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ABSTRACT The joint and accurate inference of selection and demography from genetic data is considered a particularly challenging
question in population genetics, since both process may lead to very similar patterns of genetic diversity. However, additional
information for disentangling these effects may be obtained by observing changes in allele frequencies over multiple time points. Such
data are common in experimental evolution studies, as well as in the comparison of ancient and contemporary samples. Leveraging this
information, however, has been computationally challenging, particularly when considering multilocus data sets. To overcome these
issues, we introduce a novel, discrete approximation for diffusion processes, termed mean transition time approximation, which
preserves the long-term behavior of the underlying continuous diffusion process. We then derive this approximation for the particular
case of inferring selection and demography from time series data under the classic Wright–Fisher model and demonstrate that our
approximation is well suited to describe allele trajectories through time, even when only a few states are used. We then develop a
Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients with high accuracy and further
extend this model to also infer the rates of sequencing errors and mutations. We finally apply our approach to recent experimental data
on the evolution of drug resistance in influenza virus, identifying likely targets of selection and finding evidence for much larger viral
population sizes than previously reported.
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DETECTING signatures of past selective events gives in-
sights into the evolutionary history of a species and

elucidates the interaction between genotype and phenotype,
providing important functional information. Unfortunately,
a population’s demographic history is a major confounding
factor when inferring past selective events, particularly
because demographic events can mimic many of the mo-
lecular signatures of selection (Andolfatto and Przeworski
2000; Nielsen 2005). Despite efforts to create statistics
robust to demography, all currently available methods to
detect selection are prone to misinference under nonequi-
librium demography.

Some of these issues can potentially be overcome by using
multi-time-point data, as the trajectory of even a single allele
contains valuable information about the underlying selection
coefficient. Owing to advances in sequencing technologies,
such multi-time-point data are becoming increasingly com-
mon from experimental evolution (Foll et al. 2014), from
longitudinal medical or ecological studies (Wei et al. 1995;
Renzette et al.2014), and through ancient samples (Sverrisdóttir
et al. 2014; Wilde et al. 2014). However, computationally
efficient and accurate methods to infer demography and se-
lection jointly from such data sets are still limited.

A natural and common way of modeling such time series
data are in a hiddenMarkovmodel (HMM) framework,which
allows efficient integration over the distribution of unob-
served states of the true population frequencies, thus allowing
calculation of the likelihood based on the observed samples.
Williamson and Slatkin (1999), for instance, developed a
maximum-likelihood approach based on such an HMM to
infer the population size N from samples taken at different
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time points. More recently, similar approaches have been de-
veloped to infer population size along with the selection co-
efficient of a selected locus for which time series data are
available (Bollback et al. 2008; Malaspinas et al. 2012).

All such approaches, however, are plagued by the problem
that the number of hidden frequency states is equal to the
population size, which renders HMM applications computa-
tionallyunfeasible for largepopulations.Different routeshave
been taken to overcome this. One approach is to model the
underlying Wright–Fisher process as a continuous diffusion
process, which is then discretized for numerical integration
using a numerical difference scheme (Bollback et al. 2008).
Since this approach remains computationally expensive, it
was later suggested to directly model the diffusion process
on a more coarse-grained grid (Malaspinas et al. 2012). Un-
der this approach, the generator matrix for the transition
between the coarse-grained states is then approximated by
fitting the first and second infinitesimal moments. Unfortu-
nately, the minimum number of states required is still compu-
tationally prohibitive for large values of g ¼ 2Ns (Malaspinas
et al. 2012). For this reason, the most recent reported method
resorted to simulation-based approximate Bayesian computa-
tion (ABC), which allowed the joint inference of locus-specific
selection coefficients for many loci (Foll et al. 2014, 2015).
However, this method requires first estimating the population
size under the assumption that all loci are neutral and thus
may be biased when many loci are under selection.

Here we introduce a novel framework by approximating
the Wright–Fisher (WF) process with a coarse-grained Mar-
kov model that exactly preserves the expected waiting times
for transition between states. This is achieved by exploiting
the theory of Green’s function for diffusion processes. Con-
trary to previous approaches, our approximation matches the
WF process closely even when only very few states are con-
sidered, regardless of g ¼ 2Ns: As we show with extensive
simulations and a data application from experimental evolu-
tion, our method allows for accurate joint inference of both
population size and locus-specific selection coefficients even
in the presence of pervasive selection. Further, it is readily
extended to incorporate population size changes, sequencing
errors, or the appearance of novel mutations.

Models

Mean transition time approximation

Let XðtÞ be a diffusion process on the state space ½0; 1�: This is
a continuous-time Markov process with continuous sample
paths and with infinitesimal generator

Lf ¼ 1
2
aðxÞ d2

dx2
f þ bðxÞ d

dx
f : (1)

For general information about diffusion processes we refer to
Durrett (2008, Chap. 7) and Etheridge (2011, Chap. 3).

The classical example in population genetics is the Fisher–
Wright diffusion, which we discuss below. We seek to find a

discrete-state Markov process UðtÞ that approximates XðtÞ:
For this purpose, we subdivide the unit interval ½0; 1� into,
not necessarily equidistant, frequencies

u0 ¼ 0, u1 , . . . , uK21, uK ¼ 1:

These form the states of UðtÞ: For two states ui; uj; consider
the transition time to the first visit of uj when starting at ui :

TU
ui/uj

¼ infft : UðtÞ ¼ uj   for  Uð0Þ ¼ uig:

Similarly we define the transition time for the diffusion pro-
cess XðtÞ: We say that UðtÞ is a mean transition time approx-
imation of XðtÞ if

E

h
TU
ui/uj

i
¼ E

h
TX
ui/uj

i
(2)

for all pairs of states ui; uj (see Figure 1). This condition
guarantees that the paths of XðtÞ andUðtÞ exhibit comparable
long-term behavior. In the following we show how to con-
struct the Markov process UðtÞ from the diffusion process
XðtÞ; using the theory of Green’s function.

Webegin by recalling some notions for diffusion processes.
The natural scale of the process XðtÞ is given by

fðxÞ ¼
Z x

cð yÞdy; (3)

where cðyÞ ¼ expð22
R yðbðzÞ=aðzÞÞdzÞ; see Durrett (2008, p.

264). The so-called speed measure is defined by

mðyÞ ¼ 1
að yÞcð yÞ: (4)

According to theorem 7.16 in Durrett (2008), Green’s func-
tion for an interval ðu; vÞ4½0; 1� is given by

Gðx; yÞ ¼
2mð yÞ ðfðvÞ2fðxÞÞðfðyÞ2fðuÞÞ

fðvÞ2fðuÞ ; u# y# x

2mð yÞ ðfðxÞ2fðuÞÞðfðvÞ2fð yÞÞ
fðvÞ2fðuÞ ; x, y# v:

8>>><
>>>:

(5)

Denote by Tx/u or Tx/v the time to first visit of u or v, re-
spectively, starting at x. Then Tv

u ¼ minðTx/u;Tx/vÞ is the
exit time from the interval ðu1; u2Þ; given the process is at x
at time t ¼ 0: One can show (see Durrett 2008, p. 279)

E
�
Tv
u
� ¼ Z v

u
Gðx; yÞdy: (6)

Moreover, the probability of exiting at the lower limit u is

ℙðTx/v .Tx/uÞ ¼ fðvÞ2fðxÞ
fðvÞ2fðuÞ: (7)

We nowwant to determine the instantaneous transition rates
qi; j of the discrete-state Markov process UðtÞ: Recall the
definitions
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ℙ½Uðt þ dtÞ ¼ ukjUðtÞ ¼ uk� ¼ 12 qk;kdt þ oðdtÞ;

ℙ½Uðt þ dtÞ ¼ ukþ1jUðtÞ ¼ uk� ¼ qk;kþ1dt þ oðdtÞ;

and

ℙ½Uðt þ dtÞ ¼ uk21jUðtÞ ¼ uk� ¼ qk;k21dt þ oðdtÞ:

The sojourn time of state uk; i.e., the time interval of UðtÞ
spent in state uk; is an exponential random variable with
parameter qk;k: Since the expectation of this exponential vari-
able is 1=qk;k; our condition (2) enforces

qk;k ¼
1

E

�
Tkþ1
k21

�;
where we write k2 1 instead of uk; etc., to unburden the
notation. From this we get

qk;kþ1 ¼ ℙðTk/kþ1 ,Tk/k21Þ
E

�
Tkþ1
k21

�
and

qk;k21 ¼ ℙðTk/kþ1 .Tk/k21Þ
E

�
Tkþ1
k21

� :

We can now form the tridiagonal generator matrix

Q ¼

0
BB@

0 0 0 0 ⋯
q1;0 2q1;02 q1;2 q1;2 0 ⋯
0 q2;1 2q2;1 2 q2;3 q2;3 ⋯
⋮ ⋮ ⋮ ⋮ ⋮

1
CCA:

The transition matrix of the Markov process UðtÞ is given by

PðtÞ ¼ exp  tQ: (8)

Application to Wright–Fisher models

We consider a classic Wright–Fisher Model of two alleles that
segregate in a population of size 2N: Time t is measured in

generations of theWright–Fisher process. In the presence of a
nonvanishing dominance coefficient h the fitnesses of the
three genotypes are given by wAA ¼ 1þ s; wAa ¼ 1þ hs;
and waa ¼ 1: Under such a model, the infinitesimal mean,
which corresponds to the change in allele frequency, is then
given by (Ewens 2004, p. 13)

bðxÞ ¼ wAAx2 þ wAaxð12 xÞ
wAAx2 þ 2wAaxð12 xÞ þ waað12xÞ2 2 x

¼ xð12 xÞsðx þ h2 2hxÞ
1þ sxðx þ 2h22hxÞ :

(9)

Let XðtÞ be a diffusion process corresponding to the frequency
of allele A. As shown by Lacerda and Seoighe (2014), an
excellent approximation of the Wright–Fisher process is
obtained by setting

aðxÞ ¼ xð12 xÞ
2N

(10)

and

bðxÞ ¼ skxð12 xÞ
1þ skx

(11)

in the infinitesimal generator (1), where

sk ¼ sð2hþ ukð12 2hÞÞ (12)

and

sk ¼ sðhþ ukð12 2hÞÞ (13)

when uk21 # x# ukþ1:

Note that in the standard diffusion approximation the
denominator term in bðxÞ is often omitted. But the above
choice yields a much more accurate approximation to the
WF process (Lacerda and Seoighe 2014).

From (3) and (4) we get

cð yÞ ¼ exp
�
22
Z y 2Nsk

1þ skx
dx
�

¼ ð1þ syÞ24Nsk=sk (14)

Figure 1 Mean transition time approximation of Markov
processes. Shown are the realizations of a continuous
diffusion process XðtÞ (black) and a discrete-state Markov
process uðtÞ (red) starting at ui until they reach uj for the
first time. If the expected waiting time for such a transi-
tion is the same for both processes for all pairs of states
ui ; uj ; we say that uðtÞ is a mean transition time approx-
imation of XðtÞ:
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and

fðxÞ ¼
Z x

cð yÞdy ¼ 2
1

Mksk
ð1þ skyÞ2Mk ; (15)

where we have set

Mk ¼ 4N
sk

sk
2 1: (16)

For the speed measure we obtain

mðyÞ ¼ 1
að yÞcð yÞ ¼

2N
yð12 yÞð1þ sk yÞMkþ1: (17)

Consider three consecutive states uk21; uk; and ukþ1: For the
probability to exit at the lower state we get

PY :¼ ℙðTk/kþ1 .Tk/k21Þ ¼
fðukþ1Þ2fðukÞ

fðukþ1Þ2fðuk21Þ

¼ ð1þ skukÞ2Mk 2 ð1þ skukþ1Þ2Mk

ð1þ skuk21Þ2Mk 2 ð1þ skukþ1Þ2Mk

¼

�
1þ skukþ1

1þ skuk

�Mk

21�
1þ skukþ1

1þ skuk21

�Mk

21

:

(18)

The probability for exit at the upper state is

P[ :¼ ℙðTk/kþ1 ,Tk/k21Þ ¼ 12 PY:

Observe that Green’s function is calculated by

Gðuk; yÞ ¼
�
GYðuk; yÞ :¼ 2PYmð yÞðfðyÞ2fðuk21ÞÞ; uk21 # y#uk
G[ðuk; yÞ :¼ 2P[mð yÞðfðukþ1Þ2fð yÞÞ; uk , y#ukþ1:

Using the quantities calculated above we get for the two parts
of Green’s function

GYðuk; yÞ ¼
4NPY

skMk yð12 yÞð1þ sk yÞMkþ1 � . . .

� 
�
ð1þ skuk21Þ2Mk 2 ð1þ sk yÞ2Mk

�

¼ 4NPY
skMk

1þ sky
yð12 yÞ

 �
1þ sk y

1þ skuk21

�Mk

2 1

! (19)

and

G[ðuk; yÞ ¼
4NP[

skMkyð12 yÞð1þ skyÞMkþ1 � . . .

� 
�
ð1þ skyÞ2Mk 2 ð1þ skukþ1Þ2Mk

�

¼ 4NP[
skMk

1þ sky
yð12 yÞ

 
12

�
1þ sky

1þ skukþ1

�Mk
!
:

(20)

With numerical integration we can determine

E

�
Tkþ1
k21

�
¼ EYþ E[¼

Z uk

uk21

GYðuk; yÞdy þ
Z ukþ1

uk

G[ðuk; yÞdy:

Specifically, we use the extended Simpson’s rule for the nu-
merical integration (Press 2007), which we found to give
accurate results with typically only 8 or 10 intervals.

If g ¼ 2Ns is large, we get approximations for Green’s
function that allow for analytic expressions of the integrals
(see Appendix). Similarly, analytic expressions can be found
in the special case s ¼ 0 (see Appendix).

Bayesian inference

Consider that at the times Tt; t ¼ 0; . . . ;T; samples of sizesMt

were taken from the population and mt alleles A were ob-
served in these samples. In this section, we describe how the
mean transition time approximation introduced above can be
embedded into a Bayesian inference scheme to estimate the
population size 2N and the locus-specific selection coefficient
jointly from time series data.

As has been noted previously (Williamson and Slatkin
1999; Bollback et al. 2008;Malaspinas et al. 2012;Mathieson
and McVean 2013; Lacerda and Seoighe 2014; Steinrücken
et al. 2014), a natural way of modeling both the underlying
evolutionary process and the process of sampling is a HMM.
Under the assumption that the population size between two
time points Tt and Ttþ1 is constant at Nt; the transition matrix
of such an HMM from state UðTtÞ to state UðTtþ1Þ is calcu-
lated by

Pt ¼ expðDtQtÞ;

where Dt ¼ Ttþ1 2Tt and the generator matrix Qt is deter-
mined as explained above using N ¼ Nt: We note here that
this framework allows for instantaneous population size
changes to occur at every time t during the HMM. However,
we henceforth deal only with situations in which the popu-
lation size is assumed to be constant across the whole sam-
pling period.

Following previous implementations (e.g.,Williamson and
Slatkin 1999; Bollback et al. 2008; Malaspinas et al. 2012;
Mathieson and McVean 2013; Lacerda and Seoighe 2014;
Steinrücken et al. 2014), we assume that the sampling of
alleles from the underlying population frequency is binomial;
i.e.,

ℙðmt ¼ mjUðTtÞ ¼ ukÞ ¼
�
Mt
m

�
umk ð12ukÞMt2m:

However, for large sample sizes, the few states uk may be too
coarse grained to capture the region of high emission prob-
ability. We thus propose to integrate the emission probabil-
ities against a smoothing kernel. We chose to implement a
b-distribution kernel, which is the conjugate prior to the
binomial emission probabilities. As a result, this choice leads
to a b-binomial emission probability that can be evaluated
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analytically. Specifically, we chose to use a b-kernel with
mean uk and standard deviation sk ¼ ðukþ1 2 uk21Þ=4; such
that the interval ½uk21; ukþ1� corresponds to uk62sk in the
case of equidistant states. Under this choice, the emission
probabilities are then calculated by

ℙðmt ¼ mjUðTtÞ ¼ ukÞ ¼
�
Mt
m

�
Bðmþ ak;Mt 2mþ bkÞ

Bðak;bkÞ
;

where Bð�; �Þ is the Beta function and the parameters ak

and bk are determined via the moment estimators for a
b-distribution

ak ¼ uk

�
ukð12 ukÞ

s2
k

2 1
�
; bk ¼

akð12 ukÞ
uk

:

With both transition and emission probability matrices at hand,
we calculate the likelihood of the full data, using the standard
forward recursion. Tobe specific, let usfirst define for t ¼ 0; . . . ;T
the ðK þ 1Þ3 ðMt þ 1Þ emission probability matrices

Bt
k;m ¼ ℙðmt ¼ mjUðTtÞ ¼ ukÞ; k ¼ 0; . . . ;K;

m ¼ 0; . . . ;Mt:

Denotingm1:t ¼ ðm1; . . . ;mtÞ;we define the total probability

akðtÞ ¼ ℙðm1:t;UðTtÞ ¼ ukÞ:

This total probability can be determined efficiently with the
forward recursion (Murphy 2012, p. 609)

akðtÞ ¼
XK
i¼0

  aiðt2 1ÞPt21
k;i Bt

i;mt
(21)

and akð0Þ ¼ B0
k;m0

: Then one has

ℙðm1:T juÞ ¼
XK
k¼0

  akðTÞ; (22)

where wemade explicit the dependence of this probability on
the parameters

u ¼ ðs; h;N0; . . . ;NT21Þ:

If we impose priors pðuÞ on the parameters, then we can
simulate the posterior probability pðujm1:TÞ with the usual
MCMC scheme using (22) and the Hastings ratio

h
�
u; u9

� ¼ min

 
ℙ
�
m1:T ju9

�
p
�
u9
�

ℙðm1:T juÞpðuÞ  
q
�
u9/u

�
q
�
u/u9

�; 1
!
:

Extension of basic model

Sequencing errors: Generally, sequencing errors are over-
come with sufficient coverage. However, in many appli-
cations of next-generation sequencing to experimental
evolution, the goal of the sequencing is not to infer indi-
vidual genotypes, but instead allele frequencies directly.
Under such a setting, each sequencing read is assumed to be
from a different individual. In such cases, sequencing errors
may lead to false inference, especially when allele frequencies
are very small.

Incorporating sequencing errors into our framework is
straightforward. Under the assumption that there are only
two alleles present at the locus (achieved by, for instance,
pooling all nonselected alleles into one class) and symmetric
error rates e between those classes, we can approximate the

Figure 2 Mean transition time approximation of Markov processes. For both small (N = 100, left) and large (N = 10,000, right) population sizes as well
as weak (s = 0.01) and strong (s = 0.3) selection, we show the allele frequency distributions after 10 generations of selection and random drift starting
from a frequency of 0.2, as well as the waiting times for a transition from a frequency 0.2 to 0.9. Results obtained under the discrete Wright–Fisher
process are given in gray, those obtained under the diffusion approximation as black solid lines or open boxes, and those under our approximation in
shades of blue, with darkness increasing with higher number of frequency states considered.
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probability that mðiÞ
t ; the ith allele surveyed at time t, is A in

the presence of sequencing errors as

ℙ
�
mðiÞ

t ¼ AjUðTtÞ ¼ uk
�
¼ ð12 eÞuk þ eð12 ukÞ:

Mutational input: We allow for the production of mutant
alleles only when the process is in state u0 ¼ 0 or uK ¼ 1: The
production of new alleles proceeds at a rate of 2Nmdt: Once
a new allele is produced, say when the system is in state u0;
it must get from state 1=2N into state u1: This happens with
probability P[ ¼ ℙðT1=2N/u1 ,T1=2N/0Þ; which is calculated
according to (7). This yields the transition rate

q0;1 ¼ 2Nm  ℙ
�
T1=2N/u1

,T1=2N/0

�
:

Since u1 is close to 0, we can assume that s � 2sh and
M � 2N; see (16). Using (7) and (15) we obtain

q0;1 ¼ 2Nm
fð0Þ2fð1=2NÞ
fð0Þ2fðu1Þ

¼ 2Nm
12 ð1þ s=2NÞ2M

12 ð1þ su1Þ2M

� 2Nm
12 ð1þ sh=NÞ22N

12 ð1þ 2shu1Þ22N � 2Nm
12 expð22shÞ

12 expð24Nshu1Þ:

For theproductionof anewallele in stateuK ¼ 1ananalogous
argument yields the approximations s � s; M � 4Nð12 hÞ
and by (18)

qK;K21 ¼ 2Nm  ℙ
�
Tð2N21Þ=2N/1 .Tð2N21Þ=2N/uK21

�

¼
�
1þ sð2N21Þ=2N�2M

2 ð1þ sÞ2M

ð1þ suK21Þ2M 2 ð1þ sÞ2M

� 2Nm
exp
�
2sð12hÞ�2 1

exp
�
4Nsð12hÞð12 uK21Þ

�
2 1

:

In the selection-free case, i.e., in the limit s/0; the transition
probabilities simplify to

q0;1 ¼ m

u1
; qK;K21 ¼ m

12 uK21
:

Implementation

We have implemented the proposed model and the Bayesian
inference scheme in an easy-to-use C++ program available
on our laboratory website (http://www.unifr.ch/biology/
research/wegmann). While we use standard implementa-
tions for most aspects, we note the matrix exponentiation
in Equation 8, which is a numerically very demanding
problem. A classic algorithm for matrix exponentiation is
by diagonalization of the matrix (Moler and Van Loan
1978). While computationally efficient, this algorithm
may be numerically unstable for matrices with large condition
numbers, which are typically observedwheng ¼ 2Ns becomes
large. This was previously observed by Malaspinas et al.
(2012), who addressed this issue using multiple-precision

Figure 3 Comparison of different approximations. Shown are the cumulative probability density distributions (CDF) of allele frequencies after 10, 100,
and 1000 generations (shown in each top left corner) of selection and random drift starting from a frequency of 0.2 and obtained under the Wright–
Fisher diffusion (black) and three approximations of it: the approximations introduced by Lacerda and Seoighe (2014) (orange) and Malaspinas et al.
(2012) (red) and the mean transition time approximation introduced here (shades of blue for different numbers of frequency states). Results are shown
for small (N ¼ 100; A and B) and large (N ¼ 10;000; C and D) population sizes and weak (s ¼ 0:01; A and C) and strong (s ¼ 0:3; B and D) selection.
For the approximation by Malaspinas et al. (2012), we used a quadratic grid as originally proposed with the minimum number of states mathematically
possible, but at least 101 states (101, 101, 326, and 5813 states for A, B, C, and D, respectively). The distributions for the diffusion approximation were
obtained from 33105 simulations, using kernel density estimation.
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arithmetics. Unfortunately, such arithmetics are computation-
ally very demanding, leading to slow performance of their
implementation.

Here, we propose to alleviate this problem, using the
approximation

exp Q �
�
Iþ 1

2n
Q
�2n

;

which canbecalculatedby successivequadration.Suchmatrix
multiplications are generally demanding, but can be imple-
mented in a computationally efficient manner for generator
matrices that are tridiagonal, as each quadration step adds
only two additional diagonals and such band matrices can be
multiplied efficiently (see Dahlquist and Björk 2008, Chap.
7.4).

We further mention the choice of frequency bins. Malaspinas
et al. (2012) report that for their approach, a tighter spacing of
frequencies toward the boundaries led to more accurate re-
sults, in particular with what they call a “quadratic grid.” We
thus chose to implement, apart from a uniformly spaced grid,
also a quadratic grid with u0 ¼ 0 and

uk ¼ uk21 þ x*ð12 xÞ; x ¼ k2
1
2
;

scaled such that uK ¼ 1: The major difference of this choice
from the quadratic grid proposed by Malaspinas et al. (2012)
is that we do not force u1 ¼ 1=2N and uK21 ¼ 12 1=2N; as
this would force us to change the frequency bins as a function
of N during the MCMC and hence to recalculate emission
probabilities.

Application to influenza data

Influenza data: We analyzed allele frequency data from
whole-genome data sets of influenza H1N1 obtained in a
recent evolutionary experiment (Renzette et al. 2014). While
we refer the reader to the original study for a detailed de-
scription of the experimental setup, we summarize the key

point briefly here: Influenza A/Brisbane/59/2007 (H1N1)was
serially amplified on Madin–Darby canine kidney (MDCK)
cells for 12 passages of 72 hr each to prevent any freeze–
thaw cycles. After the three initial cycles, samples were
passed either in the absence of drug or in the presence of
increasing concentrations of oseltamivir, a neuraminidase
inhibitor, for another nine passages. At the end of each
passage, samples were collected for whole-genome high-
throughput population sequencing up to a median cover-
age of .50,0003.

For our analysis here we considered only the time points
taken during drug treatment (passages 4–12), but considered
all 13,395 sites for which data were available (Foll et al.
2014). For each site, we first identified the two alleles having
the highest frequencies over all passages and considered
the minor allele to be the one with the lower frequency
at the beginning of the experiment (passage 0). To avoid
any bias, all other alleles were treated collectively as the
major allele. We estimated N along with locus-specific selec-
tion coefficients s, the sequencing error rate e, and the per site
mutation rate m. We assumed log-uniform priors on N, e, and
m such that log10ðNÞu½1; 5�; log10ðeÞ ¼ u½24; 20:3�; and
log10ðmÞ ¼ u½27; 21� and a normal prior on the selection
coefficients such that s Nð0; 0:05Þ: Since viruses are haploid,
we fixed the dominance coefficient at h ¼ 0:5: We then ran
an MCMC using 51 states for 25,000 iterations during which
each parameter was updated in turn. The first 2000 such
iterations were discarded as burn-in phase.

Simulations: Toassess theaccuracyof our approximation,we
simulated trajectories under the discrete Wright–Fisher pro-
cess and the diffusion process, as well as under the mean
transition time approximation and the approximation pro-
posed by Malaspinas et al. (2012). All simulations under
the discrete Wright–Fisher model and the diffusion process
were performed using binomial sampling and the Euler–
Maruyama method, respectively. Those under approxima-
tions using frequency states were generated by simulating

Figure 4 Power to infer population sizes. Shown are the relative likelihood surfaces obtained via our mean transition time approximation for a particular
simulation of 100 neutral loci for different population sizes (vertical dashed lines) and different numbers of frequency states considered (see key). The
top row is for the case of 13 generations between time points, and the bottom row is for the case of 130 generations between time points.
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transitions according to the transition matrices calculated
under the specific approximations.

To evaluate the power of our method to infer population
sizes and selection coefficients, we also simulated data for 20
or 100 unlinked loci with N= 100, 1000, or 10,000. For each
of these settings, we set either 20% or 80% of the loci to be
under selection, with an equal representation of four selec-
tion coefficients: 20.1, 20.01, 0.01, and 0.1. All loci, both
selected and neutral, had the starting allele frequency set at
random. The change in allele frequency from one time point
to the next was calculated under the Wright–Fisher model,
matching the experimental setup of our application. Specifi-
cally, we simulated a total of 117 generations and took a
sample of 1000 sequences every 13 generations, unless oth-
erwise stated.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results and Discussion

Mean transition time approximation

Comparisonsof the long-termbehavior of thehere-introduced
mean transition time approximation of the Wright–Fisher
process with its discrete realization demonstrate the power
of our approximation. In Figure 2 we show the frequency
distribution of alleles with an initial frequency of 0.2 after
10 generations of selection and random drift under the dis-
creteWright–Fisher process for different population sizes and
different selection strength. As expected from our assump-
tions, the distributions obtained under our approximation
have identical means and show only a slightly increased var-
iance for large selection coefficients and a small number of

states. This finding is further strengthened when comparing
this distribution over larger timescales up to 1000 genera-
tions (Figure 3), which also illustrates that our approxima-
tion leads to accurate loss/fixation ratios. In the situations
studied here, all loci correctly fix in the case of strong selec-
tion or when N is large. In the case of N ¼ 100 and s ¼ 0:01;
however, we estimate that 62.00% or 61.99% of all loci will
be lost when using 1001 or 21 states, respectively. This is very
similar to the proportion of 62.02% obtained among 33105

simulations with the diffusion approximated here.
A more direct illustration of our assumption is the com-

parison of the distribution of waiting times for a specific
transition. As shown in Figure 2, our approximation indeed
captures the mean transition time perfectly, while again
exhibiting an increased variance for large selection coeffi-
cients and small number of states. Based on these results,
and to keep the computational effort minimal, we use 51
states for all our inference shown below.

Choice of grid

All results shown above were obtained with a uniform grid of
frequency states. Following Malaspinas et al. (2012), we also
implemented a quadratic grid, but we found the choice of
grids not to affect our approximation noticeably. In general,
we found the quadratic grid to describe probabilities close to
boundaries more accurately, but to be less accurate for in-
termediate frequencies than a uniform grid. These differ-
ences, however, are small, do not inflate with increasing
number of generations, and are visible only for a very low
number of states (Supplemental Material, Figure S1). This
suggests that our approximation is very robust to the choice
of the grid and that the differences observed are due to the
resolution in characterizing the probability distribution at
different frequencies rather than an effect of the approximation
itself. We thus continue using a uniform grid in the following.

Figure 5 Power to infer selection and population size jointly. Here we show the posterior distributions on the population size (left panel) and locus-
specific selection coefficients obtained for five replicate simulations for each of three different population sizes. For each replicate we plot the posteriors
of all loci simulated under positive selection (blue shades, top row) and under negative selection (red shades, middle row), as well as five neutral loci
picked at random (black, bottom row). In all simulations, starting frequencies were chosen randomly for each locus.
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Comparison with related methods

Recently, Lacerda and Seoighe (2014) proposed to approxi-
mate the probability distribution of allele frequencies after t
generations by a Gaussian distribution, the mean and vari-
ance of which can be obtained iteratively using the delta
method. Their approach can easily be applied to the diffusion
process studied here (see Appendix). As shown in Figure 3,
the approximation obtained via the delta method and our
approximation are very similar over a large range of the pa-
rameter space and also agree well with the diffusion process
they both approximate. However, due to the assumption of a
Gaussian distribution, the approximation obtained with the
delta method is less accurate than our approach in describing
allele frequencies close to boundaries. This is particularly
true when selection is weak enough such that the probability
of fixation is ,   1:0; which results in a bimodal distribution
(Figure 3A).

A major advantage of the delta approach, however, is its
computational speed, which does not depend on the popula-
tion size or the selection strength. Our method is generally
much more demanding due to its reliance on matrix calcula-
tions rather than simple recursions. But the benefit of our
approach lies in the discretization of allele frequencies, with-
out which any inference from time-series data is computa-
tionally impossible whenever N is large.

In this regard, our method is closer to that introduced by
Malaspinas et al. (2012) that also uses a grid of discretized
allele frequencies. In contrast to our method, however, their
approach approximates the mean and variance of the infi-
nitesimal transition probabilities, rather than those of the
resulting waiting times. While Malaspinas et al. (2012) de-
rive their approximation for the classic diffusion, it is straight-
forward to generalize their approach and apply it to the
diffusion studied here (see Appendix). As shown in Figure
3, their approximation holds generally well for most of the
range tested, but allele frequencies appear to rise slightly too
fast. More importantly, the approximation introduced by
Malaspinas et al. (2012) requires substantially more states
than our approximation due to the mathematical nature of
the approximation. For the case of N ¼ 10; 000 and s ¼ 0:3
shown in Figure 3D, for instance, a minimum of 5813 states
are required. In contrast, our approximation is computation-
ally stable even with just a handful of states and thus allows
us to balance accuracy and computation effort regardless ofN

or s. This difference between the two approaches easily trans-
lates into a reduction in computation time of several orders of
magnitudewhen attempting to infer parameters using anHMM
and essentially rendering such an analysis unfeasible for large
g ¼ 2Ns with the approximation introduced by Malaspinas
et al. (2012), as has been reported recently (Foll et al. 2015).

Power to infer population sizes

While allele trajectories are affected by both selection and
drift, we aim here to disentangle these effects by integrating
information frommultiple loci. We first assessed the power to
infer population sizes N accurately under ideal conditions,
that is, for 100 unlinked loci in the absence of selection. In
Figure 4 we show the likelihood surfaces for N obtained with
a different number of states, for data simulated under differ-
ent population sizes. While this analysis suggests high power
to infer small population sizes accurately, it highlights the
general issue of inferring large population sizes from changes
in allele frequencies, accentuatedwhen fewer states are used.
The issue arises from the fact that in large populations and
over the short time course of evolutionary experiments in
general, the changes in allele frequencies between time
points are so small that they are compatible with almost ar-
bitrarily large populations. While using fewer frequency
states further decreases the resolution of detectable allele
frequency changes, we note that this issue is more general
and expected to affect all methods for inferring population
sizes from such data, particularly when a small number of
samples is used. The best way to overcome it is to observe
changes in allele frequencies over larger intervals. Indeed,
when taking samples every 130 generations instead of every
13, population sizes up to N = 100,000 can be estimated
accurately (Figure 4, bottom row).

Power to infer selection

To assess the power of our framework to infer locus-specific
selection coefficients, we simulated 100 unlinked loci, of
which 20% experienced selection at various strengths. As
shown in Figure 5, both the population size and the strength
of selection affect the power of this inference. For medium to
large population sizes, ourmethod infers even small selection
coefficients with high accuracy. When the population size is
small, however, inference of selection proves more difficult
(Figure 5). While this is generally expected due to the much
larger effect of drift in small populations (Ns ¼ 10 for the

Table 1 Power to identify loci under selection

Fraction selected log10ðNÞ s = 20.1 s = 20.01 s = 0.0 s = 0.01 s = 0.1

0.2 2 0.27 (0.15) 0.42 (0.24) 0.50 (0.26) 0.56 (0.26) 0.78 (0.18)
0.2 3 0.00 (0.05) 0.24 (0.24) 0.50 (0.30) 0.74 (0.26) 1.00 (0.00)
0.2 4 0.00 (0.00) 0.06 (0.16) 0.50 (0.32) 0.92 (0.17) 1.00 (0.00)
0.8 2 0.12 (0.11) 0.09 (0.14) 0.50 (0.28) 0.72 (0.15) 0.89 (0.15)
0.8 3 0.00 (0.00) 0.02 (0.04) 0.50 (0.38) 1.00 (0.00) 0.99 (0.02)
0.8 4 0.00 (0.00) 0.00 (0.00) 0.50 (0.45) 1.00 (0.00) 1.00 (0.00)

We report the average and standard deviation (in parentheses) of the posterior probability ℙðs. 0:0Þ obtained under various population sizes and for the cases of 20% and
80% of all loci simulated under selection.
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strongly selected alleles), it is accentuated here by our choice
to simulate initial frequencies at random. Indeed, when given
ideal starting frequencies (0.1 for positively and 0.9 for nega-
tively selected alleles), our method identifies strongly selected
alleles accurately even in small populations (Figure S2).

Remarkably, we found the power to infer population sizes
as well as locus-specific selection coefficients not to be neg-
ativelyaffectedunderpervasive selection.This is illustratedby
comparing the posterior distributions obtained from simula-
tions where 80% of all loci were targeted by selection (Figure
S3) to those shown here where only 20% were affected by
selection (Figure 5). More direct evidence is given in Table 1,
where we report the posterior probability for s. 0:0 for dif-
ferent combinations of population sizes and selection coeffi-
cients and actually find higher power to identify selected loci
in the case of pervasive selection than when only 20% of all
loci were simulated under selection.

For computational efficiency, all results shown here were
obtained using 51 states. However, we note a trade-off be-
tween power of inference and computational costs. As shown
in Figure S4, using very few states (21) may lead to slightly
broader posteriors and a small bias toward weaker values of
s. Both effects are already largely overcome when using 51
states for most loci, but small improvements are still detect-
able with more states (Figure S4).

Application to influenza data

Wenextappliedourapproach topubliclyavailable sequencing
data of influenza H1N1 segment 6, obtained at multiple time

points throughout an evolutionary experiment in which
the virus was exposed to an antiviral drug (oseltamivir)
(Renzette et al. 2014). While allele frequencies are gener-
ally estimated with high accuracy due to the very high cov-
erage in this experiment (�50,0003), sequencing error
may contribute substantially to the observed low-frequency
variants. In addition, many of the observed mutations likely
entered the population only during the experiment, but
their exact time of origin is blurred by both the sequencing
error and sampling. We thus extended our framework to
estimate the mutation rate as well as the overall sequencing
error rate jointly with the demographic and selection
parameters.

We applied our extended method to each of the eight
segments of the influenza genome individually, but obtained
highly concordant results among all segments. As shown in
Figure 6, we infer the effective population size during the
experiment to be �7000, a mutation rate of �1025; and a
sequencing error rate of �1023:8: While our estimates of the
mutation and error rates are consistent with published mu-
tation rates for influenza (Nobusawa and Sato 2006) and
RNA viruses in general (Drake et al. 1998) and also with
the employed quality filters on sequencing reads (Foll et al.
2014), our estimate of the population size is substantially
larger than previous estimates of �225 (Foll et al. 2014).
While we found our approach to slightly overestimate larger
population sizes under the spacing of time points relevant
here, there are several arguments supporting a larger popu-
lation size. First, the original estimates were obtained under

Figure 6 Evolution of drug resistance in influenza. Here we show the posterior distributions on the population size [log10ðNÞ], sequencing error rate (e),
mutation rate (m), and locus-specific selection coefficients sl estimated independently for each of the six segments of the influenza genome. For the
selection coefficients, black solid circles represent posterior medians and gray lines indicate the 99% credible intervals. Loci for which the 99% credible
interval does not include s ¼ 0:0 are shown in red and their actual position within the segment is designated.
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the assumption of neutrality at all loci, while our approach
infersN jointly with selection. Second, the previous estimates
were obtained from a small subset of the data, namely the
147 loci with an observed allele frequency # 1% after down-
sampling to 1000 reads per locus at no less than three time
points. In contrast, our inference is based on the raw data at
the complete set of 13,395 loci, including those with small
frequencies particularly informative about drift. Third, the
original inference accounted for neither sequencing errors
nor mutations. In summary, our results argue for a much
larger effective population size than previously reported.

Our results on selection, on the other hand, are highly
concordant with previous estimates. In Figure 6we report the
posterior distributions on the locus-specific selection coeffi-
cients for all polymorphic sites for each of the eight segments
of the influenza genome. As expected, most mutations were
found to be selectively neutral or under slight purifying
selection (observe the slight asymmetry toward negative
selection coefficients for many loci). For a few mutations,
however, we found compelling evidence for them to be the
target of positive selection (99% credible interval does not
include 0). On segment NA, there were three such muta-
tions, of which two stand out with an estimated selection
coefficient �0.2. One of these mutations (Y274H) oc-
curred at a locus at which resistance to oseltamivir has
been previously described (Collins et al. 2008). Many ad-
ditional mutations were found to be the target of selection
throughout the genome, with many of those likely under
negative selection. These are mutations that were found at
elevated frequencies at the beginning of the experiment,
yet at much lower frequencies after a few passages. The
complete list of all mutations found to be under selection
is given in Table S1.

Conclusion

Here we present a novel, discrete approximation for diffusion
processes. This approximation, which we term mean transi-
tion timeapproximation, isdesigned topreserve the long-term
behavior of the continuous process it approximates, which
renders it particularly suitable to study time-series data. Here
we derived this approximation for the particular case of in-
ferring selection and demography from such time-series data
under the classic Wright–Fisher model. As shown through
extensive simulations, our approximation is well suited to
describe allele trajectories through time, even when only a
few states are used. This allowed us to develop a Bayesian
inference approach to jointly infer the population size and
locus-specific selection coefficients with high accuracy. We
further extended this model to estimate the average se-
quencing error rate, as well as the per generation mutation
rate. The approach is further readily applicable to models of
instantaneous population size changes. We finally applied
our approach to data from a recent experiment on the evolu-
tion of drug resistance in influenza virus, identifying likely
targets of selection and finding evidence for much larger viral
population sizes than previously reported.
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Appendix

Approximation for Large g ¼ 2Ns

If g ¼ 2Ns is large, we get approximations for Green’s function that allow for analytic expressions of the integrals. More
precisely, assume thatMksk ¼ 4Nsk is large. We can then neglect the21 terms in the numerator and denominator of (18) and
we get the approximation

PY �
 
1þ skuk21

1þ skuk

!Mk

¼
 
12

Mkskðuk2uk21Þ=ð1þ skukÞ
Mk

!Mk

� exp

 
2

Mksk

1þ skuk
ðuk2 uk21Þ

!
; (A1)

which will be very small for large g. The probability for exit at the upper state is P[ � 1: Inserting the first approximating
expression or PY into (19) and using 4N=Mk � sk=sk; we get
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The exponential term is dominant for y close to uk: In the integral we can thus keep the factor of the exponential constant at
y ¼ uk since it does not vary much when y is close to uk:
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From (20) we get the approximation
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To get E[ we integrate this approximate expression. Observe that the exponential term becomes important only when y gets
close to ukþ1: For this reason we can safely keep the factor in front of the exponential term constant when integrating the
second term:

E[ ¼
Z ukþ1
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Numerical experiments indicate that the approximate formulas (A3) and (A4) are adequate when the conditions

4Nshðukþ1 2 uk21Þ. 10 and 4Nsð12 hÞðukþ1 2 uk21Þ. 10 (A5)

are met. In that case we set qk;k21 ¼ 0 and

qk;kþ1 ¼ 1
EY þ E[:

Note that formula (A4) gets singular for k ¼ K2 1 since in that case 12 ukþ1 ¼ 0: Using the substitution z ¼ 12 y;we get for
that case from (20) the approximation
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The last integral can be written as an exponential integral

EiðxÞ ¼
Z x

0

12 e2t

t
dt

in the form

E[ � 1þ s
sð12hÞEi

	
4Nsð12 hÞ

1þ s
ð12 uK21Þ



:

Using the approximation

EiðxÞ � logðxÞ þ 0:577 . . .

where 0:577 . . . is the Euler–Mascheroni constant, we finally arrive at
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!
: (A6)

Similarly, the case k ¼ 1 deserves special attention because the denominator of (A2) gets singular at y ¼ 0: Since u1 is small and
y even smaller, we can set s1 ¼ 2sh and M1 ¼ 2N: From (19) we then get the approximations
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From this we obtain for the downward mean transition time
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because the integrand is very dominant at the upper integration limit. From (A1) we get the approximation PY � e24Nshu1 and
thus

EY � 1
4Ns2h2u1

: (A7)

The Wright–Fisher Process in the Absence of Selection

In the absence of selection (s ¼ 0), the expressions for the generator matrix can be explicitly evaluated since bðxÞ ¼ 0 (see
Equation 11). We have fðxÞ ¼ x and mðyÞ ¼ 2N=xð12 xÞ: From this we get

PY ¼ ukþ12 uk
ukþ1 2uk21

; P[ ¼ uk2 uk21

ukþ12 uk21
: (A8)

The two parts of Green’s function are given by

GYðuk; yÞ ¼ 4NPY

�
12 uk21

12 y
2

uk21

y

�

and

G[ðuk; yÞ ¼ 4NP[

�
ukþ1

y
2
12 ukþ1

12 y

�
:

These integrate to

EY ¼ 4NPY

�
uk21log

uk21

uk
þ ð12uk21Þlog

12 uk21

12 uk

�
(A9)
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and

E[ ¼ 4NP[

�
ukþ1log

ukþ1

uk
þ ð12 ukþ1Þlog

12 ukþ1

12uk

�
: (A10)

As above we determine the transition rates by

qk;k21 ¼ PY
EY þ E[; qk;kþ1 ¼ P[

EY þ E[:

Approximations via the Delta Method

Following the argument of Lacerda and Seoighe (2014), an approximate solution to the diffusion equation can be obtained by
the delta method. While their original formulation applies to the discrete Wright–Fisher process, the argument works as well
for the diffusion process studied here.

As above (Equation 1), XðtÞ is a diffusion process on the state space ½0; 1� with infinitesimal generator

Lf ¼ 1
2
aðxÞ d2

dx2
f þ bðxÞ d

dx
f : (A11)

Recall that the infinitesimal moments of the diffusion process are given by

EðdXðtÞjXðtÞ ¼ xÞ ¼ bðxÞdt þ oðdtÞ;
varðdXðtÞjXðtÞ ¼ xÞ ¼ aðxÞdt þ oðdtÞ:

The mean mðtÞ of the process can be approximated iteratively as follows:

mðt þ dtÞ ¼ E
�
Xðt þ dtÞ� ¼ E

�
E
�
Xðt þ dtÞjXðtÞ��

¼ E
�
E
�
XðtÞ þ dXðtÞjXðtÞ�� ¼ E

�
XðtÞ�þ E

�
b
�
XðtÞdt��

� mðtÞ þ bðmðtÞÞdt:

In the last step, we used the delta approximation Eðf ðXÞÞ � fðEXÞ: Similarly, we apply the delta approximation
varðf ðXÞÞ � 

f 9ðEXÞ

2varðXÞ to get an iterative approximation for the variation:

s2ðt þ dtÞ ¼ var
�
Xðt þ dtÞ�

¼ E
�
var
�
XðtÞ þ dXðtÞjXðtÞ��þ var

�
E
�
XðtÞ þ dXðtÞjXðtÞ��

¼ E
�
var
�
dXðtÞjXðtÞ��þ var

�
XðtÞ þ b

�
XðtÞ�dt�

� E
�
a
�
XðtÞ�dt�þ �1þ b9

�
EXðtÞ�dt�2var�XðtÞ�

� a
�
mðtÞ�dt þ �1þ b9

�
mðtÞ�dt�2s2ðtÞ:

For the case of h ¼ 1=2 and by inserting (9), one gets in particular

mðt þ dtÞ ¼ mðtÞ þ smðtÞ�12mðtÞ�
2
�
1þ smðtÞ� dt;

s2ðt þ dtÞ � mðtÞ�12mðtÞ�
2N

dt þ
 
1þ s22smðtÞ2s2m2ðtÞ

2
�
1þ smðtÞ�2 dt

!2

s2ðtÞ:

Approximations as Proposed by Malaspinas et al.

As in Malaspinas et al. (2012), we construct the Markov chain uðtÞ with states u0 ¼ 0, u1 , . . . uK ¼ 1 by matching the
infinitesimal mean and infinitesimal variance of U and X. This allows us to determine the generator matrix Q: Here we
generalize their notation for any diffusion process
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Lf ¼ 1
2
aðxÞ d2

dx2
f þ bðxÞ d

dx
f :

From formulas (8) and (9) from (Malaspinas et al. 2012) we then get

qi;iþ1ðuiþ12 uiÞ2 qi21;iðui 2 ui21Þ ¼ bðuiÞ;
qi;iþ1ðuiþ12uiÞ2 þ qi21;iðui2ui21Þ2 ¼ aðuiÞ:

These can be solved for the infinitesimal generators

qi;iþ1 ¼ aðuiÞ þ bðuiÞDi21

D2
i þ DiDi21

;

qi21;i ¼ aðuiÞ2 bðuiÞDi

D2
i21 þ DiDi21

;

where we used the abbreviation Di ¼ ukþi 2 ui: To apply these general formulas to the particular diffusion studied here we
simply use aðxÞ and bðxÞ as given in Equations 10 and 11, respectively.
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Figure S1 Comparison of different grids. Shown are the cumulative probability density distributions (CDF) of allele frequencies
after 10, 100 and 1000 generations (shown in top left corner) of selection and random drift starting from a frequency of 0.2 and
obtained under the Wright-Fisher diffusion (black) and the mean transition time approximation for 51 and 21 uniform (solid) or
quadratic (dashed) states. Results are shown for small (N = 100, A and B) and large (N = 10, 000, C and D) population sizes and
weak (s = 0.01, A and C) and strong (s = 0.3, B and D) section.
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Figure S2 Power to infer selection and population size jointly. Here we show the posterior distributions on the population size
(first panel) and locus-specific selection coefficients obtained for five replicate simulations for each of three different population
sizes. For each replicate we plot the posteriors of all loci simulated under selection (color) as well as five neutral loci picked at
random (black). In contrast to the results shown in the main text, the data was simulated here with more ideal starting frequencies,
namely 0.1, 0.5 and 0.9 for positively selected, neutral and negatively selected sites, respectively.
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Figure S3 Power to infer selection and population sizes jointly. Here we show the posterior distributions on the population size
(first panel) and locus-specific selection coefficients obtained for five replicate simulations for each of three different population
sizes. For each replicate we plot the posteriors of all loci simulated under selection (color) as well as five neutral loci picked at
random (black). In all simulations, starting frequencies were chose randomly for each locus. In contrast to the results shown in the
main text, 80% of all simulated loci were affected by selection.
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Figure S4 Power to infer selection as a function of the number of states. We simulated five independent loci for each of the three
selection coefficients s = −0.1, s = 0 and s = 0.1 for a population size of log10(N) = 4. We then inferred the posterior distributions
on s for each locus using different numbers of states, but assuming log10(N) = 4. Estimates are generally biased towards weaker
selection when using too few states.



Table S1 Sites found to be under selection in Influenza
Segment Position Ancestral a Derived Protein Changeb sc

PB2 185 AGG AAG R61K -0.08 (-0.18, -0.02)
PB2 282 TCG TCA S94 -0.05 (-0.10, -0.02)
PB2 912 GAA GAG E304 -0.08 (-0.18, -0.01)
PB2 1225 CGT AGT R408S 0.08 ( 0.01, 0.16)
PB2 1629 GAG GAA E543 -0.09 (-0.18, -0.03)
PB2 1890 AGA AGG R630 -0.07 (-0.19, -0.02)
PB2 2299 - - - 0.06 ( 0.01, 0.12)
PB2 2300 - - - 0.05 ( 0.02, 0.11)
PB2 2304 - - - 0.07 ( 0.02, 0.13)
PB1 33 AAA AAG K11 0.12 ( 0.07, 0.18)
PB1 529 GGT AGT G176S -0.12 (-0.22, -0.04)
PB1 1365 AAT AAC N455 0.07 ( 0.01, 0.15)
PB1 2034 AGT AGC S678 -0.06 (-0.12, -0.03)
PA 90 ACT ACA T30 -0.08 (-0.17, -0.01)
PA 174 GGT GGG G58 -0.14 (-0.23, -0.07)
PA 178 CTA GTA L59V -0.03 (-0.05, -0.01)
PA 1614 GAG GAA E538 0.09 ( 0.03, 0.16)
PA 2193 - - - 0.06 ( 0.02, 0.13)
PA 2194 - - - 0.07 ( 0.04, 0.12)
PA 2196 - - - 0.07 ( 0.03, 0.13)
HA 48 CCG TCG P6S* 0.17 ( 0.12, 0.25)
HA 639 AAT GAT N203D -0.11 (-0.19, -0.06)
HA 640 AAT ACT N203T -0.13 (-0.21, -0.07)
HA 1023 GCC ACC A331T -0.09 (-0.19, -0.02)
HA 1196 ACC ACT T388 -0.10 (-0.18, -0.02)
HA 1395 AAT GAT N455D 0.21 ( 0.15, 0.29)
HA 1601 CTA CTG L523 -0.09 (-0.18, -0.02)
HA 1760 - - - 0.02 ( 0.01, 0.06)
NP 25 CTC ATC L8I -0.05 (-0.11, -0.02)
NP 390 ATG ATA M130I -0.12 (-0.21, -0.06)
NP 1104 AAC AAT N368 -0.11 (-0.21, -0.05)
NA 143 ACA ATA T47I 0.09 ( 0.04, 0.16)
NA 582 GGA GGG G194* 0.23 ( 0.16, 0.30)
NA 823 TAC CAC Y274H 0.20 ( 0.14, 0.27)
NA 978 TTG TTC L326F -0.05 (-0.12, -0.01)
NA 1427 - - - -0.13 (-0.22, -0.05)

M1/2 92 GAG TAG E22stop* -0.06 (-0.14, -0.01)
M1/2 147 GTC GCC V41A 0.13 ( 0.08, 0.18)
M1/2 848 TGT TGG C274W -0.07 (-0.16, -0.02)
NS1/2 201 AGG AGA R67 0.08 ( 0.03, 0.15)
NS1/2 329 AAA AGA K109R 0.07 ( 0.01, 0.14)
NS1/2 373 GAC AAC D124N -0.09 (-0.18, -0.02)
NS1/2 820 - - - 0.13 ( 0.08, 0.20)

a Ancestral codon refers to the allele with the highest frequency at the beginning of the experiment (passage 0). Dashes indicate mutations in non-coding regions
b Protein changes are reported in standard nomenclature but comparing the derived codon to the ancestral codon (not the published reference).
c Reported is the posterior median of the locus-specific selection coefficient, along with the 99% credible interval.
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