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Abstract

Recently, there has been increased awareness of the role of background selection

(BGS) in both data analysis and modelling advances. However, BGS is still difficult to

take into account because of tractability issues with simulations and difficulty with

nonequilibrium demographic models. Often, simple rescaling adjustments of effective

population size are used. However, there has been neither a proper characterization of

how BGS could bias or shift inference when not properly taken into account, nor a

thorough analysis of whether rescaling is a sufficient solution. Here, we carry out

extensive simulations with BGS to determine biases and behaviour of demographic

inference using an approximate Bayesian approach. We find that results can be posi-

tively misleading with significant bias, and describe the parameter space in which

BGS models replicate observed neutral nonequilibrium expectations.
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Introduction

With the wide availability of large, extensive data sets,

it is common to estimate parameters from complex

nonequilibrium demographic scenarios (Li & Stephan

2006; Gutenkunst et al. 2009; Excoffier & Foll 2011;

Excoffier et al. 2013). Demographic parameters are often

of direct interest in the study concerned; however, they

may also act as nuisance parameters when required for

accurate tests of positive selection or in the detection of

selective sweeps with acceptable false discovery rates

(Jensen et al. 2005, 2007; Thornton & Jensen 2007). Such

requirements exist because expected patterns of diver-

sity can be similar for selection and demographic mod-

els, the canonical example being a selective sweep and

population bottleneck (Nielsen et al. 2005; Prezeworski

et al. 2005). Both models are characterized by similar

reduction in diversity and shifts in the site frequency

spectrum (SFS), and distinguishing the presence of

either has received significant attention (Thornton &

Andolfatto 2006).

Background selection (BGS) (Charlesworth et al.

1993; Charlesworth 1994) is also widely accepted to

have a significant effect on patterns of genetic diver-

sity and the efficiency of selection via linkage; despite

this, it is rarely taken into account in current studies

due to the practical difficulties of doing so. Intermedi-

ate levels of BGS pose a difficult problem in mod-

elling, at least with coalescent simulators, despite the

relative ease of simulating BGS in a forward simula-

tion framework (Hernandez 2008; Messer 2013). While

strongly deleterious mutations are purged from the

population immediately, and very slightly deleterious

mutations behave neutrally, intermediately deleterious

mutations accumulate according to non-neutral dynam-

ics that are difficult to characterize in nonequilibrium

demographic models.

Some studies have corrected for BGS with a rescal-

ing of effective population size (Ne) (e.g. Pr€ufer et al.

2012). This is appealing because it is easy to applyCorrespondence: Gregory B. Ewing, E-mail: gregory.ewing@epfl.ch
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without adjusting existing methods and is theoretically

motivated. And it is likely valid when the effects of

BGS are strong, as every individual that receives a

deleterious mutation is effectively removed from the

population. Thus, in each generation, an approximately

fixed number of individuals are removed from the

population resulting in an effective reduction in Ne

(Charlesworth et al. 1993). However, recent studies

have shown that BGS may often be more intermediate

in magnitude (Bank et al. 2014; Comeron 2014).

Therefore, it is currently unknown whether BGS

causes significant problems in inference and if so, for

which parameters and at what magnitudes. In this

study, we consider the consequences of ignoring BGS

in demographic inference under nontrivial demo-

graphic models. Briefly, forward simulations are used

to generate data, which, while quite slow, do not

require many iterations. Inference is then carried out

with fast coalescent simulations in a simple ABC set-

ting. Although we consider ABC primarily for the point

of illustration, we expect these results to be relevant

to all inference methods based on the site frequency

spectrum.

Methods

All simulations and inference were carried out with a

two-population model with a single founding ancestral

population as shown in Fig. 1. In all cases, we normal-

ize the population size to the ancestral population size

and set Ne = 1000, and 20 chromosomes are sampled

from each population. We assume symmetric migration

and distinct population sizes and growth parameters. In

each data set, we simulate 1000 independent loci, using

a within-locus recombination rate of 2Neq = 10 and

4Nel = 100. Here, we define a locus as an independent

observation of the coalescent process; that is, we

assume no linkage between loci, although linkage and

recombination are included within a locus. BGS is

included as a simple single selection coefficient and a

probability parameter that any mutation results in a

selected mutation. In all cases, we assume that BGS is

negatively selected and that selection is additive with

multiple mutations. True parameters of all simulated

data are shown in Table 1; however, only representative

results are shown here for conciseness. All forward sim-

ulations were carried out with SFSCODE (Hernandez

2008) and SLIM (Messer 2013) with 10Ne generations to

reach equilibrium. Neutral data sets were also com-

pared to coalescent simulations as a check (ms and

msms) (Hudson 2002; Ewing & Hermisson 2010).

All inference was carried out with pure rejection ABC

using binned joint site frequency spectrum (JSFS) as the

summary statistics. The binning has previously shown

to be informative (Naduvilezhath et al. 2011) where the

mean and standard deviation across the 1000 loci are

used for each bin. These statistics simplify scaling, and

such classic population genetic statistics such as Fst are

indeed summary statistics of the JSFS. In cases where

we used a Poisson composite likelihood metric, the stan-

dard deviation was ignored. The tolerance of the ABC

was set such that we kept the best 5000 simulations of

10 million using either a Euclidean distance metric or a

Poisson composite likelihood metric (Excoffier et al.

2013). Priors are flat and reported in Table 1. Although

other inference methods are available, such as dadi or

fastsimcoal2, pure rejection ABC permits much faster

inference once the initial set of simulations for ABC is

complete, and only the rejection step needs to be

repeated for each data set. This also facilitates simpler

interpretation of the results in the context of compar-

ison; it is noted that we are not demonstrating inference

methods, but rather the general misinference that is pos-

sible regardless of methodology. Nevertheless, inference

with fastsimcoal2 was carried out for a few example data

sets for comparison, and the same general trends were

observed. Furthermore, we carried out regression post-

processing (Beaumont et al. 2002) for some ABC results

and found this made no significant qualitative difference

and is therefore not presented here.

In all inference, we condition on the number of SNPs

we observe in the data and do not directly estimate h /
Nel, but rather estimate parameters relative to the

ancestral population. This avoids needless simulations

with widely different SNP counts that would always be

rejected, and reflects practical inference for real data

more accurately. A further feature that is used in infer-

ence while conditioning on the number of SNPs is

weighted mutations. In the coalescent simulations for

Fig. 1 Basic population model, including all estimated parame-

ters. All simulated data use symmetric migration, and all pop-

ulation sizes are relative to the ancestral size. Growth is

parameterized based on start and end population sizes. s is

fixed at 2Ne generations.
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ABC, rather than generating a Poisson number of neu-

tral SNPs on each branch of a coalescent tree, we can

report the expected mean mutation count that can be

directly included in the JSFS. This avoids simulation

noise arising from the Poisson process, while the coales-

cent noise is still present (that is why we sample 1000

such trees with 1000 loci). Such a feature is included in

fastsimcoal2 when carrying out inference. Dadi, using the

diffusion approximation, also avoids this noise in deriv-

ing the expected JSFS for a given model and parame-

ters. We also carried out, as a check, ABC with normal

mutation processes and note only slightly wider poste-

rior confidence intervals.

Results

Figure 2 shows the inferred marginal posterior distribu-

tion for population size estimates of A and B, when

population A’s true size is 1 and population B’s is 5, for

different Nes parameters. The posterior densities are

quite wide compared to the priors in this inference

despite such a large simulation size. However, as we

are comparing inferences with model mis-specification,

this does not affect our conclusions. Using the mode as

an estimate, when Ns is small we see no deviation from

the neutral case for estimates of both populations A

and B, as expected. However, with intermediate levels

of BGS, there is a significant departure from the true

value. With high values of BGS (Ns > 100), we again

estimate population size accurately. This is expected as

with strong BGS all mutations are effectively lethal and

result in a reduction in effective population size, that is

a thinning process. Recall that population size estimates

are relative to the ancestral population size and both

sizes are reduced equally by BGS.

Other parameters show similar trends of misinference

with intermediate BGS values. Figure 3 illustrates the

level of misinference with varying strength of selection

(Nes) and the probability of such mutations. Low selec-

tion coefficients combined with a high probability of

such selected mutations show the same general trends

as intermediate selection coefficients. This is due to

multiple, linked, negatively selected sites on the same

locus and is equivalent to a higher combined effect of

BGS.

It should be stressed that we are not observing a sim-

ple rescaling of various parameters, as we are estimat-

ing parameters relative to the ancestral population; the

ancestral population size is always some effective N̂e

that is not directly estimated. Also note that the ratio

between populations A and B is also misinferred, pro-

viding further evidence that BGS effects are not a sim-

ple rescaling of Ne.

In Fig. 4, we compare the global site frequency spec-

trum between the estimated parameters and the true

parameters. The global SFS is presented rather than the

JSFS for conciseness, illustrating the same results. The

global SFS was generated with independent simulations

from the inferred parameters (mode estimates) and is

not the posterior SFS. Close agreement is found between

the means for the intermediate-BGS case (Ns = 10)

despite the large bias in inferred parameters. Further,

comparison with the Poisson CL metric shows similar

fit. However, the standard deviations appear to mis-

match somewhat and typically are higher in the BGS

data compared to that simulated without BGS. To fur-

ther investigate, we carried out ABC inference using a

Poisson composite likelihood metric and ignored the

standard deviations. The results are shown in Fig. 4; the

resulting SFS is similar, and parameters are estimated

with similar bias and we conclude that the results are

insensitive to the choice of metric. This shows that we

can have a case of positively misleading inference where

we infer parameters that are not a good reflection of

actuality, yet appear to explain our data well.

An interesting observation is that using a Poisson CL

metric does not affect the quality of the fit nor the bias.

The good SFS fit is not surprising as we are now

directly attempting to match the expected JSFS with the

observed JSFS, yet we note the mismatch in variance; it

is perhaps surprising that the Euclidean metrics, with

twice as many statistics, do not perform better. This

could be due to the curse of dimensionality: as more

summary statistics are used, it is less likely that a ran-

dom sampling of space will be close to the data, giving

wider confidence intervals and larger bias with more

Table 1 All parameter values used for

simulations, and priors where applicable

for ABC estimation

Parameter Values Prior min Prior max

NA,0 = NA,s 0.5 1 2 5 10 0.1 100

NΒ,0 = NΒ,s 0.5 1 2 5 10 0.1 100

NA,s = NB,s 0.5 0.01 100

mA?B = mB?A 0 0.5 1 10 100 0 500

c 0 1 2 5 10 20 100

pd 0.01 0.05 0.1 0.2

s 2
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statistics. Alternatively, the Poisson nature of the metric

may give more weight to more important statistics.

Finally, as noted above, the standard deviations did not

match well, so including them may well be futile. The

simulated data, while excluding BGS, simply cannot fit

as well when considering standard deviations in the

summary statistics; including both means and standard

deviations confers a larger bias.

The larger expected standard deviation may be under-

stood when we consider the distribution of ancestral

recombination graphs (ARG). The observed negatively

selected mutations are more likely to be young than old,

and thus, internal branches will tend to be shorter rela-

tive to the neutral case. Thus, as we go back through

time in a linage, we are less likely to have a parent with

a deleterious mutation the further back we go, as such a

linage has a low probability of surviving until sampling

time. Because the pool of likely parents is thus effec-

tively reduced further back in time, the coalescent rate

increases, or in other words, Ne is reduced the further

back in time we proceed. Note the qualitative agreement

in Fig. 1 where the derived population size estimates

are increased relative to the ancestral population size

and that exponential growth is always overestimated

with BGS. However, unlike with population growth, or

other demographic effects, this process is driven by the
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Fig. 2 Bias in inference with different levels of background selection (BGS). (A) Population A, (B) population B and (C) migration.

The solid blue line indicates the true value, while the box plots show the posterior density from the ABC inference. As shown, for

intermediate levels of background selection, growth models are strongly overestimated. We note that migration estimation appears

to improve with increasing BGS.
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random Poisson distribution of mutations in addition to

the stochastic coalescent process, thereby increasing

observed variance compared to the purely demographic

case.

Discussion

We have shown that with intermediate levels of BGS

present, positively misleading demographic inference is

possible when BGS is not taken into account, while with

both strong and weak BGS, accurate inference is possi-

ble. This result is noteworthy, given the common

assumption in demographic inference that all SNPs are

selectively neutral and unaffected by linkage to a

selected site. Examining a wide range of parameters,

we also demonstrate that in many cases, the expected

SFS between neutral demographic models and BGS

models is confounded. The direction of bias is well

explained as a reduction in Ne further past-ward, result-

ing in overestimation of population growth and size in

the present relative to the past. However, qualitative

expectations are difficult to derive in nonequilibrium

populations.

The most notable difference between BGS and non-

BGS models identified here was the expected standard

deviation of site frequency spectra. In all cases, BGS

increased the standard deviation of SFS means across

loci, which can be understood when considering the

additional Poisson process that now affects the resulting

ARG. This also suggests possible ways to investigate

whether a given data set has important levels of BGS,

as we expect smaller effective Ne past-ward and a larger

standard deviation of expected site frequency spectra.

Unfortunately, both increasing population size and BGS

are reasonable expectations for many data sets, and

thus, information on population size history would be

insufficient. It is tempting to consider the standard

deviation, but for real data many processes such as

recombination hot spots, selective sweeps, mutation

variation and ascertainment bias can all be expected to

increase the SFS variance compared to simulated demo-

graphic models. Indeed, the SFS fits shown in Fig. 4 are

considerably better than those typically associated with

real data sets.
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ground selection (BGS) data compared

with a fitted demographic model. We

normalize all frequencies to the BGS

medians for each category. Red: BGS

data. Blue: estimated data using the

Euclidean metric. Green: estimated data

using the Poisson CL metric. In both the

cases, the best simulation was used to

regenerate data rather than the posterior.

We note the apparently larger variance

under the BGS model. In all cases, c = 10

and the probability of a selected muta-

tion is 0.1.
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The results presented here indicate that previously

analysed data sets may in fact be misinferred. Given

the wide range of previously estimated selection param-

eters and recent BGS estimates (Charlesworth 2012;

Comeron 2014), it is reasonable to assume that interme-

diate rates of BGS do occur, leading to important devia-

tions from neutrally demographic model assumptions.

Recent experimental results regarding the distribution

of fitness effects further support the notion that some

mutations will be within the ranges tested here (e.g.

Bank et al. 2014).

Separating BGS from demography therefore remains

a challenging problem. While forward simulations of

BGS are straightforward and suggest the possibility of

co-estimation of BGS and demography within an ABC

framework as a possible solution, problems remain.

Although available computing resources have increased

dramatically, forward simulators remain slow for gen-

eral inference methods. For example, the ABC simula-

tions shown here took only days to weeks to complete

with a coalescent simulator and available cluster

resources, compared to an estimated computation time

of almost 1 year with SFSCode. Progress in this area is

ongoing. For example, SLiM computes much faster than

SFSCode by only tracking segregating sites rather than

entire genomes. For rough approximations, coalescent

simulators have been implemented (Zeng & Charles-

worth 2011; Zeng 2013), and work in this area contin-

ues towards relaxing some of these approximations.

Further development is also needed to identify

sufficient statistics for the co-estimation of BGS and

demography.
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