the sampling time k, where xjk ¼ jk=2Ne. The first term of

the likelihood is the emission probability, which is mod-

elled as a binomial sampling, and the second term repre-

sents the transition probabilities in the Markov chain. In

both methods, the Markov chain is approximated by a

diffusion process, from which the transition probabili-

ties are given as the backward Kolmogorov equations

(Ewens 2004).

The major difference between these three likeli-

hood-based methods comes from the implementation

of how these probabilities are calculated. The Bollback

et al’s. (2008) method utilizes numerical approxima-

tions to evaluate the likelihood function, first using the

Crank–Nicolson approximation (Crank et al. 1947) for

the backward Kolmogorov equation and second using

numerical integration for the emission probability.

Mathieson and McVean (2013) use an EM algorithm to

find the maximum-likelihood estimate (MLE) of s

based on the MLE for complete observations (i.e. at

every generations). Malaspinas et al. (2012) approxi-

mate the diffusion process by a one-step process. The

state space of the process is the population allele

frequencies that are denoted by (z0,. . ., zH�1), where

z0 = 0, zH�1 = 1 and zk�1 < zk. The one-step process

only allows transitions between two adjacent states

(i.e. from zi to zi�1, or from zi to zi+1); hence, the infini-

tesimal generator Q can be constructed as a tridiagonal

H 9 H matrix:

Q ¼

0 0 0 . . . 0
d1 g1 b1

0 . .
. . .

. . .
. ..

.

di gi bi
..
. . .

. . .
. . .

.
0

dH�2 gH�2 bH�2

0 . . . 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

where bi denotes the transition rate from zi to zi+1, di the
transition rate from to zi to zi�1, and gi is the rate of no

transition such that gi = 1�(bi + di). The appropriate

choice for the parameters b and d of the matrix Q is given

for both the diploid and the haploid Wright–Fisher

models in Malaspinas et al. (2012) and Foll et al. (2014),

respectively.

Simulated data sets for testing

For real data, it is important to take into account the non-

random criteria one used to select sites from the genome

for analyses. This so-called ascertainment bias is known

to be very important for single time point SNP data

(Nielsen & Signorovitch 2003), but has not been studied

so far for time-sampled data. One of the reasons is that

including realistic ascertainment schemes in likelihood-

based methods is a difficult task. The one-step process

used in Malaspinas et al. (2012) can be adjusted to match

the way in which ancient DNA data are generally

collected, such that the locus considered is polymorphic

at the present time. This condition implies that the pro-

cess can never reach the absorbing states 0 and 1, and

one needs to remove the first and last rows and columns

of the Q matrix. In the current implementation of

Malaspinas et al. (2012), only this conditional case is

available and has been tested for this study. The Bollback

et al. (2008) method implements an unconditional model

(no ascertainment) as well as the particular case where

the allele is known to be beneficial and reaches fixation

during the sampling period. There is no ascertainment

model implemented in Mathieson and McVean (2013)

method. One distinct advantage of this simulation-based

approach is the ability to easily incorporate different

ascertainment schemes into the estimation procedure, as

one simply needs to be able to simulate them. We here

present three such nonexclusive schemes: (i) observing a

minimum allele frequency over the entire trajectory,

(ii) observing a minimum allele frequency at the last time

point [including fixation like in the Bollback et al. (2008)

method] and (iii) being polymorphic at the last time

point [like in the Malaspinas et al. (2012) method]. We

note in particular that the first case is something that will

be present in any data set but is not available in

likelihood-based methods. Because the three available

© 2014 John Wiley & Sons Ltd
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likelihood methods implement different ascertainment

processes, and these processes lead to more or less infor-

mative data, it is not possible to make a direct compari-

son of their performance. For this reason, we separately

compare them with WFABC.

For this comparative study, we generate simulated

data sets using the Wright–Fisher model with a range of

parameter values for the effective population size (Ne)

and selection coefficient (s). For the diploid Wright–

Fisher model, codominant time-serial allele frequency

data from 1000 replicates for Ne = (200, 1000, 5000) and s

2[0,0.4] are generated. To assess the precision and accu-

racy of these methodologies in estimating two potential

empirical cases of small s values and large s values, the

selection coefficients are divided into two sets of s = (0,

0.005, 0.01, 0.015, 0.02) and s = (0, 0.1, 0.2, 0.3, 0.4). For

WFABC, we retained the best 1% of 500 000 simulations

based on the Euclidian distance between the observed

and simulated Fsd0 and Fsi0 statistics and use the mean of

the posterior distributions obtained for s using a rejection

ABC algorithm (Sunn�aker et al. 2013) as a point estimate.

First, we use these simulated data sets to demonstrate

the performance of WFABC when different sampling

time points and different sample sizes are used. Second,

we show the influence of the ascertainment procedure

using two examples: an unconditional but unrealistic

case where all trajectories start with an initial minor

allele frequency of 10%, and one ascertained case where

a new mutation occurs at the first generation, and only

the trajectories reaching a frequency of 5% at least in one

sampling time point are kept. We use these simulated

data sets to compare the performance of WFABC with

the method of Mathieson and McVean (2013).

Finally, we focus on the ascertainment case of the

allele segregating at the last sampling time point, as this

model is the only realistic one allowing us to compare

WFABC with a likelihood method. Depending on the

strength of selection and the effective population size,

mutations reach fixation more or less rapidly. In order to

generate data with the condition of being polymorphic at

the last sampling time point, the number of generations

is adjusted to have a nonzero probability for this condi-

tion, allowing us to efficiently simulate such scenarios. A

new mutation occurs at the first generation, and 100 sam-

ples are drawn randomly through binomial sampling,

with 12 sampling time points. Using these simulated

data sets, comparative studies of WFABC with Malaspin-

as et al. (2012) and Bollback et al. (2008) methods are

carried out, with the search range and the prior for the

selection coefficient set as s 2[�0.1,0.1] for small values

ranging from 0 to 0.02, and s 2[�0.2,0.6] for large values

ranging from 0 to 0.4. Simulated data sets from the

haploid Wright–Fisher model are also generated, but

only for one set of Ne = 1000 to validate the performance

of the modified haploid version of Malaspinas et al.

(2012) model described in Foll et al. (2014). For Malaspin-

as et al. (2012), we used the quadratic grid option

(Gutenkunst et al. 2009) for computing the likelihood

and the Nelder–Mead simplex algorithm option to find

the maximum likelihood (Nelder & Mead 1965).

Both the Bollback et al. (2008) and Malaspinas et al.

(2012) methods estimate parameters based on a single

allele frequency trajectory, which thus contains limited

information about Ne. WFABC utilizes multiple sites in

order to estimate Ne, which is then used as a prior to

estimate selection coefficients. In order to implement an

equal comparison, we fix Ne to its true value in all

scenarios and evaluate the ability of these approaches to

estimate selection coefficients.

To demonstrate the advantage of estimating Ne cor-

rectly, a final multilocus scenario is generated where

both s and Ne values are inferred. For Ne fixed at 1000,

10 000 trajectories are simulated with 500 being under

selection with s randomly chosen in [0.05,0.4]. We used a

search range of c 2[0,2000] and Ne 2[50,2000] for the

Malaspinas et al. (2012) method, and a uniform prior s

2[�0.2,0.6] for WFABC. For WFABC, all the 10 000 tra-

jectories are used in the first step to obtain a posterior

distribution for Ne, which is used in the second step to

estimate s at each locus individually as explained above.

Results

Performance of the examined estimation procedures

The performance studies of WFABC are presented in a

standard box plot with the box as the first, second and

the third quartiles, and the whiskers as the lowest and

highest datum within the 1.5 interquartile range of the

lower and upper quartiles, respectively. The first box

plot shows the estimated selection coefficients for differ-

ent numbers of sampling time points as 12, 6 or 2 (Fig.

S1, Supporting information). As expected, a larger

number of sampling time points yields a better estimate

of s – however, WFABC is able to estimate s accurately

with as small as two sampling time points for moderate

values of s < 0.2. The second box plot shows the esti-

mated selection coefficients from WFABC for the sample

sizes of 1000, 100 and 20 with Ne = 1000 (Fig. S2,

Supporting information). The estimation of s improves

as the number of sample sizes increases as expected.

For the comparative studies of WFABC with the Mat-

hieson and McVean (2013) method, the unconditional

case with an initial minor allele frequency of 10% is

shown in box plots for the small s values (Fig. S3,

Supporting information) and the large s values (Fig. S4,

Supporting information). For the small s values, the Mat-

hieson and McVean (2013) method performs better than

© 2014 John Wiley & Sons Ltd

4 M. FOLL , H. SHIM and J . D . JENSEN



WFABC. However, for larger values of s, the Mathieson

and McVean (2013) method shows an increasing trend of

underestimation, whereas WFABC remains unbiased

(Fig. S4, Supporting information). For the conditional

case of ascertaining the simulated data sets with a

minimum frequency of 5% at one sampling time point,

the performance of WFABC is noticeably better for both

the small and large s values (Figs 1 and 2). Figure 1

shows that the Mathieson and McVean (2013) method

constantly overestimates small s values. Figure 2 indi-

cates that this bias is compensated by the underestima-

tion shown above for large s values.

For the conditional case studies of the allele segregat-

ing at the last sampling time point, we obtain six sets of

results with the varying parameters for the diploid

model and two sets of results for the haploid model from

the three approaches. Results are given for Ne = 1000 for

small s values (Fig. 3) and large s values (Fig. 4).

Additionally, tables with the calculations of the root-

mean-square error (RMSE) and bias for each set of

results are shown for the small s values and the large s

values in Tables 1 and 2, respectively. Note that MSE is

defined as the sum of the variance and the squared bias

of the estimator and therefore incorporates information

from both precision (variance) and accuracy (bias).

Comparing the three approaches for small s values

(Fig. 3), WFABC and the Malaspinas et al. (2012)

approach produce good estimates of s, whereas the Boll-

back et al. (2008) method fails to infer different s values.

From the box plot, both the median and the mean of

Fig. 1 Box plot for the estimated small selection coefficients

from each simulated replicate of the Wright–Fisher diploid

model, with Ne = 1000, 90 generations, and the minimum fre-

quency of 5% at one sampling time point. The grey rectangles

correspond to Wright–Fisher ABC and the white rectangles to

the Mathieson and McVean (2013) method. The red circles are

the true values for s, and the blue triangles are the mean of the

estimated s values.

Fig. 2 Box plot for the estimated large selection coefficients

from each simulated replicate of the Wright–Fisher diploid

model, with Ne = 1000, 90 generations, and the minimum fre-

quency of 5% at one sampling time point. The grey rectangles

correspond to Wright–Fisher ABC and the white rectangles to

Mathieson and McVean (2013) method. The red circles are the

true values for s, and the blue triangles are the mean of the

estimated s values.

Fig. 3 Box plot for the estimated small selection coefficients from

each simulated replicate of the Wright–Fisher diploid model, for

Ne = 1000 and 500 generations. The grey rectangles correspond

to Wright–Fisher ABC, the white rectangles to the Malaspinas

et al. (2012) method and the gold rectangles to the Bollback et al.

(2008) method. The red circles are the true values of s, and the

blue triangles are the mean of the estimated s values.

© 2014 John Wiley & Sons Ltd
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WFABC and the Malaspinas et al. (2012) approach are

close to the true s value. However, WFABC appears to

contain a longer tail of underestimated s values, and the

interquartile range boxes are wider. Table 1 provides

more quantitative comparisons of their performance. The

RMSE values reveal that for all the cases of Ne = 1000

and small s, the Malaspinas et al. (2012) approach is

generating more precise estimates. On the other hand,

WFABC produces estimates of less bias for all small s

values in this set.

Comparing the three approaches for large s values

(Fig. 4), WFABC and the Malaspinas et al. (2012)

approach produce reasonable estimates of s, whereas the

Bollback et al. (2008) method again fails to detect any

difference in s values. For s values larger than 0.1, the

performance of WFABC is significantly better than the

Malaspinas et al. (2012) approach both in accuracy and

precision (Table 2) – producing estimates with 10-fold

less bias and twofold less error than the Malaspinas et al.

(2012) approach. This gap in performance increases from

s = 0.2 to s = 0.4, thus this trend may be extrapolated to

higher s values.

Notably, the Bollback et al. (2008) method consistently

estimates s = 0 for all examined data sets. This poor per-

formance has been evaluated for various conditions

including changing grid sizes, conditioning on fixation

and varying sampling time points – with no perceptible

difference in results. To verify our usage, the method

was tested with the exact parameters utilized in the ini-

tial paper for the example of bacteriophage MS2 (Boll-

back et al. 2008), resulting in the successful replication of

their results (Figs S5 and S6, Supporting information).

Notably, the performance of the statistic depends on the

choice of the search range for c, due to the presence of

local peaks in the likelihood function. When the interval

is chosen to be narrow and centred around the true s

value of 0.4, the estimated s is correctly given owing to

the local maximum (replicating their result). However,

when the full likelihood surface is examined, the global

maximum is present near 0 as observed in all simulated

test replicates. For this reason, the Bollback et al. (2008)

method is excluded from the further analyses of perfor-

mance, as well as from the illustrative data application.

As shown, our comparison studies suggest that

WFABC and Malaspinas et al. (2012) approaches perform

almost equally well for estimating selection coefficients

for both small and large values. While WFABC slightly

overestimates the selection coefficient in the cases of

small s and small Ne (Fig. S7, Table S1, Supporting infor-

mation), it is notable that the Malaspinas et al. (2012)

perform particularly well when s is in the range of 0.01

and 0.02, as observed by Malaspinas et al. (2012). In con-

trast, WFABC exhibits less bias when s values are large

(i.e. > 0.1) for small Ne (Fig. S8, Table S2, Supporting

Fig. 4 Box plot for the estimated large selection coefficients from

each simulation replicate of the Wright–Fisher diploid model, for

Ne = 1000 and 90 generations. The grey rectangles correspond to

Wright–Fisher ABC, the white rectangles to the Malaspinas et al.

(2012) method and the gold rectangles to the Bollback et al.

(2008) method. The red circles are the true values for s, and the

blue triangles are the mean of the estimated s values.

Table 1 RMSE and bias for the small s and Ne = 1000 scenario

for the Wright–Fisher diploid model

s = 0 s = 0.005 s = 0.01 s = 0.015 s = 0.02

Bias

WFABC �0.0035 �0.0046 �0.0032 �0.0014 �0.0015

Malaspinas

et al. (2012)

�0.0044 �0.0050 �0.0039 �0.0026 �0.0022

RMSE

WFABC 0.017 0.018 0.017 0.016 0.018

Malaspinas

et al. (2012)

0.013 0.014 0.012 0.011 0.011

RMSE, root-mean-square error; WFABC, Wright–Fisher ABC.

Table 2 RMSE and bias for the big s and Ne = 1000 scenario for

the Wright–Fisher diploid model

s = 0 s = 0.1 s = 0.2 s = 0.3 s = 0.4

Bias

WFABC 0.017 �0.017 0.0064 �0.0044 �0.0083

Malaspinas

et al. (2012)

�0.0024 �0.018 �0.025 �0.056 �0.091

RMSE

WFABC 0.059 0.060 0.050 0.046 0.059

Malaspinas

et al. (2012)

0.047 0.046 0.048 0.084 0.13

RMSE, root-mean-square error; WFABC, Wright–Fisher ABC.

© 2014 John Wiley & Sons Ltd
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information). Thus, we conclude that the two methods

estimate the selection coefficient to a high accuracy and

precision for Ne 2[200,1000] and for the condition of the

allele segregating at the last sampling time point. In

general, although the difference in performance both in

precision and accuracy is minor, the Malaspinas et al.

(2012) approach appears to give superior results for

small s values, whereas WFABC for large s values.

However, the Malaspinas et al. (2012) approach

encounters a limitation in computation efficiency for the

set of Ne = 5000 (Figs S9 and S10; Tables S3 and S4, Sup-

porting information). For the large s values, the computa-

tion time was too lengthy to complete the 1000 replicates;

thus, only the results from WFABC are shown (Fig. S10,

Supporting information). Compared with the small Ne

values, the estimation of large s is becoming more accu-

rate and precise as Ne gets large (Tables 2, S2 and S4,

Supporting information). This trend is the same for small

s values (Tables 1, S1 and S3, Supporting information),

although the bias appears to switch from overestimation

to underestimation as Ne increases. For the Malaspinas

et al. (2012) approach, the accuracy of inferring small s

values improves as Ne increases, although the precision

remains similar (Tables 1, S1 and S3, Supporting infor-

mation). However, for Ne = 5000 and s > 0.01, the 1000

replicates were not complete due to the lengthy compu-

tational time; thus, the RMSE and bias values are not

available (Table S3, Supporting information).

For the haploid model, WFABC shows superiority in

both accuracy and precision for inferring any s values

compared with the Malaspinas et al. (2012) approach

(Figs S11 and S12, Tables S5 and S6, Supporting informa-

tion).

Finally, the multilocus scenario demonstrates the

great benefit provided by the ability of WFABC to use

the information shared by all loci to estimate Ne. The

RMSE of the selection coefficients calculated over the 500

trajectories under selection is less than half that obtained

using the Malaspinas et al. (2012) approach (0.049 vs.

0.10, see Fig. 5).

In summary, WFABC is superior for diploid cases

when both s and Ne values are large (i.e. c = 2Nes is

large), for any haploid cases, and when multiple loci are

available, whereas the Malaspinas et al. (2012) approach

is suitable for cases when c values are small.

Comparison of computational efficiency

Apart from accuracy and precision, an important differ-

ence in performance between these methods is the com-

putational efficiency. A major advantage of WFABC is

the computational speed, which, for example, allows for

an evaluation of all observed sites in the genome in order

to identify putatively selected outliers (Foll et al. 2014)

and to estimate the full distribution of fitness effects of

segregating mutations. For the Malaspinas et al. (2012)

approach, the computational time becomes heavy when

c is larger than 200 and is no longer feasible when c is

approaching 1000, whereas WFABC has no restriction on

the sizes of Ne and s. For the Mathieson and McVean

(2013) approach, the CPU time of estimating only the

selection coefficient of each site is around 2 s regardless

(a) (b)

Fig. 5 Correlation between the true and the estimated values of the selection coefficients s for the multilocus scenario using Wright–
Fisher ABC (a) and the Malaspinas et al. (2012) methods (b). The red line represents the identity (y = x) line.
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of the size of Ne, but still is slower than WFABC. There-

fore, we suggest that the likelihood-based approach is

preferable in cases where both the candidate mutation

and effective population sizes are known a priori,

whereas WFABC is preferable in the absence of this

information. The average CPU time spent for each repli-

cate for the diploid model is shown in Table 3. We note

that when the Malaspinas et al. (2012) method is also

used to estimate Ne, the difference in CPU time between

the two methods is even greater.

Data application

We applied WFABC to a time-serial data set of the medi-

onigra morph in a population of Panaxia dominula (scarlet

tiger moth) at Cothill Fen near Oxford. This colony was

first studied by Fisher and Ford (1947), and further

observations have been collected almost every year until

at least 1999 (Cook & Jones 1996; Jones 2000). The moth

P. dominula has a 1-year generation time and lives near

the Oxford district in isolated colonies. The typical

phenotype has a black forewing with white spots and a

scarlet hind wing with black patterns (see Fisher &

Ford 1947). The medionigra allele produces the medioni-

gra phenotype when heterozygous, and the bimacula

phenotype when homozygous, changing the pigment

and patterns on the wings to an increasing degree, and is

almost never observed (Sheppard & Cook, 1962). Using

our notation above, we denote by A the medionigra allele,

and the fitness of the three genotypes is given by

wAA = 1 + s (bimacula), wAa = 1 + sh (medionigra) and

waa = 1.

The respective role of drift and natural selection to

explain the rapid decline of the medionigra allele fre-

quency after 1940 (Fig. 6) was the subject of a strong

debate between Fisher and Wright (Fisher & Ford 1947;

Wright 1948), with Wright arguing that the observed

pattern until 1946 could be explained by drift alone with

an effective population size of Ne = 150 (Wright 1948).

The same data containing further observations have been

re-analysed several times (Cook & Jones 1996; O’Hara

2005; Mathieson & McVean 2013) with most studies

concluding that the medionigra allele is negatively

selected with s = �0.14 (Cook & Jones 1996) or s = �0.11

(Mathieson & McVean 2013) based on a codominant

model (h = 1/2). Recently, Mathieson and McVean

(2013) found that a fully recessive medionigra allele

(h = 0) fits with a higher likelihood compared with

h = 1/2 but with a much larger selection coefficient

s � �1. In particular, this recessive lethal model explains

better the persistence of the medionigra allele at a low fre-

quency for so many generations (Mathieson & McVean,

2013). However, this large value of s is outside the range

for which their approximations are valid, and this

hypothesis could not be formally tested.

Our ABC approach based on simulations can deal

with the full range of s values, and we further extended

it here to co-estimate the degree of dominance h. We fol-

lowed the intuitive idea of Mathieson and McVean (2013)

that the number of generations during which the allele

persists at low frequency is informative for the degree of

dominance h. More formally, we added two summary

statistics in our ABC procedure, tl, defined as the number

Table 3 Average CPU time consumed in seconds to run one

simulation replicate

Ne = 200 Ne = 1000 Ne = 5000

Small

s

Large

s

Small

s

Large

s

Small

s

Large

s

WFABC 5 3 15 6 300 70

Malaspinas

et al. (2012)

380 250 350 18 000 80 000 –

WFABC, Wright–Fisher ABC.

Fig. 6 Frequency of the medionigra allele

in the Cothill Panaxia dominula moth pop-

ulation (Cook & Jones, 1996; Jones 2000).
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of generations where the allele frequency is below 5%

and not lost; th defined as the number of generations

where the allele frequency is above 95% and not fixed.

For the moth data, we have tl = 54 and th = 0 (see Fig. 6).

Using the simulated distributions, Fsd0 and Fsi0 are both

normalized by the largest standard deviation max(sd

(Fsd0),sd(Fsi0)), as well as tl and th by max(sd(tl),sd(th)).

We followed Mathieson and McVean (2013) and ran our

ABC method using a fixed population size of 2Ne = 1000,

and we plot the corresponding joint posterior distribu-

tion for s and h in Fig. 7a. The mode of the joint posterior

distribution is at s = �1 and h = 0.043, supporting the

idea of a lethal bimacula phenotype (wAA = 0) with a dele-

terious medionigra phenotype (wAa = 0.96) consistent with

previous observations (Sheppard & Cook, 1962). The

shape of the joint posterior distribution (Fig. 7a) shows

that the medionigra allele is either very strongly selected

against and almost completely recessive (h � 0) or

codominant with a weaker selection coefficient

(s � �0.2). Even if the density is larger in the recessive

lethal region of the parameter space (bottom left corner

in Fig. 7a), the two-dimensional 90% highest posterior

region includes the alternative codominant hypothesis.

As it has been argued that the effective population size

could be of the order of a few hundred (Wright 1948;

O’Hara 2005), we also ran the analysis with 2Ne = 100.

The joint posterior distribution for s and h in Fig. 7b

shows a similar pattern with a mode at s = �1 and h = 0.

However, the surface is flatter and the two-dimensional

90% highest posterior region now includes s = 0,

confirming Wright’s view that a small enough popula-

tion size could explain the observed pattern with genetic

drift alone (Wright 1948; Mathieson & McVean 2013). We

finally ran the analysis using a uniform prior for 2Ne

between 100 and 10 000 to take into account its uncer-

tainty in the estimate. In this case, the joint posterior

gives a stronger support for a lethal bimacula phenotype

with a deleterious medionigra phenotype as compared to

2Ne = 1000 (Fig. S13, Supporting information).

Discussion

Maximum-likelihood estimators have the advantage of

being consistent and efficient, but the computational

method used to find the maximum likelihood can be crit-

ical in complex models. For instance, even though the

underlying model of the Bollback et al. (2008) approach

is similar to the Malaspinas et al. (2012) approach and

the Mathieson and McVean (2013) approach, the differ-

ence in performance appears to be coming from the dif-

ference in the implementation of computational

methods. On the other hand, ABC-based methods reduce

data sets into summary statistics, and thus, the perfor-

mance of these methods is dependent on the chosen sta-

tistics. The difference in performance demonstrated

through this comparative study between our newly pro-

posed ABC-based method and the likelihood-based

methods is very small in most cases. Therefore, we can

hypothesize that the two summary statistics – Fsd0 and
Fsi0 – are close to being statistically sufficient.
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Fig. 7 Two-dimensional joint posterior

distribution for s and h for the moth Pan-

axia dominula data using 2Ne = 1000 (a)

and 2Ne = 100 (b). The grey lines delimit

two-dimensional a highest posterior den-

sity regions for a = 0.9 (largest region),

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 (small-

est region).
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A disadvantage of the likelihood methods arises from

the limitations imposed by the assumptions made for

diffusion approximation. To approximate the Wright–

Fisher model with the diffusion process, one makes the

assumption that the Markov process is continuous in

state space and time. This assumption requires s to be

small and Ne to be large (Durrett, 2008). Thus, likelihood

methods based on diffusion approximation are inevita-

bly limited to the cases of large effective population sizes

and small selection coefficients and may explain the

biases observed at large s values in this study. Addition-

ally, the computational efficiency limits the value of c to

be under 1000 for the Malaspinas et al. (2012) approach,

and even if s is small, Ne is again limited to be under

5000. Thus, despite having good performance, the

likelihood methods are limited to cases of small s and

intermediate Ne values.

Although WFABC gives slightly less precise results in

some cases of small s, the two major advantages of this

implementation come from its ability to consider com-

plex ascertainment cases and to accurately estimate Ne

from multilocus genomewide data. The Mathieson and

McVean (2013) method is computationally efficient but is

based on the unrealistic assumptions that Ne is known

and that the data are completely unascertained. Using a

point estimate of Ne obtained from the first step of

WFABC in the Mathieson and McVean (2013) method

would ignore the uncertainty on this parameter. Malasp-

inas et al. (2012) only handle the conditional cases of

polymorphism at the last sampling time point and esti-

mate Ne separately at each site. WFABC is computational

efficient and enables the estimation of a genomewide

average Ne from time-sampled data, after which per-site

selection coefficients may be estimated efficiently and

accurately. There currently exist no such likelihood-

based methods to estimate Ne accurately from time-

sampled genomic data, as the information is only based

on a single allele trajectory. Our simulated multilocus

scenario shows that estimating Ne accurately leads to a

higher precision in the estimates of selection coefficients

s, leading overall to a smaller RMSE as compared to the

Malaspinas et al. (2012) method. As the effective popula-

tion size is an important population genetic parameter

that is often unknown in both ancient genomics and

experimental evolution, WFABC provides a practical

and flexible platform to be utilized in any time-serial

data for efficiently inferring a wide range of Ne and s

values to high accuracy. Finally, we note that the ABC

method also has the advantage of providing a posterior

distribution rather than simply a point estimate, allowing

for easy-to-build credibility intervals.

The application of WFABC to the Panaxia dominula

data confirms that a nearly fully recessive lethal model

for the medionigra allele is the best explanation for the

observed pattern as hypothesized by Mathieson and

McVean (2013). We note that in this case, once the allele

frequency is low enough such that heterozygotes almost

never occur, it behaves like a neutral model. We used

this feature to estimate Ne using Fs0 (Jorde & Ryman,

2007) by considering only time points after 1950, when

the medionigra allele first reaches a frequency belowffiffiffiffiffiffiffiffiffiffiffi
0:001

p � 0:032 and we obtained 2Ne = 927, which is

consistent with previous estimates (Fisher & Ford, 1947;

Cook & Jones, 1996; O’Hara 2005). This application also

demonstrates that WFABC is very flexible, as it can also

be used to co-estimate h and accommodate very large

selection coefficients (such as s = �1, as in our application

here). To confirm the validity of our approach in this case,

we simulated 1000 data sets mimicking the P. dominula

data (same number of generations, time points, sample

sizes and initial allele frequency). We fixed s = �1 and

h = 0.05 and let 2Ne vary uniformly between 100 and

10 000 for each simulation and estimated s and h using

our ABC method (Fig. 8). Both parameter estimates

are unbiased and while distinguishing lethality (s = �1)

from very strong negative selection (s < �0.5) seems to

be difficult, h is estimated with a very small variance.

Finally, it should be noted that all the methods

described and utilized in this study assume that the loci

are in linkage equilibrium and take no demographic his-

tory into account except the Mathieson and McVean

(2013) method which integrates structured populations

with a lattice model. Owing to the generally low number

of generations in time-series data, one expects only little

recombination to occur and long stretched of DNA may

be under linkage disequilibrium. Foll et al. (2014) demon-

strated that the model is robust to fluctuating popula-

tion sizes, but this may not hold for all demographic

(a) (b)

Fig. 8 Box plot for the estimated selection coefficient (s, panel a)

and dominance ratio (h, panel b) from 1000 simulated data sets

mimicking the Panaxia dominula data. The red circles indicate

the true simulated values (s = �1; h = 0.05), and the blue trian-

gles the mean of the estimated values.
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scenarios. It is an important future challenge to expand

these methods further for inferring demographic param-

eters from time-serial data. WFABC has great potential

in achieving this challenging task, as ABC-based estima-

tors lend themselves more readily to the incorporation of

complex demographic models compared with likeli-

hood-based methods.
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Fig S1. Box plot for the estimated selection coefficient from

WFABC for three different sampling time points.

Fig S2. Box plot for the estimated selection coefficient from

WFABC for three different sample sizes.

Fig S3. Box plot for the estimated small s from each simulation

replicate of the Wright–Fisher diploid model with Ne = 1000

simulated for 90 generations and the initial minor allele fre-

quency at 10%.

Fig S4. Box plot for the estimated large s from each simulation

replicate of the Wright–Fisher diploid model with Ne = 1000

simulated for 90 generations and the initial minor allele fre-

quency at 10%.

Fig S5. Log likelihood of the estimated selection coefficient for

the Bollback et al. (2008) method with a small search interval for

c.

Fig S6. Log likelihood of the estimated selection coefficient for

the Bollback et al. (2008) method with a large search interval for

c.

Fig S7. Box plot for the estimated small selection coefficient

from each simulation replicate of the Wright–Fisher diploid

model with Ne = 200 simulated for 300 generations.

Fig S8. Box plot for the estimated large selection coefficient from

each simulation replicate of the Wright–Fisher diploid model

with Ne = 200 simulated for 80 generations.

Fig S9. Box plot for the estimated small selection coefficient

from each simulation replicate of the Wright–Fisher diploid

model with Ne = 5000 simulated for 500 generations.

Fig S10. Box plot for the estimated large selection coefficient

from each simulation replicate of the Wright–Fisher diploid

model with Ne = 5000 simulated for 100 generations.

Fig S11. Box plot for the estimated small selection coefficient

from each simulation replicate of the Wright–Fisher haploid

model with Ne = 1000 simulated for 300 generations.

Fig S12. Box plot for the estimated large selection coefficient

from each simulation replicate of the Wright–Fisher haploid

model with Ne = 1000 simulated for 50 generations.

Fig S13. Two-dimensional joint posterior distribution for s and h

for the moth P. dominula data using a uniform prior for 2Ne

between 100 and 10 000.

Table S1. RMSE and bias for the small s and Ne = 200 scenario

for the Wright–Fisher diploid model

Table S2. RMSE and bias for the big s and Ne = 200 scenario for

the Wright–Fisher diploid model

Table S3. RMSE and bias for the small s and Ne = 5000 scenario

for the Wright–Fisher diploid model

Table S4. RMSE and bias for the big s and Ne = 5000 scenario

for the Wright–Fisher diploid model

Table S5. RMSE and bias for the small s and Ne = 1000 scenario

for the Wright–Fisher haploid model

Table S6. RMSE and bias for the big s and Ne = 1000 scenario

for the Wright–Fisher haploid model
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