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The rapid evolution of drug resistance remains a critical public health concern. The treatment of influenza A virus (IAV) has

proven particularly challenging, due to the ability of the virus to develop resistance against current antivirals and vaccines. Here,

we evaluate a novel antiviral drug therapy, favipiravir, for which the mechanism of action in IAV involves an interaction with

the viral RNA-dependent RNA polymerase resulting in an effective increase in the viral mutation rate. We used an experimental

evolution framework, combined with novel population genetic method development for inference from time-sampled data, to

evaluate the effectiveness of favipiravir against IAV. Evaluating whole genome polymorphism data across 15 time points under

multiple drug concentrations and in controls, we present the first evidence for the ability of IAV populations to effectively

adapt to low concentrations of favipiravir. In contrast, under high concentrations, we observe population extinction, indicative of

mutational meltdown. We discuss the observed dynamics with respect to the evolutionary forces at play and emphasize the utility

of evolutionary theory to inform drug development.

The increasing availability of time-sampled data, and of statistical

inference approaches based on such data, is considerably expand-

ing the repertoire of population genetics (reviewed in Bank et al.

2014). Time-sampled data are often considered in association

with the growing field of ancient DNA and have long been a

key feature in the analysis of both experimental and clinical data.

Indeed, one of the most important applications and challenges

today is how to best use such data to characterize the evolution
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of human pathogens, perhaps most specifically, how to quantify

(and ultimately combat) the ability of viral populations to develop

resistance to given treatment strategies.

Influenza A virus (IAV) is of long-term public health inter-

est given its scope (with approximately 36,000 deaths annually

in the United States alone; Thompson et al. 2003) and the rapid

evolution of resistance against common therapeutics. The evolu-

tion of resistance is ultimately a process dictated by the nature of

the interaction between drug, virus, and host. For example, the

most widely administered drug for combating IAV, oseltamivir,

was initially designed as a competitive inhibitor of neuraminidase

based on structural information of the active site (Moscona 2005;

Collins et al. 2008). Though it was widely believed that resis-

tance to oseltamivir would be clinically unimportant given the

associated high fitness cost (Ives et al. 2002), a particular resis-

tance mutation neuraminidase H275Y nonetheless spread rapidly

(Gubareva et al. 2001; Moscona 2009; Ghedin et al. 2012)—likely

due to the presence of accompanying compensatory mutations

(Bloom et al. 2010; Bouvier et al. 2012; Ginting et al. 2012).

Hence, in the case of oseltamivir, a single mutation near the viral

neuraminidase active site is sufficient to attenuate drug binding

and thereby cause resistance. Thus, alternative classes of drugs for

which resistance evolution is less easily achieved have garnered

interest.

One promising drug is favipiravir, for which the mechanism

of action is related to the selective inhibition of viral RNA-

dependent RNA polymerase (RdRp) and the decrease of poly-

merase fidelity, which results in an increase of the genome-wide

mutation rate in IAV (Baranovich et al. 2013; Furuta et al. 2013).

To our knowledge, no study to date has found evidence for suc-

cessful resistance evolution of influenza against favipiravir. This

may suggest either that resistance is complex to achieve given that

the drug effectively targets the entire genome (and thus no simple

genetic solution for resistance exists), or that its effect is so strong

that viral populations are always driven to extinction prior to the

appearance of resistance mutations.

The field of evolutionary theory has studied the effects of

increasing mutation rates on asexual populations for decades, and

several processes may be invoked that lead to the extinction of

a population owing to an artificially increased mutation rate. All

are based on the fact that the majority of new fitness-affecting

mutations are deleterious.

First, Muller’s ratchet is a process that describes the decline

of fitness and size of a nonrecombining population, owing to the

periodic loss of the most fit genotype (Muller 1964; Felsenstein

1974). Theoretical work has shown that the speed of the ratchet is

determined by the effective population size, mutation rate, dele-

terious selection coefficient, and the size of the least-loaded (i.e.,

most fit) class at mutation-selection equilibrium (Haigh 1978,

and see Gordo and Charlesworth 2000). Although the ratchet ini-

tially leads to a linear accumulation of mutations while census

population size remains constant, it may ultimately lead to the

rapid extinction of the population due to what is referred to as

“mutational meltdown” (Lynch et al. 1990, 1993). Importantly,

under high mutation rate conditions, the loss of the least-loaded

class may be primarily driven by mutation rather than genetic

drift (Lynch et al. 1993). We argue that, in this case, the process

of mutational meltdown is conceptually similar to “lethal muta-

genesis,” a term that has subsequently been promoted in the area

of virology (Bull et al. 2007; Wylie and Shakhnovich 2012). Both

are characterized by a linear accumulation of mutations while the

load is low enough for the population to reach the carrying capac-

ity, followed by an extinction process that is initiated when the

mean viability is too low to maintain the carrying capacity. The

two models differ in their main focus on small (mutational melt-

down) versus large/infinite (lethal mutagenesis) population sizes.

However, extinction is eventually driven by mutation load in both,

and the models are thus difficult to distinguish empirically.

Second, although beneficial mutations (e.g., mutations con-

ferring drug resistance or other relative growth advantages) will

also become more frequent under increased mutation rates, these

are likely to occur in individuals that also carry deleterious muta-

tions, which may prevent or slow their spread in the population in

the absence of recombination. This effect, termed “weak-selection

Hill-Robertson interference” (WSHRI) (Hill and Robertson 1966;

McVean 2000), thus may also serve to slow the evolution of

resistance.

Finally, the extinction of populations under high mutation

rate conditions has been frequently discussed in the area of virus

evolution with regard to the concept of error catastrophe (Eigen

1971; Eigen 2002; Holmes 2003). In principle, the concept of er-

ror catastrophe is similar to the theories of mutational meltdown

and lethal mutagenesis, and large parts of the theory are equiva-

lent (Wilke 2005). However, the causal mechanism of extinction

due to error catastrophe is specifically mutation accumulation be-

yond an “error threshold” above which the evolutionary dynamics

destabilize and the genome is unable to maintain the required in-

formation (but see Bull et al. 2007 for scenarios in which error

catastrophe may not result in extinction). The error threshold is a

sharp limit and the occurrence of error catastrophe is not limited

to finite populations.

Here, we present data from in vitro selection experiments in

which populations of IAV were evolved in the presence or ab-

sence of favipiravir treatment and compare these to our previous,

similar experiment using oseltamivir (Foll et al. 2014; Renzette

et al. 2014). Results indeed demonstrate that favipiravir induces

mutational meltdown, with experimental populations exposed to

escalating drug concentrations eventually becoming extinct. This

result is in stark contrast to the populations that evolved in the

presence of escalating amounts of oseltamivir, in which resistance
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mutations arose and fixed quickly after the introduction of drug

pressure. We also evaluate different concentrations of favipiravir

treatment, quantifying the extent necessary to induce this effect,

and we provide the first evidence for potential adaptation of IAV

to favipiravir under a constant low drug concentration.

As such, this experimental set-up allowed us to directly study

the evolutionary dynamics of IAV in different drug environments.

In doing so, we were able to quantify the adaptive process with

respect to potential beneficial mutations in response to differ-

ent conditions and discuss the potential for evolutionary rescue

(i.e., the process by which a population can escape extinction in

a novel environment through rapid adaptation; Alexander et al.

2014). Thus, this work highlights experimental scenarios of clin-

ical relevance of both successful and failed evolutionary rescue,

and allows us to observe the dynamics of mutational meltdown

in action. Our results demonstrate the promise of drug-induced

mutational meltdown as a means for combating viral populations,

and for favipiravir as an effective strategy against IAV in particu-

lar. Yet, our findings also raise concerns that proper drug dosage

is essential for effective treatment. By discussing our results with

respect to concepts from evolutionary theory, we outline prospects

for the better prediction of the evolutionary response of pathogens

to drug pressure.

Materials and Methods
CELLS, VIRUS STOCKS, AND CHEMICALS

Madin-Darby canine kidney (MDCK) cells were obtained from

American Type Culture Collection (Manassas, VA) and propa-

gated in Eagle’s minimal essential medium (MEM) with 10%

fetal bovine serum (FBS; Hyclone, Logan, UT) and 2 mM peni-

cillin/streptomycin. Influenza virus A/Brisbane/59/2007 (H1N1),

grown in the chicken egg allantoic fluid, was obtained through

the NIH Biodefense and Emerging Infections Research Resources

Repository, NIAID, NIH (NR-12282; lot 58550257). Favipiravir

was obtained from FUJIFILM Pharmaceutical USA, Inc.

VIRAL TITER DETERMINATION BY PLAQUE ASSAY

Viruses were quantified on MDCK cells to determine infectious

titer (plaque forming units per ml, or PFU/ml) as previously de-

scribed (Hendricks et al. 2013). In brief, six 10-fold serial di-

lutions were performed on the viral samples followed by 1 h of

binding at 37°C on confluent MDCK cells in 12-well plates. After

washing off unbound virus with phosphate buffered saline (PBS),

the cells were overlaid with agar (0.5%) in DMEM-F12 supple-

mented with penicillin/streptomycin, L-glutamine, bovine serum

albumin, HEPES, sodium bicarbonate, and 20 μg/ml acetylated

trypsin (Sigma, St. Louis, MO). After the agar solidified, the

plates were incubated for �48 h at 37°C. Cells were fixed and

stained with primary antibody anti-H1 (MAB8261, Millipore,

Billerica, MA). Plaques were visualized with anti-mouse

horseradish peroxidase-conjugated secondary antibody (BD Bio-

sciences, San Jose, CA) and developed with peroxidase substrate

kit (Vector Laboratories, Burlingame, CA).

DETERMINATION OF FAVIPIRAVIR ED50

The 50% effective dose (ED50) value was defined as the concen-

tration of drug reducing plaque number to 50% of no drug control.

In brief, the ED50 was determined by seeding 2.5 × 105 MDCK

cells in each well of a 24-well plate and incubated overnight at

37°C, 5% CO2. Virus was added to cells at an MOI of 0.01 in

100 μl of IAV growth medium [EMEM/10% FBS with 2 mM

penicillin/streptomycin, 7.5% bovine serum albumin, and 1 μg/ml

TPCK-treated-trypsin (Sigma)] plus favipiravir (0, 0.1, 0.3, 1, 3,

or 10 μM). After incubation at 37°C for 1 h, cells were washed

once with PBS; 500 μl of IAV growth medium with the appropri-

ate concentration of favipiravir was added and cells were again

incubated at 37°C for several days. Supernatants were collected

when > 50% cytopathic effect (CPE) was achieved for at least

one drug concentration. Supernatants were centrifuged for 15 min

at 300 × g at 4°C and stored at –80°C. The viral titer for each

sample was determined by plaque assay.

QUANTITATIVE PCR

Viral RNA was extracted from supernatants using the QIAamp

Viral RNA Mini kit (Qiagen), then reverse transcribed with

the High Capacity cDNA Reverse Transcriptase Kit (Ther-

moFisher Scientific). Viral copies were quantified using M1

forward primer AAGACCAATCCTGTCACCTCTGA, reverse

primer CAAAGCGTCTACGCTGCAGTCC, and probe TTTGT-

GTTCACGCTCACCGT for 40 cycles using the Eppendorf Mas-

tercycler ep Realplex program.

VIRAL CULTURE

Viruses were serially passaged in MDCK cells (2.5 × 105 cells

per well). For the first experiment (favi1, constA, withdrawalA,

and its controls), the multiplicity of infection (MOI) was generally

fixed at 0.01 for each passage. The MOI was occasionally adjusted

to accommodate for the available volume/titer of virus, including

for escalating favipiravir (MOI 0.001 for P15) and for constant

favipiravir/withdrawal of favipiravir (MOI 0.001 for P11, MOI

0.005 for P15).

For the second experiment (favi2 and its control), virus was

harvested as the culture reached �50% CPE, and the cell-free

virus processed for sequencing. The variable MOI was a result

of continuously passaging the viral populations. At each passage,

a range of virus was used to initiate the next round of infection

in various wells. The sample that generated 50% CPE with the

lowest input of virus was used to continue the trajectory. Virus
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titers were determined at the conclusion of the experiments. The

average MOI was subsequently calculated as 0.02 ± 0.009 (SEM).

Samples were harvested both in the presence and absence

of escalating amounts of favipiravir. In the first passage with

favipiravir, the drug concentration was 2X the ED50 of 1 μM

(2 μM), consistent with reports of seasonal strains of IAV, ranging

from 0.45 to 5.99 μM (Sleeman et al. 2010). The concentration

was doubled for each subsequent passage as long as > 50% CPE

was present. If < 50% CPE was present, the concentration of

favipiravir was escalated at a slower rate.

HIGH-THROUGHPUT SEQUENCING

We developed a high-throughput sample processing work flow,

carried out in 96-well format, including RNA purification, reverse

transcription, whole genome PCR, followed by DNA barcoding

and library preparation. See Renzette et al. (2014) for details.

BIOINFORMATICS ANALYSIS

Short reads from the Illumina or IonTorrent platform (see

Table S1) were filtered for quality scores > 20 throughout

the read and aligned to the strain’s reference genome using

BLAST. Over 95% of the selected reads could be mapped to

the IAV reference genome obtained from GenBank (accessions

CY030232, CY031391, CY058484-CY058486, CY058488-

CY058489, CY058491). Only alignments longer than 80 nu-

cleotides were retained. The median sequencing depth was

10,226. Amino acid frequencies were calculated after aligning

translated reads to the corresponding positions in the reference

proteins. We confirmed that nucleotide and amino acid frequen-

cies were identical between passages. Unfolded SNP frequencies

were generated using the IAV reference genome and were used

for the population genetics analyses. The sequencing datasets

generated in this study are available at http://bib.umassmed.edu/

influenza. See Renzette et al. (2014) for further details.

SEQUENCING ERROR ANALYSIS

See Renzette et al. (2014) for further details. Because segment

ends are known to contain repetitive regions that are difficult to

map, the first and last 30 sites of each segment were excluded

from all analyses.

POPULATION DYNAMICS

We calculated absolute growth rates for all treatments based on the

initial and final population size (obtained directly before and after

virus passaging) as given by the MOI and the PFU/ml, respectively

(see Table S1). Note that the latter implicitly assumes that each

formed plaque represents a single infective particle. However,

given the generally low MOI this assumption should hold true

for our data. Following Foll et al. (2014), we assumed that for all

treatments the population grew for 13 generations at constant rate

r per passage, yielding

N (t) = N1exprt .

Note that after rearranging and solving for r, the corresponding

absolute growth rate is an estimate for the Malthusian parameter

or the intrinsic rate of increase (Chevin 2010).

Selection intensity s between different treatments was quan-

tified by calculating s = rtreatment − rcontrol . We then performed

a linear regression via ordinary least squares of the growth rates

r and selection coefficients against time (given by passage num-

ber) or drug concentration. To assess whether there was a signif-

icant linear relationship between these entities (e.g., growth rate

vs. initial population size; see Fig. 3A), we performed an ordinary

t-test under the null hypotheses of no significant relationship be-

tween the independent (i.e., drug concentration, passage, or MOI)

and dependent variable (i.e., absolute and relative growth rate),

corresponding to a zero slope. To test whether two regression

slopes were significantly different from one another we again

performed an ordinary t-test under the null hypotheses that both

slopes are equal.

WFABC ANALYSIS

We used the WFABC software (Foll et al. 2014, 2015) to estimate

the effective population size Ne and selection coefficients from

allele-frequency trajectories. Given the sequencing error estimates

of up to 1% (see Fig. S1), we randomly downsampled sites with

coverage above 100 to a sample size of 100. At each site we kept

the counts of the ancestral allele and the most frequent-derived

allele, hence we consider only diallelic SNPs (Foll et al. 2014).

For WFABC we kept only trajectories that had a derived allele

count of at least three at one passage throughout the experiment,

corresponding to a frequency of >2.5% in the population. We used

a uniform prior probability of –0.5 < s < 0.5. This resulted in

the following command line for the wfabc_2 selection estimation

step:

./wfabc 2 − ploidy1 − min s − 0.5 − max s0.5 − min freq 0.025 FILE

For the “fork” datasets, we ran WFABC both for passages 9–17,

(denoted by “constA” etc. in Table S2) and for the full-time series

of passages 3–17 (denoted by “favi1-constA” etc. in Table S2).

For the favi1 dataset, we used both the full range of passages 3–

15 (favi1-long), and a reduced dataset excluding the last passage

(favi1-short). Consistent with Foll et al. (2014), candidate trajec-

tories under positive selection were selected to be those with a

posterior probability of s < 0 less than 0.5%. Passage 12 in con-

stA and constB, and passage 11 in favi2 and favi2-control were

excluded from the analysis because of low coverage.
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HIERARCHICAL CLUSTERING ANALYSIS

Our hierarchical clustering analysis (Fig. 4) is based on the

squared Euclidean distance between allele-frequency trajectories

of the candidate mutations identified by WFABC using Ward’s

minimum variance criterion (Ward Jr. 1963). Furthermore, for all

WFABC candidates we calculated the correlations between allele

trajectories–starting from the point in time where their frequency

was above the level of the sequencing error (i.e., above 1%)–and

the absolute and relative growth rate estimates (Table S2).

CP-WFABC ANALYSIS

The CP-WFABC approach is an extension of WFABC, and con-

siders models of changing Nes from time-sampled polymorphism

data (Shim et al. 2016). The method uses the variance in allele fre-

quencies between two consecutive sampling time points defined

as Fs’, an unbiased estimator of Ne, to measure selection strength

(Jorde and Ryman 2007):

Fs = (x − y)2

z(1 − z)

Fs′ = Fs
[
1 − 1

2ñ

]
1
ñ

txy(1 + Fs
4 )

[
1 − 1

ny

]

where x and y are the allele frequencies at two time points sepa-

rated by txy generations, z = (x+y)/2, and ñ is the harmonic mean

of the sample sizes nx and ny at those time points. Additionally, the

method adapts a procedure from Change-Point analysis in time-

serial data to detect a change point of selection along the allele

trajectory. More specifically, a statistic from the cumulative sum

control chart (CUSUM) developed by Page (1954) is integrated

into the ABC method to characterize the time-sampled trajectory

of an allele:

Si = Si−1 + (Fs′
i − Fs′), i = 1, . . . , I

where the index i refers to the ith time point, S0 = 0, and Fs ′

corresponds to the mean of the Fs’ over all pairs of consecutive

time points. The change point SCP is the sampling time point

with the maximal absolute value of Sm, which is the maximal

accumulation of difference in Fs’ from its average value in the

time-sampled trajectory:

SCP = arg max
i=0,...,I

|Si |

Using these two summary statistics (Fs’ and Scp), CP-

WFABC jointly estimates the temporal position of a change point

as well as the strength of both corresponding selection coeffi-

cients (and dominance for diploid cases) from an allele trajectory.

Furthermore, CP-WFABC separates allele trajectories character-

ized by a single selection coefficient from those with changing

intensity via ABC model choice (see below).

The same datasets and ascertainment conditions were used

as for the WFABC analysis described above. For each trajectory

of interest, we tested the null model M0 (i.e., a single selection

coefficient) and the alternative model M1 (i.e., a changing selec-

tion coefficient), with the parameters of interest being (s) and (s1,

s2, CP), respectively. The uniform prior ranges for the selection

coefficients were set as [–1, 1]. The prior here was chosen to be

wider than for the traditional WFABC analysis described above

since CP-WFABC allows for the detection of strongly deleterious

effects after the change point. We chose a uniform prior for the

change point ranging from the second generation to the second-

to-last generation. A total of 1 × 106 simulated datasets were

generated using the Wright–Fisher model for M0 and M1, while

keeping the other input values, such as the effective population

size estimated from WFABC, the number of generations, the sam-

pling time points, and the sample sizes identical for each observed

trajectory. The best 1 × 103 simulated trajectories were drawn

from the combined M0 and M1 sets, determined by the smallest

Euclidean distance of the aforementioned summary statistics be-

tween the simulated trajectory and the observed trajectory. The

approximate posterior densities of the parameters of interest for

M0 and M1 were built using the respective subsets of these cho-

sen simulations, as in the algorithm described in Beaumont et al.

(2002). Additionally, the ABC model choice was constructed to

identify the SNP trajectories with changing selection intensity,

with the relative probability of M1 over M0 as the model’s poste-

rior ratio and as the Bayes factor B1,0 (Sunnåker et al. 2013):

p(M1|D)

p(M0|D)
= p(D|M1)p(M1)

p(D|M0)p(M0)
= B1,0

p(M1)

p(M0)

when the model prior p(M0) is equal to p(M1). For a small haploid

population, as in the case for IAV in this experimental setup (i.e.,

Ne on the order of hundreds), the Bayes factor B1,0 must exceed

3.7 to achieve sufficient support for the alternative model M1 with

a significance level of 1% (see Fig. 9).

POPULATION SIZE ESTIMATES

To estimate the effective population size between any two time

points, we used the Fs’ statistic introduced above. For each pair of

time points and each site in the genome, we (hypergeometrically)

sampled min (100, COVERAGE) reads from the focal dataset,

and included these values in our calculation if one of the ob-

served frequencies was >2.5%. We then computed the estimated

effective population size for this pair of time points as 1/mean

(Fs’).

ACCUMULATION OF MUTATIONS

To infer the average number of mutations per individual accumu-

lating over time, which is not directly observed due to the lack

of haplotype information in the data, we took the sum over the
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Figure 1. Experimental evolution of IAV with and without favipiravir. Each triangle represents an experimental passage, at the end of

which whole-genome sequencing was performed. Black stars indicate extinction of the viral population. Rows (excluding the dark gray

rectangle) represent parallel sets of treatments and control experiments that were processed and sequenced in the same sequencing

lane (ensuring similar effects of cell culture and sequencing protocol). Labels represent the names of the populations subsequently used

in the manuscript. See Table S1 for information on MOI and drug concentrations.

derived allele frequencies at all sites with coverage greater than

100, if the frequency was above the sequencing error threshold of

1%. We then extrapolated this value to the whole genome.

Results and Discussion
THE EXPERIMENTAL SETUP

We analyzed the evolution of IAV across nine experimental pop-

ulations exposed to different drug conditions as illustrated in

Figure 1. As explained in detail in the Materials and Methods

section, the virus (H1N1) was serially passaged on Madin-Darby

Canine Kidney (MDCK) cell culture, and we assumed each pas-

sage to be an average of 13 viral generations (see Foll et al. 2014).

Each treatment population (left half of Fig. 1) was accompanied

by a control population passaged in the absence of the drug (right

half of Fig. 1) to account for environmental fluctuations, minor

variation in MDCK cell culture conditions, and multiplicity of

infection (MOI) (see Materials and Methods). The stock viral

populations originated from passage 3 of an earlier experiment

described in Foll et al. (2014) and Renzette et al. (2014). At this

point, the population was split into four subsets (hereafter re-

ferred to with the respective abbreviations): two replicates with

an increasing concentration of favipiravir (favi1, favi2) and their

parallel controls that were not exposed to the drug (favi1-control,

favi2-control). After passage 9, three additional populations were

created from favi1, paralleled by two additional populations from

its accompanying favi1-control population; these populations are

hereafter referred to as “forks.” These forks consisted of two popu-

lations originating from favi1 exposed to a constant concentration

of favipiravir (constA and constB) and their accompanying con-

trols without drug originating from favi1-control (constA-control,

constB-control), as well as a fifth fork in which favipiravir was

withdrawn, originating from favi1 (withdrawalA; i.e., drug pres-

sure was completely halted after passage 9). A summary of MOIs,

drug concentrations, and other specifics are provided as Table S1.

The favi1 and favi1-control populations were continued un-

til passage 15, after which time too few virions were recovered

from favi1 to continue the experiment. Similarly, favi2 and favi2-

control were discontinued after passage 11–these events are here-

after referred to as extinctions.

In the following, we quantify and discuss the observed pat-

terns from an evolutionary perspective, with a focus on dissecting

the process that leads to extinction of the viral population in favi1

and favi2, and discuss the potential for the evolution of resistance

against favipiravir.

EVIDENCE FOR INCREASED MUTATION RATE UNDER

FAVIPIRAVIR TREATMENT

Favipiravir affects IAV by increasing the mutation rate above

sustainable levels, leading to an accumulation of deleterious mu-

tations and the eventual extinction of the population (Furuta et al.

2013). We sought to validate the mutation-rate increasing effect of

favipiravir on IAV that was previously described by Baranovich

et al. (2013). However, the quantification of mutation rates from

genomic data is obscured by sequencing error, which induces a

(false) baseline of observed variation. To investigate the effect of

favipiravir on the mutation rate while accounting for this compli-

cation, we studied the number of segregating mutations above two

frequency thresholds, f, of 0.1% and 1%. Whereas the number of

segregating sites above f = 0.1% is likely strongly confounded by

sequencing errors and expected to vary depending on sequencing

depth and quality, f = 1% is expected to be above the sequencing
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Figure 2. The number of mutations per site in the genome that segregated above 1% across time and populations (left y axis, with

data points connected by solid lines). In the background, estimates of the effective population size between any two passages are

displayed (right y axis, data points connected by dashed lines). (A–B) We observed a greater number of segregating mutations in the

favipiravir treatments favi1 and favi2 as compared with control populations, consistent with the proposed mechanism of an increase

in mutation rate. In the favi2 population, a particularly steep increase in the number of segregating mutations occurred immediately

prior to extinction (B). Also the constA (C) and withdrawalA (D) treatments showed an increased number of segregating mutations as

compared with their control experiments, but the accumulation of mutations comes to a halt in withdrawalA, and appears to slowly

recover in constA. The effective population size tends to be lower in the treatment populations (blue) than in the controls (gray). Gray

shading indicates that this part of the figure represents favi1 increasing data, before forks were created. Note that although passages

4–9 in panels A, C, and D stem from the same data, estimated population sizes differ slightly due to the sampling procedure that was

individually performed to calculate the Fs’ statistic.

error threshold (see Fig. 1), but few mutations will rise to such

high frequencies. We estimated the number of segregating sites

in the genome by discounting all sites with coverage lower than

1/f (which for most passages comprised the majority if not the

entirety of the genome), and, if necessary, extrapolated this value

to the whole genome. The results are illustrated in Figure 2 and

Figure S2.

For the lower threshold f = 0.1%, we observed a strong cor-

relation between the number of segregating mutations in any two

parallel experiments (see Fig. 2). This is expected if sequencing

error is prevalent at this frequency threshold. Hence, differences

in the number of segregating mutations in this frequency range

reflect differences in coverage and sequencing quality across pas-

sages and experiments.

For the high threshold f = 1%, we observed an increase in

the number of segregating mutations with time in the favi1 and

favi2 populations, consistent with an increase in the mutation

rate due to favipiravir treatment (see Fig. 2A, B); we discuss

alternative explanations, including different or changing effective

population sizes, or selected mutations, below. In every population

associated with favipiravir treatment (favi1, favi2, constA, constB,

withdrawalA), the average number of segregating mutations was

higher than in any of the control treatments. Whereas in favi1

the increased number of mutations was clearly visible by passage

8, favi2 appeared to be affected even at very low concentrations.

These differences between favi1 and favi2 were likely due to the

constant and larger bottleneck sizes between passages in favi1

as compared with favi2 (see Materials and Methods, Table S1).
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The observed increase in the number of segregating mutations

was roughly 2.5-fold (excluding the last passage of favi2) that is

in agreement with previous estimates of the relative increase in

mutation rate under favipiravir treatment (Baranovich et al. 2013).

For constA, constB, and withdrawalA (Fig. 2C, D, Fig. S2A)

the number of segregating mutations remained greater than that of

the control for the most part, but we observed no further increase

as in favi1 and favi2. As the experiment ended at passage 17, the

potential recovery of the constA population that is indicated in

Figure 2C (but see below) cannot be evaluated.

MONITORING THE EFFECTIVE POPULATION SIZE

THROUGHOUT THE EXPERIMENT

One alternative explanation for the increasing number of segre-

gating mutations could be a changing effective population size

through time between treatments. If most new mutations are dele-

terious, larger effective population sizes may result in a lower

number of segregating mutations due to an increasing efficacy

of selection. We estimated the effective population sizes between

any two passages based on the Fs’ statistic postulated by Jorde

and Ryman (2007) (see Materials and Methods). Fs’ uses the vari-

ance of allele frequencies between two time points to evaluate the

strength of genetic drift in the population, and should therefore

not be affected by an increased mutation rate (but see below for a

discussion of the assumption of independence of sites). The esti-

mated effective population sizes are displayed in the background

of Fig. 2.

Across all populations and passages, the estimated effective

population size (i.e., 1/mean (Fs’), with the mean being taken over

the Fs’ values between each pair of consecutive time points; see

Materials and Methods) ranged from 48 between passage 10 and

11 in the favi2 population to 823 between passage 10 and 11 in the

constB-control, which is consistent with previous estimates (Foll

et al. 2014). The average estimated effective population sizes

correlate well with the estimated global Ne from WFABC (see

Fig. S3). Population sizes were slightly but consistently larger in

the control populations, and in the favi1 and favi2 environments

we observe a steep decline in the effective population size im-

mediately prior to extinction (see Fig. 2A, B). Interestingly, upon

withdrawal of the drug pressure, the population size recovered

and continued at a similar size as its control despite a greater

number of segregating mutations (see Fig. 2D). Conversely, in the

constA population, the effective population size remained consis-

tently lower than both its control and the withdrawal population

throughout the entire course of the experiment (see Fig. 2C).

The rather low observed population sizes in our experi-

ments lead to our interpretation of the results in light of mu-

tational meltdown, rather than lethal mutagenesis. Specifically,

mutational meltdown accounts for the stochastic effects of ge-

netic drift, which is clearly important in populations of this size.

We iterate however, that the models of mutational meltdown and

lethal mutagenesis make similar claims and predictions.

POPULATION DYNAMICS ACROSS DRUG

CONDITIONS

In contrast to data from natural populations, the experimental

setup of serial passaging of the virus in cell culture allowed us

to control and monitor the population dynamics of the virus, and

thus to directly assess the number of virions introduced to the

cell culture (reflected in the multiplicity of infection [MOI]),

and the number of virions emerging at the end of each pas-

sage (output virions, specifically plaque-forming units [PFU]; see

Table S1). We used these figures to estimate absolute growth rates

of the viral population during each passage under the assumption

of exponential growth (see Fig. 3, Fig. S4, and Materials and

Methods).

As a further assessment of the effectiveness of the drug treat-

ment, we studied the relationship between the drug concentrations

throughout all populations and the absolute growth rates, and

reassuringly observed a highly significant negative correlation

(Fig. 3A; R2 = 0.38, P < 10−9). While there appears to be no cor-

relation globally between the bottleneck size and the growth rate

(Fig. 3B; R2 = 0.01 P = 0.26), indicating that the imposed pop-

ulation dynamics do not significantly impact the rate of growth,

a small negative effect of bottleneck size on the estimated growth

rates cannot be ruled out when only considering bottleneck sizes

of 5000 and smaller (R2 = 0.11 P = 0.009; see also Table S3).

To study the effect of different drug conditions on the

growth rates, we computed relative rates as the difference be-

tween the growth rate of the treatment and its parallel control,

s = rtreatment − rcontrol . This account for effects due to the MDCK

cell environment and the size of the imposed passaging bottle-

necks, which were generally kept identical between parallel ex-

periments (see Table S1).

We observed consistently negative relative growth rates in

the favi1 and favi2 populations (Fig. 3C and Fig. S4), likely due

to the challenging effect of the drug on the population. It is im-

portant to note differences in the experimental procedure in the

favi2 population and its parallel control from that of all other

populations (see also Materials and Methods). In general, bottle-

neck sizes (i.e., MOIs) were kept constant and relatively large,

and new passages were seeded from a random sample of the pre-

vious population. However, the bottleneck sizes in favi2 were

smaller and varied greatly, and new passages were seeded based

on the fastest-growing among several samples. Therefore, slightly

different patterns between the favi1 and favi2 populations are ex-

pected (such as the higher absolute growth rates in favi2 (see

Fig. 4)). Furthermore, the lower MOIs in favi2 may have resulted

in a lower probability of coinfection of cells, and thereby in a

lower chance of virus segment reassortment which, analogous to
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Figure 3. Changes in absolute and relative growth rates of the virus throughout the experiment. (A) Absolute growth rate showed a

strong negative correlation with imposed drug concentration, providing further evidence for the effectiveness of the treatment. (B) No

correlation was observed between the initial population size in each passage and the absolute growth rate. (C) In favi1, relative growth

rates (compared with parallel control) were consistently negative. (D–F) Relative growth rates of additional treatment strategies across

passages. Whereas the growth rate decreased in the first part of the experiment (favi1, passage 4–9) as drug concentration (blue line)

increased, the constA (D) and withdrawal (E) populations showed signs of recovery upon the change of treatment.

Figure 4. Clustering of WFABC candidate mutations in the constA environment. (A) Tree showing the (dis-)similarity between allele-

frequency trajectories of beneficial candidates as an indicator of either hitchhiking effects or joint selection. Asterisks indicate the

mutations that are discussed in the main text as potential driver mutations. (B–G) Allele-frequency trajectories of the mutations in each

cluster.

recombination, could help to bring together coadapted segments

or to purge deleterious mutations from the viral genome; a

potential consequence is a more rapid extinction of the favi2

population.

Interestingly, in the constA population (Fig. 3D), the initially

negative relative growth rate appeared to gradually recover under

constant drug pressure, ultimately approaching 0 (i.e., similar to

the growth rate of the parallel control). The slope of a linear

regression from passage 10–17 is positive (P = 0.039). This pro-

vides the first line of evidence that the constA population may

be acquiring resistance under low-concentration favipiravir con-

ditions. A similar pattern of recovery (increasing slope of linear

regression, P = 0.004) was observed in the withdrawalA popula-

tion (Fig. 3E). Finally, the constB population did not show signs

EVOLUTION 2016 9



C. BANK ET AL.

of recovery (P = 0.24), but rather maintained a constant negative

relative growth rate throughout treatment (Fig. 3F).

IDENTIFICATION OF PUTATIVELY SELECTED

MUTATIONS

The whole-genome SNP data obtained at the end of each passage

in all populations provided us with allele-frequency trajectories

through time for every site in the genome. These trajectories

contain information on the effective population size and thus on

the magnitude of genetic drift, and on the selection coefficient

of each mutation observed at frequencies above the sequencing

error threshold. We thus used WFABC (Foll et al. 2014, 2015)

to identify positively selected candidate mutations (see Materi-

als and Methods). All considered trajectories are displayed in

Figure S5. Table S2 contains a list of all identified candidates. Of

note, candidate mutations were identified by WFABC under the

assumption of independence between sites, an assumption likely

violated in IAV. Hence, each candidate may be the subject of ei-

ther direct or linked selection. However, WFABC was successful

in identifying resistance mutations against oseltamivir (Foll et al.

2014), several of which have been functionally validated; thus, it

was a valuable tool for identifying a set of promising candidates

for favipiravir.

Overall, WFABC identified 64 positively selected candidate

mutations, of which 24 were shared between at least two popula-

tions. The allele-frequency trajectories of all candidate mutations

across all populations are plotted in Figure S6. Strikingly, the

strongest signal of selective sweeps (see also Fig. S5) and the

highest number of candidate mutations (n = 21, across passages

3–19) were seen in the constA population, which also showed

signs of resistance evolution based on recovering growth rates, as

detailed in the previous subsection (see Fig. 3D); these candidates

also had the highest inferred selection coefficients (see Table S2).

Of the 21 candidate mutations, 10 are nonsynonymous and the

majority (n = 8) are at genes localized to the subunits of the viral

RdRp, which could be expected given that favipiravir is proposed

to inhibit the viral RdRp (Furuta et al. 2005; Jin et al. 2013). The

phenotype of most of the candidate mutations is unknown.

A well-characterized candidate within this group, NP S9T,

disrupts a phosphorylation site and alters nuclear-cytoplasmic

shuttling of the nucleoprotein (NP) (Hutchinson et al. 2012; Zheng

et al. 2015). Phosphorylation of NP S9 prevents nuclear import,

and mutations at this site thus lead to an accumulation of NP

within the nucleus (Zheng et al. 2015), the location of viral RNA

replication. Altering the levels of NP in the nucleus could in-

crease rates of viral RNA replication (Portela and Digard 2002),

thereby counteracting the inhibitory effects of favipiravir, though

this mechanism needs to be formally tested. Interestingly, NP S9

is perfectly conserved in H1N1 isolates, and thus the allele may

be an unlikely resistance mutation in natural isolates.

Additional candidate mutations were identified in the con-

stB population (n = 6). One of the candidates, NP D101N, was

previously identified in an experimental screen for alleles con-

ferring resistance to the drug ribavirin (Cheung et al. 2014).

Like favipiravir, ribavirin increases the mutation rate of the IAV

genome (Cheung et al. 2014). Interestingly, follow-up assays

could not confirm the action of NP D101N as a resistance mutation

(Cheung et al. 2014), suggesting that either NP D101 is a prod-

uct of cell-culture adaptation, or perhaps contributes to resistance

only in interaction with other mutations. Analysis of our previ-

ously published data on serial passaging of IAV in MDCK cells

(Foll et al. 2014; Renzette et al. 2014) showed fixation of NP

D101N in one of the two trajectories where oseltamivir-resistant

influenza virus evolved, which suggests that NP D101 indeed

emerges with adaptation to MDCK cells. Of note, the PB1 V43I

and the PB1 D27N mutations, known to affect polymerase fi-

delity and confer resistance to ribavirin in other studies (Cheung

et al. 2014; Binh et al. 2014), is not detected in our favipiravir

experiments.

In both the favi1 and favi2 populations, few (n = 2 for favi1

passages 3–14; n = 3 for favi2 passages 3–10) candidate mutations

were identified before the population was driven to extinction. The

mutations in this group were distributed across the genome, sug-

gestive of the absence of a strong selective sweep. In the control

and withdrawal populations, the identified candidates (listed in

Table S2) were largely shared between populations, indicating

potential adaptations to the MDCK environment. Indeed, many

of the candidate mutations across populations have previously

been described in the literature associated with mammalian cell

culture adaptation (e.g., PB2 G590S (Mehle and Doudna 2009;

Poole et al. 2014) and HA2 D112N (Foll et al. 2014)).

POTENTIAL DRIVERS OF ADAPTATION IN CONSTA

To identify groups of mutations indicative of genetic hitchhiking

and/or joint selection in the constA environment, we performed

a hierarchical clustering analysis based on the squared Euclidean

distance between allele-frequency trajectories (see Materials and

Methods). The result of this analysis is illustrated in Figure 4.

We chose a dissimilarity threshold of 0.95, which results in six

clusters (see Fig. 4A).

The mutations in cluster 1 (see Fig. 4B) begin to increase in

frequency at passage 9, though come to a halt (potentially due to

interference) around passage 13, which also coincides with the in-

creasing frequency of cluster 5. Two nonsynonymous mutations

(indicated with an asterisk in Fig. 4A) are the likely targets of

direct selection (i.e., drivers) in this cluster: HA S220P is a mam-

malian cell adaptation that has been observed in MDCK cells,

ferrets, and humans (Smirnov et al. 2000; Ding et al. 2010; Imai

et al. 2012); the same mutation is also identified as a candidate

in the favi2 population. PB2 G590S is a temperature-sensitive
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polymerase mutation that has been frequently observed upon

switching from propagation of the virus in chicken eggs to mam-

malian cells (Mehle and Doudna 2009; Poole et al. 2014). Hence,

this cluster likely represents an adaptation to the cell culture.

Cluster 2 contains only a single, nonsynonymous mutation

in the polymerase subunit PB2 that has not been characterized

previously. The frequency of this mutation decreased toward the

end of the experiment, which may be indicative of linked rather

than direct selection, for example from clusters 1 or 3.

Cluster 3 was the earliest to begin increasing in frequency in

the population, and several of the mutations contained in this clus-

ter were present early in the experiment (during the phase of in-

creasing drug concentration; see Fig. 4D). The best-characterized

candidate and potential driver of this cluster is NP S9T (discussed

above). However, an additional potentially interesting candidate

for further study is PA R204R/PA-X D204G, which represents a

nonsynonymous mutation in the recently discovered second open

reading frame of segment 3, and whose protein product has been

reported to be involved in virulence of IAV (Jagger et al. 2012).

Cluster 4 is represented by two mutations showing highly

uncharacteristic allele-frequency trajectories (see Fig. 4E). Given

their long persistence at intermediate frequencies, they are un-

likely to be driver mutations.

Cluster 5 contains the highest number of mutations, with

four being tightly linked in the polymerase subunit PA. Most of

the involved mutations are synonymous, making them unlikely

driver candidates. Two nonsynonymous mutations in PA, E31G,

and E56G, have not been previously characterized. However, the

third nonsynonymous mutation in this cluster, PB2 K718E mu-

tates a residue important in PB2 binding to various importin α

isoforms (α1, α3, and α7), and thus is critical in altering the kinet-

ics of PB2 nuclear importation (Pumroy et al. 2015). Combining

this putative phenotype with that of the NP S9T allele of cluster

3 suggests a model in which adaptation to favipiravir is associ-

ated with alteration of the subcellular localization of viral RdRp

components rather than changes in viral RdRp enzymatic activity

or drug binding. This model is tentative, though, and warrants

further investigation.

Finally, cluster 6 contains two mutations, one of which is

synonymous. The other mutation is outside the protein-coding

domain of the polymerase subunit PB2 and is of unknown

function.

In summary, the following observations emerged from the

cluster analysis: first, larger clusters (suggestive of stronger se-

lective sweeps) contained the most compelling candidate muta-

tions for adaptation and resistance evolution. Second, we were

able to reconstruct a hypothesized history of adaptation: an early

selective sweep of MDCK cell adaptation (cluster 1) interferes

with a later sweep of a resistance mutation (cluster 5). However,

a high mutation rate and coinfection (and, hence, reassortment of

segments) appears to enable the combination of multiple bene-

ficial mutations on the same background, which leads to rapid

adaptation in this population. It is unclear whether the staggered

sweeps observed here would be possible in isolation or whether

the effects of later mutations are indeed dependent on the presence

of earlier mutations. However, our results provide an excellent

means of identifying candidates for functional testing.

ASSESSMENT OF CHANGES IN THE SELECTION

PRESSURE

We also apply a newly developed extension of WFABC to test

for severely changing selection coefficient s or population size

Ne during the course of the experiment. CP-WFABC (“change-

point”-WFABC (Shim et al. 2016); see Materials and Methods)

can also identify the change point and magnitude of the product

of Ne and s before and after the change, and tests a model with

changing parameters against the null model of a single-fixed se-

lection coefficient and population size. As visualized in Fig. S7,

the results of CP-WFABC were consistent with the rapid popu-

lation extinction in favi1. The population collapse was accompa-

nied by a steep decrease in the effective population size, which

produces hundreds of trajectories that are not consistent with a

classical constant-environment model. In contrast, only few and

relatively uniformly distributed change points are identified in the

control populations, consistent with our expectation in a constant

environment.

FAVIPIRAVIR-INDUCED MUTATIONAL MELTDOWN

We observed successful extinction of the viral population within

<150 generations in both replicates under increasing drug con-

centrations. The observed pattern is stunningly similar to the dy-

namics of mutational meltdown described in Lynch et al. (1993):

shortly after a new asexual lineage is created, individuals accumu-

late mutations almost linearly until reaching a transition point at

which the population size collapses, producing a sharp increase in

mutation accumulation. In Fig. 5, the accumulation of mutations

per individual (see Materials and Methods) in the favi1 population

(blue dots) is overlaid on a reproduction of Figure 1 of Lynch et al.

(1993) (blue line). Although we lack information on the carrying

capacity of the population and the census population size (shown

as gray dashed line following Lynch et al. (1993)), the observed

changes in the effective population size (gray dots) are consistent

with this model: over time, the effective population size decreases

gradually (due to Muller’s ratchet) but slowly, until it collapses at

the transition point. Notably, this transition point was also indi-

cated by CP-WFABC as a major change in the selection pressure.

The same pattern was observed for the favi2 population, and all

populations showed the linear mutation accumulation expected

under Muller’s ratchet (visualized in Fig. S8). Because mutation

accumulation in the model is proportional to the mutation rate,
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Table 1. A summary of observations across datasets.

Population # Beneficial
candidates

Extinction
observed?

Increased #
mutations?

Indication
of recovery?

Reduced
Ne?

favi1 5 Yes Yes No Yes
favi2 3 Yes Yes No Yes
constA 18 No Yes Yes Yes
constB 6 No Yes Unclear Yes
withdrawalA 1 No Yes Yes No

Figure 5. Qualitative comparison of accumulation of mutations

in the favi1 population (blue dots) with pattern of mutation accu-

mulation redrawn from Figure 1 of Lynch et al. (1993) as the solid

blue line, representing mutational meltdown. The horizontal gray

dashed line represents the census population size in the original

model, which is here overlaid by our Ne estimates between pas-

sages (gray dots). The dashed vertical line in green indicates the

transition to the meltdown phase.

comparing the slopes provides additional confirmation of the in-

crease in mutation rate observed under favipiravir treatment (see

Fig. S8).

Conclusion
In this study, we examined a novel class of drug treatment that

acts to increase viral mutation rates. Although an increased mu-

tation rate may allow for a more rapid appearance of beneficial

mutations in the population (e.g., Cirz and Romesberg 2007), the

underlying notion is that the comparatively much greater input

rate of deleterious mutations should lead to population extinction

(i.e., within-host extinction of the virus) and prevent any rescue

mutations from emerging. This expectation is supported by a large

body of classical studies in evolutionary theory that have described

the processes of mutational meltdown (e.g., Lynch et al. 1993),

lethal mutagenesis (e.g., Bull et al. 2007; Martin and Gandon

2010; Arias et al. 2014), and error catastrophe (e.g., Biebricher

and Eigen 2005).

By comparing multiple replicates of populations grown in

the absence of favipiravir treatment, at constant concentrations

of the drug, and at escalating concentrations, we quantified the

respective effects on underlying mutation rates and described the

resulting evolutionary processes. We demonstrated that all popu-

lations treated with increasing concentrations of favipiravir were

characterized by increased mutation rates, decreasing effective

population sizes through time, no observed rescue mutations,

and ultimate extinction in all population replicates (see Table 1).

This pattern is in sharp contrast to populations treated with a

constant concentration of favipiravir, which maintain constant

(but reduced) effective population sizes, show signs of selective

sweeps and, in one replicate, a striking recovery of the population

growth rate–suggesting that lower concentration conditions may

indeed allow for the virus to persist and potentially even develop

resistance. The contrast with populations grown in the presence of

oseltamivir is also noteworthy, for which single-mutational-step

resistance mutations rapidly arose in all treatment populations

allowing for a complete evolutionary rescue (Foll et al. 2014).

As the ultimate source of variation, mutational effects and

rates have remained a persistent subject in evolutionary theory.

In 1930, Fisher (1930) argued that an intermediate mutation rate

is optimal for organisms to ensure a steady input of beneficial

mutations while avoiding the detrimental accumulation of delete-

rious mutations. His arguments were later formalized in several

evolutionary concepts including Muller’s ratchet (Muller 1964;

Felsenstein 1974), mutational meltdown (Lynch et al. 1990),

lethal mutagenesis (Bull et al. 2007), background selection

(Charlesworth et al. 1993; Charlesworth 2012), background trap-

ping (Johnson and Barton 2002), Hill-Robertson interference (Hill

and Robertson 1966; McVean 2000), and, in a more biophysically

inspired framework, quasi-species theory (Eigen 1971; Biebricher

and Eigen 2005; but see Wilke 2005). Whereas these models

generally predict an eventually detrimental effect of increasing

the mutation rate, instances of rapid resistance evolution against

mutation-rate increasing treatment (Pfeiffer and Kirkegaard 2003)

and a general escape from extinction (Springman et al. 2010) have

been previously reported.
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Furthermore, so-called mutator genotypes are frequently ob-

served when bacteria are exposed to novel environments, where

an increased mutation rate may facilitate adaptation, particularly

over short time scales (Taddei et al. 1997; Ram and Hadany

2012). Therefore, efforts are made to develop mutation-inhibition

treatments to prevent antibiotic resistance evolution in bacterial

pathogens (Cirz and Romesberg 2007). Conversely, as demon-

strated here and as previously argued theoretically (e.g., Martin

and Gandon 2010), increasing mutation rates indeed also repre-

sent a potential treatment strategy.

Thus, the precise relevance of this information for the study

of virus evolution and the development of improved treatment

strategies requires further examination. First, the correspondence

of the observed patterns with classical theory demonstrates the

predictive value of population-genetic models. In the model of

Lynch et al. (1993), extinction time is estimated based on the

mutation rate, the carrying capacity, the rate of reproduction,

and the selection coefficient. Whereas the relationship between

the reproductive rate and the carrying capacity and extinction

time are relatively simple, we here present a novel finding of

the (deleterious) selection coefficient having a nonlinear relation-

ship with extinction time, a time that is minimized under inter-

mediate selection coefficients. This has important implications

for the evolution of the virus: if changing the environment (e.g.,

drug pressure) changes the distribution of fitness effects of new

mutations, this can result either in shorter or longer extinction

times. Changing this distribution also alters the relevance of the

discussed evolutionary mechanisms (e.g., Muller’s ratchet, back-

ground selection, WSHRI). Essentially, minimizing the expected

extinction time optimizes drug efficacy and decreases the risk of

resistance evolution. By combining our emerging knowledge of

the underlying distributions of fitness effects of new mutations

with classical theory, we may be able to develop better predic-

tions regarding the efficacy of both single and combination drug

therapies.

Second, we observe that the number of accumulated muta-

tions per individual in the passage immediately prior to extinction

was almost twice as large in the favi1 as compared with the favi2

population. This may be partly explained by differences in the ex-

perimental setup (see Materials and Methods), but considering the

similar effective population sizes it more likely provides evidence

for the inherent stochasticity of the extinction process (Lynch

et al. 1993; Martin and Gandon 2010; Wylie and Shakhnovich

2012). Hence, it supports the synergism between stochastic and

deterministic drivers of extinction proposed in the theory of mu-

tational meltdown (Lynch et al. 1993) rather than lethal mutagen-

esis in which the extinction threshold is reached in a deterministic

fashion, or error catastrophe that proposes extinction due to the

inability of the population to contain information upon crossing a

(sharp) error threshold.

Thus, this work is an important empirical insight into the

widely theorized models discussed above. Further, by experimen-

tally controlling the demographic dynamics of the population as

well as the imposed selective pressures, we avoid many of the

commonly confounding effects encountered in attempts to quan-

tify these processes. In addition, the results of this evolutionary

study hold great clinical importance, as they validate the notion of

inducing mutational meltdown as a viable viral treatment strategy.

Unfortunately, our data are not sufficient to evaluate the different

extinction models in a systematic and statistical way.

Importantly, our results indicate the great influence of

dosage, and present the first evidence to date for adaptation of

IAV to favipiravir treatment. Encouragingly however, under high

concentration environments rescue mutations are not observed,

ultimately resulting in population extinction. The mechanism of

action of favipiravir is hypothesized to be of relevance across

RNA viruses, and the results presented here thus warrant future

comparative studies in, for example, Ebola virus and West Nile

virus populations. With regards to IAV specifically, these results

are encouraging for the future promise of improved treatment

strategies to help minimize the great public health costs of this

virus.
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